
MATH 5112 – Advanced Algebra II (Spring 2026) Lecture 4

1 Review: tensor products and tensor algebras

Let V and W be vector spaces defined over an arbitrary field K.

• The direct product V ×W is the set of pairs (v, w) with v ∈ V and w ∈W .

• The free product V ∗W is the K-vector space with V ×W as a basis.

• The tensor product V ⊗W is the quotient vector space

V ⊗W def
= (V ∗W )/IV,W

where IV,W is the subspace of V ∗W spanned by the elements of the following forms:

(v1 + v2, w)− (v1, w)− (v2, w),

(v, w1 + w2)− (v, w1)− (v, w2),

(av, w)− a(v, w), and

(v, aw)− a(v, w),

for any a ∈ K, v1, v2, v ∈ V , and w1, w2, w ∈W .

The image of (v, w) ∈ V ×W under the quotient map V ∗W → V ⊗W is denoted

v ⊗ w ∈ V ⊗W

and called a pure tensor . For any a ∈ K, v1, v2, v ∈ V , w1, w2, w ∈W it holds that

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2, av ⊗ w = v ⊗ aw = a(v ⊗ w).

Fact. If V has basis {vi}i∈I and W has basis {wj}j∈J then {vi ⊗ wj}(i,j)∈I×J is a basis for V ⊗W .

The tensor product is associative in the sense that we can identify U ⊗ (V ⊗W ) ∼= (U ⊗ V )⊗W .

Therefore, we can form iterated tensor products V ⊗0 = K and V ⊗n = V ⊗ V ⊗ · · · ⊗ V (n terms).

The tensor algebra of a vector space V is defined as T V =
⊕

n≥0 V
⊗n.

This is an (associative, unital) algebra with product xy = x⊗ y and unit 1 ∈ K = V ⊗0 ⊂ T V .

Notice that if V = 0 then T V = K, and that T V is commutative if and only if dimV ≤ 1.

Any choice of basis for V determines an isomorphism from T V to a free algebra K〈X1, X2, . . . 〉.

Some notable quotients of T V :

• The symmetric algebra of V is SV def
= T V/〈v ⊗ w − w ⊗ v : v, w ∈ V 〉.

• The exterior algebra is
∧
V

def
= T V/〈v ⊗ v : v ∈ V 〉.

2 Semisimple representations

In this lecture, we begin a new chapter focusing on some general results about algebra representations.

From now on, we will assume that K is an algebraically closed field, and that A is a K-algebra.

Definition. A representation of A is semisimple (sometimes called completely reducible) if it is isomorphic
to a direct sum of irreducible representations.
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As a general rule in mathematical terminology:

“simple” ≡ “irreducible” and “semisimple” ≡ “(direct) sum of simple objects”.

Notation. Suppose V is a left A-module. Often we will say that “V is a representation of A”: this just
means the representation (ρ, V ) where ρ : A→ End(V ) is defined by ρ(a) : x 7→ ax for a ∈ A and x ∈ V .

Example (Matrix algebras). Let A = Matn(K) be the algebra of n× n matrices over K.

Let V = Kn be the K-vector space of column vectors with n rows.

We can transform any v ∈ V by multiplying it on the left by a matrix X ∈ A to get another vector Xv.

This makes V into an A-representation.

This representation is irreducible since if v, w ∈W and v 6= 0 then some X ∈ A has Xv = w.

Therefore every nonzero vector is cyclic in the sense that it is not contained in any properA-subrepresentation.

We have End(V ) = A, which is also an A-representation, via the (left) regular representation in which
one matrix acts on another by matrix multiplication X : Y 7→ XY .

The regular representation of A is semisimple as we have A ∼= V ⊕n as A-representations.

An explicit isomorphism A
∼−→ V ⊕n is the map sending

X =

 X11 · · · X1n

...
...

Xn1 · · · Xnn

 7→

 X11

...
Xn1

 ,
 X12

...
Xn2

 , · · · ,
 X1n

...
Xnn


 .

Notation. Here we define V ⊕n to be the set of n-tuples (v1, v2, . . . , vn) where each vi ∈ V and where

(v1, v2, . . . , vn) + (w1, w2, . . . , wn)
def
= (v1 + w1, v2 + w2, . . . , vn + wn),

c(v1, v2, . . . , vn)
def
= (cv1, cv2, . . . , cvn),

for vi, wi ∈ V and c ∈ K.

Example. Suppose A is any algebra and V is an irreducible A-representation with dim(V ) = n <∞.

Then End(V ) = {all linear maps L : V → V } is an A-representation for the action

a · L : v 7→ a · L(v) for a ∈ A and v ∈ V.

This representation is semisimple with End(V ) ∼= V ⊕n as A-representations.

If V has basis {v1, . . . , vn} then the map L 7→ (L(v1), · · · , L(vn)) is an isomorphism End(V )
∼−→ V ⊕n.

3 Subrepresentation of semisimple representations

Our main results today are derived from the following technical property.

It tells us that all subrepresentations of semisimple representations are semisimple.
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Proposition. Let V1, · · · , Vm be irreducible A-representations with dim(Vi) <∞ and Vi 6∼= Vj if i 6= j.

Consider the A-representation V =
⊕m

i=1 V
⊕ni
i where n1, n2, . . . , nm are nonnegative integers.

Now suppose W is a subrepresentation of V . Then:

(1) For some integers 0 ≤ ri ≤ ni there is an isomorphism φ :
⊕m

i=1 V
⊕ri
i

∼−→W .

(2) The map
⊕m

i=1 V
⊕ri
i

φ−−→W ↪→ V is a direct sum of inclusions φi : V ⊕rii ↪→ V ⊕ni
i of the form

φi(a1, a2, · · · , ari) =
[
a1 a2 · · · ari

]
Xi

where each Xi is a full rank ri × ni matrix with values in K.

Proof sketch. If W = 0 then the proposition is trivial. Assume W 6= 0.

We proceed by induction on n
def
= n1 + n2 + · · ·+ nm.

If n = 1 then we must have 0 6= W = V in which case the result is again obvious.

Assume n > 1. Since W is finite-dimensional, it has an irreducible subrepresentation P (see HW1).

Observe that HomA(P, V ) =
⊕m

i=1 HomA(P, Vi)
⊕ni . In this equation:

• each term HomA(P, Vi) on the right side is nonzero if and only if P ∼= Vi by Schur’s lemma;

• the left side is nonzero since it contains inclusion P ↪→W ↪→ V .

Therefore P must be isomorphic to Vi for some i.

The inclusion Vi
∼−→ P ↪→ V ⊕ni

i ↪→ V must be given by a map of the form

v 7→ (q1v, · · · , qni
v)

for some scalars qi ∈ K that are not all zero. This is because composing this map with each projection

(a1, · · · , ani
) 7→ aj ∈ Vi

is a morphism of A-representations Vi → Vi, which must be a scalar map by Schur’s lemma.

Let g ∈ GLni
(K) = {invertible ni × ni matrices} act on V ⊕ni

i on the right by the formula

g : (v1, v2, · · · , vni
) 7→

[
v1 v2 · · · vn

]
g

while acting on V
⊕nj

j for i 6= j as the identity. This gives a right action of the general linear group on V .

We may choose g ∈ GLni(K) such that

Pg = {(0, 0, · · · , 0, v) : v ∈ Vi} ⊂ V ⊕ni
i .

Then Wg = W ′ ⊕ Vi where Vi = Pg and W ′ is the kernel of projection Wg → Pg, which satisfies

W ′ ⊂ V ⊕n1
1 ⊕ · · · ⊕ V ⊕(ni−1)

i ⊕ · · · ⊕ V ⊕nm
m .

Now we apply the proposition to W ′ by induction, and multiply the resulting inclusion by g−1.

Corollary. Assume the following setup:

• V is an irreducible finite-dimensional representation of A.
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• The elements v1, v2, . . . , vn ∈ V are linearly independent.

• The elements w1, w2, . . . , wn ∈ V are arbitrary.

Then there exists an element a ∈ A such that avi = wi for all i = 1, 2, . . . , n.

Proof. Assume no such element exists. Then the image of A under the map

a 7→ (av1, . . . , avn)

is a proper subrepresentation of V ⊕n, which we denote by W .

By Proposition 3 we know that W ∼= V ⊕m for some 0 ≤ m < n and there exists an inclusion

φ : V ⊕m
∼−→W ↪→ V ⊕n

of the form φ(a1, a2, · · · , am) =
[
a1 a2 · · · am

]
X where X is a full rank m× n matrix.

Since (v1, v2, · · · , vn) ∈W , we may choose ai ∈ V such that φ(a1, a2, · · · , am) = (v1, v2, · · · , vn).

Also, since m < n, there is nonzero vector q1
...

qn

 ∈ Kn such that X

 q1
...

qn

 = 0.

But now

n∑
i=1

qivi =
[
v1 v2 . . . vn

]  q1
...

qn

 =
[
a1 a2 · · · am

]
X

 q1
...

qn

 = 0

which contradicts the linear independence of v1, · · · , vn.

Theorem (Density theorem). Let (ρ, V ) be an irreducible, finite-dimensional A-representation.

Then the map ρ : A→ End(V ) is surjective.

More strongly, suppose (ρ1, V1), (ρ2, V2), . . . (ρr, Vr) are irreducible finite-dimensional A-representations.

Assume (ρi, Vi) 6∼= (ρj , Vj) for all i 6= j. Then
⊕r

i=1 ρi : A→
⊕r

i=1 End(Vi) is also surjective.

Proof. For the first claim, choose any L ∈ End(V ) and suppose v1, v2, . . . , vn is a basis of V .

Set wi = L(vi). By the previous corollary, some a ∈ A has ρ(a)vi = wi for all i so ρ(a) = L.

The second claim is nontrivial since direct sums of surjective maps are not necessarily surjective.

For example, the direct sum of the identity map with itself x 7→ (x, x) which is not surjective.

The desired surjectivity property will be a consequence of the second part of the previous proposition.

Let Y =
⊕r

i=1 End(Vi). This is a semisimple A-representation as End(Vi) ∼= V ⊕dii where di = dim(Vi).

By the previous proposition, the subrepresentation

W = (
⊕r

i=1 ρi) (A) ⊂ Y
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is isomorphic to
⊕r

i=1 V
⊕mi
i for some integers 0 ≤ mi ≤ di, and there is an inclusion

φ :
⊕r

i=1 V
⊕mi
i

∼−→W ↪→ Y

that is given by a direct sum of inclusions φi : V ⊕mi
i ↪→ V ⊕dii .

Since each ρi is surjective, the composition of this inclusion with the projection Y → End(Vi) is surjective.

Hence each φi is surjective and mi = di. This shows that
⊕

i ρi is surjective.
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