MATH 5112 (Spring 2024) Lecture 6 (transcribed by Tsz-Kin CHAN)

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

In the last lecture we defined semisimple representations, which are representations isomorphic to direct
sums of irreducible representations.

Notation. If V1, V5, ..., V, are vector spaces, then we view elements of the direct sum Vi ® Vo d--- DV,
either as tuples (vq,vs,...,v,) or as row vectors [ V1 V2 ... Up ] where each v; € V;.

Assume A is an algebra defined over an algebraically closed field K.

We proved the following technical result last time:

Proposition 1.1. Suppose Vi, Vs, -V, are irreducible, pairwise non-isomorphic, finite-dimensional

A-representations. Choose positive integers ny,na,...,n,, and define V.= @, V" Then any sub-
representation W of V has W = @:il Vle” for some integers 0 < r; < n;, and there is an isomorphism

¢;évi@“l>w

i=1
Ti1 T12 - Tipy T21 22 - T2py * " y .
that sends x = i Z } € @,V to aM € W, where M is a full
e eVa
rank, block diagonal matrix with entries in K, whose successive blocks have size r; xn; fori =1,2,...,m.

Here are two consequences of this proposition:

e If V is an irreducible finite dimensional A-representation and wvy,vs,...,v, € V are linearly inde-
pendent, then the map a — (avy, ..., av,) is a surjection A — Vo,

e Density theorem: If (V,p) = @._,(Vi, p;) is a direct sum of pairwise non-isomorphic, irreducible,
finite dimensional A-representations, then @._, p; : A — @_, End(V;) is surjective.

2 DMatrix algebras

We have already seen that the algebra of all n x n matrices over K has a unique isomorphism class of
irreducible representations. We can generalize this to block diagonal matrix algebras.

Choose integers dy,ds,...,d, > 0.
Let A = €P]_, Matg, (K) where we define Mat;(K) to be the algebra of d x d matrices over K.

Set n = Y_,d;. Then we can view A as the subalgebra of Mat,(K) consisting of all block diagonal
matrices with successive blocks of size d; x d;.

The vector space K™ is automatically an A-representation. We construct a sequence of sub-representations:
Let Vi € K™ be the subspace of vectors with zeros outside rows 1,2,...,d;

Let Vo C K™ be the subspace of vectors with zeros outside rows dy + 1,dy + 2,...,d; + ds.

Let V3 C K™ be the subspace of vectors with zeros outside rows di +do +1,dy +ds +2,...,d; + ds + ds.
Define Vy, ..., V, analogously, so V. C K™ is the subspace of vectors with zeros outside the last d, rows.

As vector spaces, we have V; =2 K%,
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Theorem 2.1. In this setup, each V; is an irreducible A-representation, and every finite-dimensional
A-representation is isomorphic to a direct sum of zero or more copies of Vi, Vo, ..., V.

Before proving this theorem, we introduce another definition.

Definition 2.2. Suppose (V, p) is an A-representation.
Let V* be the vector space of all K-linear maps A : V — K.
Then let p* : A — End(V*) be the linear map defined by

P (a)(N) :z = Ap(a)(z)) forae Aand A e V™.

We refer to the pair (V*, p*) as the dual of (V, p).

It is a representation of the opposite algebra A°P.

Fact 2.3. For A= @,_, Maty,(K) C Mat,(K), the usual matrix transpose map X — X ' is an algebra
isomorphism A = A°P.

Given a linear map between vector spaces L : V — W, define L* : W* — V* by L*(f) = f o L.
Fact 2.4. If L is injective then L* is surjective, and if L is surjective then L* is injective.

Proof of Theorem[2.1] 1t is easy to see that each V; is an irreducible A-representation, as each nonzero
element of V; is cyclic for the action of A.
Let X be some finite m-dimensional representation of A where m < oo.

Then X* is representation of A°P = A.

In other words, X* can be viewed as an A-representation for the action
a-X:x—MNa'z) forze X, A€ X*, ac A

Choose a basis {\1,..., A\, } for X*. Thenlet ¢: A®A®---® A= A" — X* be the map
dlar,az,...,am) = a1\ + a2da + - + amAn,.

Because K C A, this map is surjective. Therefore, the dual map ¢* : X — (A®™)* is injective.

Key claim: The A-representations (A®™)* and A®™ are isomorphic.

If we can prove this, then it will follow that X is isomorphic to a subrepresentation of A®™. As we have
A= @;:1 Vi@di as A-representations (the isomorphism is provided by viewing a matrix as a tuple of
column vectors), we would then get

I
X« ( a subrepresentation of A®™ = @ Vi@mdi ) ,

=1

which by our technical proposition would imply that X = @;_, V;®* for some integers s; > 0 as desired.

We will only explain the m =1 case of the key claim.
Let Aacton A* by a-A: 2~ Aa'z) for a € A and X\ € A*. Define © : A — A* to be the linear map

O:ar (zrtr(a’z)).
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Then © is a bijection since it is a nonzero linear map with trivial kernel between finite-dimensional vector
spaces of the same dimension. It is also a homomorphism of A-representations since we have

O(gh)(z) =tr(h"gTz) = O(h)(g z) = (g9- O(h))(z) for g,h,x € A,

which implies that ©(gh) = g- ©(h). Thus © : A = A* is an isomorphism of A-representations. O

3 Filtrations

Continue to let A be an algebra. Suppose V is an A-representation.

Definition 3.1. A filtration of V is a finite, increasing sequence of subspaces
o=Vy,cV,Lc---CV,=V

where each V; is sub-representation of V.

Lemma 3.2. If dimV < oo then V has a filtration in which each quotient V;/V;_; is an irreducible
A-representation.

Proof. We argue by induction on dim V.
If dim V' <1 then the result is trivial: just take n =1 and V,, = V.
Assume dim V' > 1 and choose any irreducible subrepresentation V3 C V.

Then let U = V/V;. By induction there is a filtration
0=UycU,c---cU,.1=U

in which each quotient U;/U;_ is irreducible.

Let V; be the preimage of U;_; under the quotient map V' — V/V; = U. Then
0o=Vwcwvc---CV,=V

gives the desired filtration, since V;/V;_1 = (V;/V1)/(Viz1/V1) = U;—1/U;—s for i > 1. O

3.1 Radicals of finite-dimensional algebras
Assume that A is an algebra with dim A < co.

Definition 3.3. The radical of A is the set of elements a € A that act as zero in every irreducible
representation of A. Let Rad(A) denote this set of elements.

Proposition 3.4. The set Rad(A) is a two-sided ideal of A.
Proof. The set Rad(A) is a subspace of A since if (V] p) is a representation then

p(r) =0 = p(cx) =cp(xr) =0 and p(z)=0=p(y) = plz+y)=p(z)+ply) =0

for all z,y € A and c € K. It is also a two-sided ideal since if a,b € A then

p(x) =0 = p(axb) = p(a)p(x)p(b) = 0.
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Let I be a two-sided idea in A. For integers n > 1, let I" = K-span{zix2 - 2, : x; € I'}.

We say that I is nilpotent if I™ = 0 for some n > 0.

For example, the subspace of strictly upper triangular matrices is a nilpotent ideal in the algebra of all
upper triangular n X n matrices over K.

Proposition 3.5. If I is a nilpotent two-sided ideal in A then I C Rad(A).

Proof. Suppose [ is a nilpotent two-sided ideal with I™ = 0. Choose any irreducible A-representation

V and pick 0 < v € V. Then the subspace [v ef {zv : © € I} is a subrepresentation. If Jv = V then

there is some x € I with v = v, which is impossible as 2" = 0. Therefore Iv = 0 as it is a proper
subrepresntation of an irreducible representation. Since V' was arbitrary, it follows that I C Rad(4). O

The following shows that Rad(A) is precisely the largest nilpotent two-sided ideal in A.
Proposition 3.6. Rad(A) is a nilpotent two-sided ideal.

Proof. Since dim A < oo, the previous section shows that there exists a filtration of the regular represen-
tation 0 = Ay C Ay C --- C A, = A in which each quotient A;/A;_; is irreducible as an A-representation.
Each = € Rad(A) acts as zero on A;/A;_1, which means that z4; C A;_;.

Therefore if 1,29, -- € Rad(A) then 1z -+ - 2;A C A,—; and z129 - - 2, A = 0. Hence Rad(A)" =0. O

4 Representations of finite-dimensional algebras

As a final application today, we can “classify” all representations of finite-dimensional algebras.

Theorem 4.1. Suppose A is a finite-dimensional algebra. Then A has finitely many isomorphism classes
of irreducible representations V1, Va,...,V, and A/Rad(A) = @;_, End(V;) as K-algebras. Moreover,
every irreducible A-representation is finite-dimensional.

Notice that since dim V; is finite, we have End(V;) & Maty(K) for d = dim V;.

Therefore A/Rad(A) is isomorphic to a block diagonal matrix algebra of the form considered earlier today.

Proof. Suppose V is an A-representation.

If 0 # x € V then Az is a nonzero subrepresentation of dimension at most dim A < oo.
Therefore, if V' is irreducible then we must have V = Az and dimV < dim A < oo.

Now suppose (V1,p1), ..., (Vs p) are pairwise non-isomorphic, irreducible A-representations.

By the density theorem, the direct sum

¢=EPpi: A~ PEnd(Vi)
i=1 i=1
is a surjective map. Since each End(V;) has dimension (dim V;)?, we have

r < Z(dimVi)2 <dimA < oo

i=1

Thus r cannot be arbitrarily large, so the number of distinct isomorphism classes of irreducible A-
representations is finite and at most dim A.
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Finally assume 7 is maximal above, so that every irreducible A-representation is isomorphic to some V;.

Then Rad(A) = ker(¢) so ¢ passes to an isomorphism A/Rad(A) = @;_, End(V;). O

Corollary 4.2. If Vi, V5,...,V,. are pairwise non-isomorphic irreducible representations of a finite-
dimensional algebra A then Y ._, (dim V;)? < dim A.
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