
MATH 5112 – Advanced Algebra II (Spring 2026) Lecture 1

1 Course details

The first half of this course will be cover representation theory.

The second half will cover Galois theory.

Some relevant notes and textbooks are listed on the public course website:

https://www.math.hkust.edu.hk/~emarberg/teaching/2026/Math5112/

Grades will be based on (approximately) weekly homework assignments.

All homework assignments must be submitted in-person, in hand-written form.

But there will be no exams.

All lectures will be posted on the public course webpage in pdf format (without annotations).

The annotated slides presented in class, which contain the same content, will not be posted.

2 Associative algebras

Let K be a field. Assume that K is algebraically closed unless noted otherwise.

Then when V is a finite-dimensional K-vector space, every linear map V → V has an eigenvalue in K.

The most common example of an algebraically closed field is the complex numbers C.

Definition. An associative algebra (over K) is a K-vector space A with a bilinear map A × A → A,
written (a, b) 7→ ab, that is associative in the sense that a(bc) = (ab)c for all a, b, c ∈ A.

The bilinear map corresponding to an associative algebra is called its product or multiplication map.

Here bilinear means that for all a, b, c ∈ A and λ ∈ K we have

(a+ b)c = ac+ bc and a(b+ c) = ab+ ac and (λa)b = a(λb) = λ(ab).

Because the product of an algebra A is associative, any way of parenthesizing an iterated product

a1a2a3 . . . an

with each ai ∈ A gives the same result, so we can just omit the parentheses in such expressions.

Definition. A unit for an associative algebra A is an element 1 ∈ A with 1a = a1 = a for all a ∈ A.

Proposition. If an associative algebra A has a unit then it is unique.

Proof. If 1 and 1′ are both units for A, then 1 = 11′ = 1′ since a = a1′ and 1a = a for all a ∈ A.

From now on, an algebra (over K) means a nonzero, associative algebra that has a unit.

A subalgebra of an algebra is a subspace containing the unit that is closed under multiplication.

Example. Here are some common examples of algebras:

• Trivial algebras: the field K is itself an algebra.

This is the algebra of smallest possible dimension, since the zero vector space is not an algebra.
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• Polynomial algebras: for each positive integer n the set

K[x1, x2, . . . , xn]

of polynomials in commuting variables xi with coefficients in K is an algebra with unit 1.

This algebra is commutative, meaning fg = gf for all elements f and g.

• Endomorphism algebras: if V is a nonzero K-vector space then the vector space

End(V ) = {all K-linear maps V → V }

is an algebra. Its product is composition of maps and its unit is the identity map idV : V → V .

The vector space of all maps V → V is also algebra with the same product and unit, but this is an
unreasonably high-dimensional object that is not of much interest.

• Free algebras: for each positive integer n the set

K〈X1, X2, . . . , Xn〉

of polynomials in non-commuting variables Xi is also an algebra.

• Group algebras: if G is a group then the K-vector space K[G] with basis {ag : g ∈ G} is an algebra.

This product for this algebra is the bilinear multiplication that has agah = agh for g, h ∈ G.

The unit for K[G] is the basis element a1 indexed by the group’s unit 1 ∈ G.

In other words, K[G] consists of all K-linear combinations of elements of G, which we add and
multiply as we would polynomials, just using the group law for product of individual terms.

We will sometimes use the term K-algebra (rather than algebra) to emphasize the field.

If A and B are two K-algebras then we typically denote the units in both by the same symbol 1.

Definition. A morphism f : A→ B of K-algebras is a K-linear map such that

f(1) = 1 and f(ab) = f(a)f(b) for all a, b ∈ A.

A morphism f : A→ B is an isomorphism if there is a morphism g : B → A with

f ◦ g = idB and g ◦ f = idA .

This occurs if and only if f is a bijection.

Example. There is a unique morphism K〈X1, X2, . . . , Xn〉 → K[x1, x2, . . . , xn] that sends each Xi 7→ xi.

In words, this morphism takes a polynomial in non-commuting variable and lets the variables commute.

More generally, if A is any algebra and a1, a2, . . . , an ∈ A then there is a unique morphism

K〈X1, X2, . . . , Xn〉 → A sending each Xi 7→ ai.

Example. There is a unique morphism K→ A for any K-algebra A.

This means that K is an initial object in the category of K-algebras.
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3 Representations

Fix a K-algebra A. Suppose V is a K-vector space and ρ : A→ End(V ) is a map.

Definition. The pair (ρ, V ) is a representation of A if ρ is a linear map satisfying

ρ(1) = idV and ρ(ab) = ρ(a)ρ(b) for all a, b ∈ A.

When V 6= 0 so that End(V ) is an algebra, this just says that ρ : A→ End(V ) is an algebra morphism.

However, we allow V = 0 to be the zero vector space in the definition of a representation of A.

Sometimes we will call the map ρ : A→ End(V ) a representation.

When ρ is known implicitly, we may also refer to V as a representation of A.

Definition. A left A-module is a K-vector space V with a bilinear operation A× V → V such that

1v = v for all v ∈ V and a(bv) = (ab)v for all a, b ∈ A and v ∈ V.

Representations of A are the same thing as left A-modules in the following sense:

(1) If (ρ, V ) is a representation, then we can make V into a left A-module by setting

av
def
= ρ(a)(v) for a ∈ A and v ∈ V

(2) If V is a left A-module, then we get a representation (ρ, V ) by defining

ρ(a)(v)
def
= av for a ∈ A and v ∈ V .

Moreover, operations (1) and (2) are inverses of each other.

Definition. Let Aop be the same vector space as A but with multiplication a ∗op b = ba for a, b ∈ A.

This gives another algebra with the same unit as A known as the opposite algebra.

It is instructive to check the associativity of ∗op directly:

a ∗op (b ∗op c) = a ∗op (cb) = (cb)a = c(ba) = ba ∗op c = (a ∗op b) ∗op c.

Definition. A right A-module is a vector space V with a bilinear map V ×A→ V such that

v1 = v for all v ∈ V and (va)b = v(ab) for all a, b ∈ A and v ∈ V.

Representations of Aop are the same as right A-modules, in the same sense as above.

If A is commutative, then A = Aop. In this case, left A-modules are the same thing as right A-modules.

Example. Every algebra A has a (left) regular representation (ρ,A) where ρ : A→ End(A) is the map

ρ(a)(b) = ab for a, b ∈ A.

If A = K then any K-vector space is a left A-module and so affords a representation.

3



MATH 5112 – Advanced Algebra II (Spring 2026) Lecture 1

Definition. Suppose (ρ, V ) is a representation of A.

A subrepresentation of (ρ, V ) is a subspace W ⊂ V such that ρ(a)(W ) ⊆W for all a ∈ A.

Both 0 and V are subrepresentations of (ρ, V ).

A representation (ρ, V ) of A is irreducible if it has exactly two subrepresentations.

This means that V must be nonzero and have no proper subrepresentations.

Definition. Suppose V is a left A-module.

A submodule is a subspace W ⊂ V such that aw ∈W for all a ∈ A and w ∈W .

An A-module V is irreducible if it has exactly two submodules (namely, 0 and V ).

Under the correspondence described above, subrepresentations ↔ submodules.

In practice, we will treat subrepresentations and submodules as the same thing.

4 Morphisms of representations

The representations of a given algebra A form a category with the following notion of morphisms.

Definition. Suppose (ρ1, V1) and (ρ2, V2) are both representations of A.

A morphism φ : (ρ1, V1)→ (ρ2, V2) is a linear map φ : V1 → V2 such that

φ(ρ1(a)(v)) = ρ2(a)(φ(v)) for all a ∈ A and v ∈ V1.

This property holds precisely when the following diagram commutes for all a ∈ A:

V1 V2

V1 V2

φ

ρ1(a) ρ2(a)

φ

We say that φ is an isomorphism if φ is a bijection.

The zero morphism (ρ1, V1)→ (ρ2, V2) is the map that sends all elements of V1 to 0 ∈ V2.

For the following result, K may be any field, not necessarily algebraically closed.

Proposition (Schur’s Lemma). Let (ρ1, V1) and (ρ2, V2) be representations of A.

Suppose φ : (ρ1, V1)→ (ρ2, V2) is a nonzero morphism.

(a) If (ρ1, V1) is irreducible then φ is injective.

(b) If (ρ2, V2) is irreducible then φ is surjective.

(c) If both representations are irreducible then φ is an isomorphism.

Proof. The kernel and image subspaces

ker(φ) = {v ∈ V1 : φ(v) = 0} ⊆ V1 and image(φ) = {φ(v) : v ∈ V1} ⊆ V2

are both subrepresentations, but ker(φ) 6= V1 and image(φ) 6= 0 since φ is nonzero.
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Recall that φ is injective when ker(φ) = 0 and surjective when image(φ) = V2.

The result follows since 0 and V are the only subrepresentations of an irreducible representation (ρ, V ).

For the last two results we go back to assuming that K is algebraically closed.

Corollary. Suppose (ρ, V ) is an irreducible representation of A with dim(V ) <∞.

If φ : (ρ, V )→ (ρ, V ) is any morphism then there exists λ ∈ K with φ(v) = λv for all v ∈ V .

Proof. As K is algebraically closed, the linear map φ has an eigenvalue λ ∈ K.

The difference φ− λ · idV is not invertible but it is still a morphism (ρ, V )→ (ρ, V ).

Therefore we must have φ− λ · idV = 0 by Schur’s Lemma.

Corollary. Suppose A is commutative. Then every irreducible representation (ρ, V ) of A has dimV = 1.

Proof. Suppose (ρ, V ) is a representation of A.

Fix a ∈ A. Then the map ρ(a) : V → V is a morphism (ρ, V )→ (ρ, V ) since A is commutative.

By the previous corollary we must have ρ(a) = λ · idV for some λ ∈ K.

But this applies to every a ∈ A, so every subspace of V is a subrepresentation.

Therefore V is irreducible if and only if dimV = 1.
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