
MATH 5112 – Advanced Algebra II (Spring 2026) Lecture 2

1 Review: algebras, representations, and Schur’s lemma

Let K be a field, assumed to be algebraically closed unless noted otherwise.

Definition. An (associative, unital) algebra is a nonzero K-vector space A with a bilinear product map
A×A→ A and a unit element 1 ∈ A that satisfy a(bc) = (ab)c and 1a = a1 = a for all a, b, c ∈ A.

A morphism f : A→ B of algebras is a K-linear map with f(1) = 1 and f(ab) = f(a)f(b) for all a, b ∈ A.

A morphism that is a bijection is called an isomorphism.

Example. If V is a nonzero K-vector space, then the vector space End(V ) of all linear maps V → V is an
algebra, where the product is composition ρ1ρ2 = ρ1 ◦ ρ2 and the unit is the identity map idV : V → V .

Definition. A representation of an algebra A is a pair (ρ, V ) where

• V is a K-vector space, and

• ρ is a linear map A→ End(V ) satisfying ρ(1) = idV and ρ(ab) = ρ(a)ρ(b) for all a, b ∈ A.

A morphism ϕ : (ρ1, V1)→ (ρ2, V2) of representations of A is a linear map ϕ : V1 → V2 with

ϕ(ρ1(a)(v)) = ρ2(a)(ϕ(v)) for all a ∈ A and v ∈ V1.

This is sometimes called an intertwining operator . A morphism that is a bijection is an isomorphism.

Definition. A subrepresentation of (ρ, V ) is a subspace W ⊆ V with ρ(a)(W ) ⊆W for all a ∈ A.

If W is a subrepresentation, then we view the pair (ρ,W ) as another representation of A.

We say that (ρ, V ) is irreducible if V ̸= 0 and there are no other subrepresentations except V and 0.

Proposition (Schur’s Lemma). Let ϕ : (ρ1, V1)→ (ρ2, V2) be a morphism of representations of A.

(a) If both representations are irreducible then ϕ is an isomorphism (even if K is not alg. closed).

(b) If (ρ, V ) = (ρ1, V1) = (ρ2, V2) is irreducible with dim(V ) <∞, then ϕ = λ · idV for some λ ∈ K.

(c) If A is commutative (so ab = ba for all a, b ∈ A) then every irreducible repn (ρ, V ) has dim(V ) = 1.

Example. Properties (b) and (c) can both fail if K is not algebraically closed.

We can see in this in examples when K = R is the (not algebraically closed) field of real numbers:

(i) Let A =

{[
a −b
b a

]
: a, b ∈ R

}
. As an R-algebra we have A ∼= C.

Let ρ : A→ End(A) be the (left) regular representation of A, so that ρ(y)(z) = yz.

Every 0 ̸= z ∈ A is invertible, so (ρ, V ) is irreducible but dim(V ) = 2.

Thus, even though A is commutative, not all of its irreducible representations are 1-dimensional.

(ii) Now define ϕ : A→ A by ϕ

([
a −b
b a

])
=

[
−b −a
a −b

]
, which is multiplication by

[
0 −1
1 0

]
.

This is a morphism ϕ : (ρ, V )→ (ρ, V ) since A is commutative, but it is not a scalar map.
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2 Indecomposable representations

Let A be an algebra over K. In this section K does not need to be algebraically closed.

Suppose (ρ1, V1) and (ρ2, V2) are representations of A.

Then we can form the direct sum representation

(ρ1, V1)⊕ (ρ2, V2)
def
= (ρ1 ⊕ ρ2, V1 ⊕ V2)

where V1 ⊕ V2 = {v1 + v2 : v1 ∈ V1 and v2 ∈ V2} is the usual vector space direct sum and

ρ1 ⊕ ρ2 : A→ End(V1 ⊕ V2)

is defined by the formula

(ρ1 ⊕ ρ2)(a)(v1 + v2) = ρ1(a)(v1) + ρ2(a)(v2) for a ∈ A, v1 ∈ V1 and v2 ∈ V2.

Notice that (ρ1, V1)⊕ (ρ2, V2) ∼= (ρ2, V2)⊕ (ρ1, V1) via the vector space isomorphism V1 ⊕ V2
∼= V2 ⊕ V1.

Definition. A representation (ρ, V ) of A is indecomposable if it is not isomorphic to (ρ1, V1) ⊕ (ρ2, V2)
for any nonzero representations (ρi, Vi) of A.

This occurs if and only if (ρ, V ) does not have nonzero subrepresentationsW1,W2 ⊆ V with V = W1⊕W2.

Notation. If W1 ⊆ V and W2 ⊆ V are subspaces then writing

(a) V = W1 ⊕W2

is just an abbreviation for the property

(b) it holds that V = W1 +W2 and 0 = W1 ∩W2.

Formally, the direct sum W1 ⊕W2 is some new vector space equipped with inclusions

W1 →W1 ⊕W2 ←W2

satisfying a universal property. When (b) holds, V has this property so can be identified with W1 ⊕W2.

Note that irreducible =⇒ indecomposable, but not vice versa.

Example. Consider the (commutative) polynomial algebra K[x].

What are the irreducible representations of K[x]?

Choose a linear map L : V → V where V is a vector space.

Define ρL : K[x]→ End(V ) by formula such that ρL(f(x)) = f(L) so that

ρL(anx
n + . . .+ a2x

2 + a1x+ a0) = anL
n + . . .+ a2L

2 + a1L+ a0I.

Then (ρL, V ) is a representation of K[x].

Every representation of K[x] must arise via this construction.

This holds as every algebra morphism K[x]→ B is uniquely determined by the image of the variable x.

It is possible that different choices of L might give isomorphic representations (ρL, V ), however.

Earlier results tell us that (ρL, V ) is irreducible if and only if dimV = 1.
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What are the indecomposable representations of K[x]?

Choose λ ∈ K and an integer n ≥ 1. Define Jλ,n : Kn → Kn to be the linear map

Jλ,n =



λ 1 0
λ 1

. . .
. . .

. . . 1
0 λ

 .

Then (ρJλ,n
,Kn) is indecomposable, though not irreducible if n > 1.

Moreover, every indecomposable representation of K[x] is isomorphic to one of these representations.

This follows by the uniqueness of Jordan canonical form.

Finally, one can show that (ρJλ,n
,Kn) ∼= (ρJλ′,n′ ,Kn′

) if and only if n = n′ and λ = λ′.

(These statements are not self-evident and require a fair amount of linear algebra to derive.)

3 Group Representations

Suppose G is a group. Recall that the group algebra is K[G] = K-span{ag : g ∈ G} where agah = agh.

Given a vector space V , let GL(V ) ⊂ End(V ) be the group of invertible linear maps V → V .

Definition. A group representation of G is a pair (ρ, V ) where V is a vector space and

ρ : G→ GL(V )

is a group homomorphism.

We claim that group representations are the same as representations of the corresponding group algebra.

In one direction, any group representation (ρ, V ) for G becomes a representation of K[G] on setting

ρ(ag) = ρ(g) for g ∈ G

and extending by linearity.

In the other direction, if (ρ, V ) is a representation of K[G] then ρ(ag) ∈ GL(V ) for all g ∈ G as

ρ(ag)ρ(ag−1) = ρ(agag−1) = ρ(a1) = idV .

Hence g 7→ ρ(ag) ∈ GL(V ) is a group homomorphism G→ GL(V ).

4 Ideals in algebras

Let A be an algebra. If a ∈ A and S ⊆ A then let aS = {ab : b ∈ S} and Sa = {ba : b ∈ S}.

Definition. A left ideal in A is a subspace I ⊆ A with aI ⊆ I for all a ∈ A.

A right ideal in A is a subspace I ⊆ A with Ia ⊆ I for all a ∈ A.

A two-sided ideal in A is a subspace that is both a left and right ideal.

All three notions coincide if A is commutative.
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The left ideals of A are precisely the subrepresentations of the regular representation of A.

Similarly, the right ideals of A are the subrepresentations of the regular representation of Aop.

The subspaces 0 and A are always two-sided ideals. If these are the only two-sided ideals then A is simple.

Example. The algebra Matn×n(K) is simple.

To check this, suppose I ⊆ Matn×n(K) is a nonzero two-sided ideal.

We need to show that every n× n matrix is in I.

If there is some elementary matrix Ejk ∈ I, then every other elementary matrix is obtained as

Eil = EijEjkEkl ∈ I

so any linear combination of elementary matrices is in I, which means that every n× n matrix is in I.

Thus it is enough to show that I contains some elementary matrix.

We get this as I is nonzero, so there is some 0 ̸= M ∈ I with some nonzero entry Mjk ̸= 0, and then

Ejk = 1
Mjk

EjjMEkk ∈ I.

Example. If ϕ : A→ B is an algebra morphism then its kernel is the set

ker(ϕ) = {a ∈ A : ϕ(a) = 0}

The kernel is always a subspace, and if a ∈ ker(ϕ) and x, y ∈ A then

ϕ(xa) = ϕ(x)ϕ(a) = 0 and ϕ(ay) = ϕ(a)ϕ(y) = 0

so xa ∈ ker(ϕ) and ay ∈ ker(ϕ). Thus shows that ker(ϕ) is a two-sided ideal.

Example. If S ⊆ A, then we define ⟨S⟩ to be the intersection of all two-sided ideals in A containing S.

We call this the two-sided ideal generated by S. One can show that each element of ⟨S⟩ has the form

a1s1b1 + a2s2b2 + · · ·+ ansnbn

for some n ≥ 0 and some choice of ai, bi ∈ A and si ∈ S.

Definition. A maximal left/right/two-sided ideal I ⊊ A is an ideal properly contained in exactly one
other left/right/two-sided ideal (namely A itself).

One can use Zorn’s lemma to show that every ideal is contained in a maximal ideal.

(Zorn’s lemma is only needed if A is infinite-dimensional.)

Definition. Assume I is two-sided ideal in an algebra A with I ̸= A. Then the quotient vector space

A/I = {a+ I : a ∈ A}

where a+ I
def
= {a+ i : i ∈ I} is an algebra with unit 1 + I for the multiplication defined by

(a+ I)(b+ I) = ab+ I for a, b ∈ A.
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There is something to check to make sure that the above multiplication is well-defined.

This is a standard exercise. The linear map π : A→ A/I with π(a) = a+ I is an algebra morphism.

Definition. Suppose (ρV , V ) is a representation of A and W ⊆ V is a subrepresentation.

Define ρV/W : A→ End(V/W ) by the formula

ρV/W (a)(x+W ) = ρV (a)(x) +W for a ∈ A and x ∈ V.

Then (ρV/W , V/W ) is a representation of A, called the quotient representation.

If I ⊆ A is a left ideal, then A/I is a representation of A via this construction.

Equivalently, A/I is a left A-module for the action a · (b+ I)
def
= ab+ I for a, b ∈ A.

5 Generators and relations

Recall that K⟨X1, X2, . . . , Xn⟩ is the free algebra of polynomials in noncommuting variables.

If f1, f2, . . . , fm ∈ K⟨X1, X2, . . . , Xn⟩ then we can consider the quotient algebra

K⟨X1, X2, . . . , Xn⟩/⟨f1, f2, . . . , fm⟩

where ⟨f1, f2, . . . , fm⟩ is the two-sided ideal generated by {f1, f2, . . . , fm}. We often write this as

K⟨X1, X2, . . . Xn | f1 = f2 = . . . fm = 0⟩.

The elements of this quotient are polynomials where we can replace expressions equal to fi by zero.

Remark. Technically, if I = ⟨f1, f2, . . . , fm⟩ then elements of K⟨X1, X2, . . . , Xn⟩/I are cosets f + I.

Usually we write things by dropping the “+I” part.

When we do this it will be clear from context whether f belongs to K⟨X1, X2, . . . , Xn⟩ or the quotient.

Example. The Weyl algebra is the quotient algebra

K⟨x, y | yx− xy − 1 = 0⟩ = K⟨x, y | yx− xy = 1⟩.

In the Weyl algebra, we have yx = xy + 1 and xyx = x(xy + 1) = x2y + x = (yx− 1)x = yx2 − x.

Example. The q-Weyl algebra for a fixed nonzero element q ∈ K is

K
〈
x, x−1, y, y−1 | yx = qxy and xx−1 = x−1x = yy−1 = y−1y = 1

〉
.

The second set of relations ensures that x, x−1 and y, y−1 are inverses of each other.
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