MATH 5112 — Advanced Algebra IT (Spring 2026) Lecture 3

1 Review from last time

Let A be an algebra over a field K, which is algebraically closed unless otherwise noted.

Given two representations (p1, V1) and (p2, Va) of A, we can form the direct sum representation

(p1, V1) @ (p2, Va) o (p1 ® p2, Vi & V)

where (p1 @ p2)(a)(vy + v2) = p1(a)(v1) + p2(a)(ve) for vi € Vi, v € Va, a € A.

A representation of A is indecomposable if it is not a direct sum of two nonzero representations.
If (p, V) = (p1, V1) ® (p2, V2) then each V; is a subrepresentation.
Thus, for representations of A, the property NOT indecomposable = NOT irreducible:

Taking contrapositives shows that ‘ irreducible = indecomposable |.

Given any subspace I C A, let A/T ={a+1I:a € A} be the vector space quotient.
A subspace I is a two-sided ideal in A if axb € I for all a,b € A and z € I.
If I # A is a two-sided ideal then A/I is an algebra, with product (a + I)(b+I) = ab+ I for a,b € A.

Quotient algebras are useful since they let us define algebras by generators and relations.

Example. The Weyl algebra is K(z,y | yx — zy = 1).
This notation means the quotient of free algebra K(xz,y) by the two-sided ideal

(yr —axy — 1) def (the intersection of all two-sided ideals containing yz — zy — 1).

To save space, we write f(x,y) instead of f(z,y) + (yx — xy — 1) to denote elements of this algebra.

It often hard to say concretely what an ideal like (yx —xzy — 1) is explicitly, and to classify precisely which
expressions in (z,y) become zero in the quotient.

Taking quotients means we can make substitutions like yx = zy + 1 in polynomial expressions.

The relations in an algebra defined by generators and relations provide an algorithm for transforming a
given expression to others that are equal in the algebra. In principle, an exhaustive search using this
algorithm can tell you if two expressions are equal, but this search might not terminate.

2 More on the Weyl algebra

The elements of the Weyl algebra K(xz,y | yx = xy + 1) technically are cosets of the ideal (yz — zy — 1).

However, for simplicity we just write these elements as ordinary polynomials in x and y.
Proposition. A basis for the Weyl algebra is {2y’ : i, > 0}.

Proof. The given set spans the algebra since we can always transform

i1+i2+...Fig

ghyligizyl2 | gleyle = ¢ ylr izt Fik 4 (lower degree terms)

via repeated substitutions yzr = xy + 1.

To show linear independence, assume ch(K) = 0.
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(The argument when ch(K) > 0 is similar but not as elegant; see the textbook for details.)

Consider the polynomial ring K[z]. For f € K[z], define - f =zf and y - f = % .

There is a unique left module structure (for the Weyl algebra) on K[z] with these formulas, because
v f)=y- N =gGH=f+zgf=Ff+a-(yf)

which means that (yz —xy —1) - f =0.

Now suppose c;; € K are coefficients such that 3=, i~ cijz’y’ = 0 in the Weyl algebra.

Let L=73", 5o cij2! (d%)j be a differential operator on K[z]. Then

L(f) = (Zmzo Cz‘j$iyj> -f=0 forall feK[].

But we can write L = 377 Q;(2) (d%)j for some polynomials Q;(z) € K[z].

Now observe that

I
O
o
=

w

) )=0
L(z)=Qou(2)z+ Q1(2) =Q1(2) =0
%) = Qou(2)2" + Q1(2)z + Q2(2) = Qa(2) = 0

Thus we have Qo = Q1 =...=Q, =0 = ¢;; = 0 for every ¢, j.

This proves that the elements %y’ for 4, j > 0 are linearly independent. O

Example. Let ¢ € K be a nonzero element. Then the ¢- Weyl algebra is

A=K(z,a L y,y ' yz=qay, sz =2 lo=1, yy 'y ly=1).

We require ¢ to be nonzero, since if ¢ = 0 then we would have z =y = 0 and A = 0:

1

yr=0 = y lyr=x=0and yzz ! =y =0.

Proposition. If ¢ # 0 then a basis for the ¢-Weyl algebra is {x'y’ : i,j € Z}

Proof. The argument to show that given elements span the algebra is similar to the Weyl algebra case.

For linear independence, see the textbook. O

3 Tensor products of vector spaces

Let V and W be two K-vector spaces. Their direct product is simply the set of pairs
VxW={(v,w):vew, be W}
This object is just a set, not a vector space.

Define the free product V « W to be the K-vector space with V' x W as a basis.

Each element of V « W is a finite linear combination of pairs (v,w) € V x W.
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One way to define the tensor product of V-and W is as the quotient vector space

VoW < (vaw)/Tyw

where Zy v is the subspace spanned by all elements of the form
o (v1 + vo,w) — (v, w) — (v2,w),

o (v,wi +wz) = (v,w1) — (v, wa2),

e (av,w) — a(v,w), or

e (v,aw) — a(v,w),

for any a € K, vi,v9,v € V, and wy, ws,w € W.

This construction comes with a quotient map V.« W — V @ W.
IfxeVandye W, thenlet z®y € V@ W be the image of (x,y) € V x W C V « W under this map.

If we view elements of a vector space quotient as cosets of a subspace then
def
r@y = (2,y) +Tvw

We refer to x ® y as a pure tensor.

Not all elements of V ® W are pure tensors, but they are a spanning set for V@ W.

We can manipulate pure tensors without changing their value in V @ W using the following identities:

(nn4+v)Q@Ww=v1 QW+ vy QW

and () @w=clvw)=1v® (cw)
v® (w1 +w2) =v @ wy + v we

for v1,v9,v € V and wy,ws,w € W and ¢ € K.

These equations hold because the differences between the two sides belong to the subspace Zy w .

We can have z ® y = 2’ ® ¢ when x # 2’ and y # v/'.

A simple example is when 2’ = —z € V and ¢y = —y € W.

Exercise (Should do once). Suppose {v; : i € I} is a basis of V and {w; : j € J} is a basis of W.
Then the set {v; @ w; : (4,7) € I x J} is a basis of V@ W.

Remark. If U, V, and W are K-vector spaces, then there is a unique isomorphism
UV)oW S U (VeW)

that sends ©u ® (v @ w) — (u®v) @ w for each u € U, v € V, and w € W.

It follows from this exercise that there is a canonical isomorphism between any way of forming the tensor
product between a finite sequence of vector spaces. For example:
Vie(VaeVs)@Vy) 2@ (120 (VaeVy)) = (Vi@ V)@ (VaeVy) = (VieVz)®Vs) e V.

In view of this, we will ignore the issue of parenthesization and just define

V=K and V"=V @V®- ---®V (n factors).
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4 Tensor products of linear maps

If V and W are vector spaces over K then let Hom(V, W) be the vector space of linear maps V' — W.

If f € Hom(V,V’) and g € Hom(W, W') are two linear maps then their tensor product
[@g: VoW =V oW

is the unique linear map that acts on pure tensors as

v@w— f(v)®@g(w) forallveV and weW.

There are some things to check to make sure that this is well-defined.

Since V x W is a basis for V « W, there is a unique linear map fxg: V « W — V' @ W’ that sends
(v,w) = f(v)®@g(w) forallveV andwe W.

We want know that the map f * g descends to a well-defined map of quotient spaces V@ W — V' @ W',
Thus will give exactly our desired map f ® g.

We need to verify that (f *¢)(Zy,w) =0C V' @ W'.
To check this, it is enough to show that f * g sends each element in the spanning set for Zy y to zero.
This is routine algebra. For instance, if v1,v2 € V and w € W then we have

(f * 9)((v1 + v2,w) = (v, w) = (v2,w)) = (f + g)((v1 + v2,w)) = (f % g)((v1, w)) = (f * g)((v2, w))

fv1 +v2) @ g(w) — f(v1) ® g(w) — f(v2) @ g(w)
f(v1) @ g(w) + f(v2) ®@ g(w) — f(v1) ® g(w) — f(v2) @ g(w)
0

as needed. The calculations showing that f * g kills off the other elements spanning Zy - are similar.

5 Tensor algebras

Definition. The tensor algebra of a vector space V is the infinite direct sum TV = @, ~, V®".

The elements of an infinite direct sum are finite sums of elements from the summands.

We view TV as a K-algebra by defining
ab=a®b foraecV®™ andbe V",

and extending by bilinearity. Here we view a ® b € V@(m+n)
This product is associative, since the tensor product is associative.

The unit of the resulting tensor algebra TV is the field unit 1 = 1x € K = V&0,

Notice that TV is an algebra even when V = 0, since then TV = 70 = K.
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Remark. We may identify tensor algebras with free algebras.

Suppose V is finite-dimensional with basis {v1,...,vx}. Then there is a unique algebra isomorphism
TV S K(Xy,...,XN)

that sends v;; @ v, ® -+ @ v;, — Xiy Xiy - - X, -

A similar isomorphism exists when dim (V') = oo, if we allow infinitely-many variables in the free algebra.

6 Symmetric algebras

We mention two interesting quotients of the tensor algebra.
Definition. The symmetric algebra of V is the quotient SV =TV/{(v@w —w®v:v,w € V).
Recall that (v @ w —w ® v : v,w € V) means the intersection of all two-sided ideals in TV containing

{vew—-—wev:v,weV}.

The symmetric algebra SV is always commutative. We have 7V = SV if and only if dimV < 1.

Remark. We may identify symmetric algebras with polynomial algebras.

Suppose V is finite-dimensional with basis {v1,...,vx}. Then there is a unique algebra isomorphism
SV 1) K[l‘h.. . ,xN]

that sends v;;, ® v, @+ @ Vs, > L4, Ty~ +* Ti, -

A similar isomorphism exists when dim(V) = co.
7 Exterior algebras

Definition. The exterior algebra of V' is the quotient AV =TV/(v@uv: v e V).
Define x A y to be the image x ® y € V ® V under the quotient map 7V — A V. Then
O=(x+y)A(z+y)

=Tz N+ NYy+yANr+yAy
=rzNy+tyAhzx

so £ Ay = —y A x. This shows that the operation A is an anti-commutative product for A V.

¢

Remark. Choosing a basis for V' determines an isomorphism from AV to a “polynomial algebra” in

which the variables anti-commute in the sense that z;x; = —x;x;.

8 Tensor product of modules

Building on our definition of vector space tensor products, we can now define more general tensor products
of modules over a (not necessarily commutative) algebra.
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8.1 Right modules with left modules

Consider the following setup:
A, B, C are algebras over the same field K,
V is a right B-module, and
W is a left B-module.
Then we define V ®pg W to be the vector space quotient

VeorWw (Ve W)/K-span{vhb@w —v@bw:v eV, we W, be B}.

In general, this object only has the structure of a K-vector space.
Specifically, if B is non-commutative, then V ® g W is not naturally a left or right module for B.
We refer to V @p W as the tensor product of V-and W over B.

If v € V and w € W then we write
vR@pw eV g W

for the image of v @ w € V ® W under the quotient map VoW — V g W.
Notice that if b € B then vdb ®p w = v ®p bw.

8.2 Bimodules

We now assume in addition that V' is an (A, B)-bimodule, meaning that

V has both right B-module and left A-module structures, and

these structures are compatible in the sense that (av)b = a(vb) for alla € A, be B, v e V.
Assume likewise that W is a (B, C')-bimodule, meaning that

W has both left B-module and right C-module structures, and

these structures are compatible in the sense that (bw)c = b(we) for allb € B, c€ C, w € W.
Then the vector space V @ W has a (A4, C')-bimodule structure defined by

alvepw)=(av)@pw and (vRpw)c=v®p(wc) forac A, ceC,veV, weW

The case when A = B = C' is worth noting.

In this situation, V and W are both (B, B)-bimodules, and V ® g W is also a (B, B)-bimodule.
Remark. If the algebra B is commutative, then left and right B-modules are the same as (B, B)-
bimodules, and so we can form the tensor product of two left B-modules or two right B-modules.

However, this is secretly just doing the (B, B)-bimodule tensor product described above.

9 Diagrammatic definition of an algebra

Now that we have a good handle on vector space tensor products, we can give an alternate definition of
an algebra. This consists of a K-vector space A with linear maps V: A® A — A and ¢ : K — A that
make the following diagrams commute:
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AA A — Y8 L A0A KoAd—%9 s 494« 9%  AgK
ideV v N v -
_
A® A = A A

The diagonal arrows on the right are the linear maps K® A — A and A ® K — A sending 1x ® a — a
and a ® 1g — a for all a € A. These maps are vector space isomorphisms.

Under this formulation, the product in A is ab def V(a ®b) and the unit is ¢(1g) € A.

One nice feature of this definition is that it naturally suggests the definition of a coalgebra: this is the
object one gets by repeating the above definition but reversing the direction of all arrows.
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