MATH 5112 — Advanced Algebra IT (Spring 2026) Lecture 4

1 Review: tensor products and tensor algebras

Let V and W be vector spaces defined over an arbitrary field K.
e The direct product V- x W is the set of pairs (v,w) with v € V and w € W.
e The free product V x W is the K-vector space with V' x W as a basis.
e The tensor product V .® W is the quotient vector space

VoW (VW) Tyw

where Zy v is the subspace of V' * W spanned by the elements of the following forms:
(v1 4 v2,w) = (v1, W) — (v2, W),
(v, w1 + wz) — (v,wr) — (v, w2),
(av,w) — a(v,w), and
(v, aw) — a(v,w),

for any a € K, vy, v2,v € V, and wy, wq,w € W.

The image of (v,w) € V x W under the quotient map V « W — V ® W is denoted
vQWweVeW

and called a pure tensor. For any a € K, v1,ve,v € V| wy,we,w € W it holds that

(+12) QU= QW+ Qw, VR(w+wy)=vRw +VRws, awW=0vKaw=a(v@uw).
Fact. If V' has basis {v;};c; and W has basis {w;} e then {v; ® w;}(; jyerxs is a basis for V@ W.

The tensor product is associative in the sense that we can identify U@ (VW)= (U V) W.
Therefore, we can form iterated tensor products V¥ =K and V" =V @V ®---®@ V (n terms).
The tensor algebra of a vector space V' is defined as TV = €P,,5 yen,

This is an (associative, unital) algebra with product zy = x ® y and unit 1 € K = V® c TV.

Notice that if V' =0 then 7V =K, and that 7V is commutative if and only if dimV < 1.

Any choice of basis for V' determines an isomorphism from 7V to a free algebra K(X7, Xo,...).

Some notable quotients of TV:
e The symmetric algebra of V is SV o TV/ov@w—-—w®uv:v,we V).

e The exterior algebra is AV def TV/{ivev:veV).

2 Semisimple representations

In this lecture, we begin a new chapter focusing on some general results about algebra representations.

From now on, we will assume that K is an algebraically closed field, and that A is a K-algebra.

Definition. A representation of A is semisimple (sometimes called completely reducible) if it is isomorphic
to a direct sum of irreducible representations.
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As a general rule in mathematical terminology:

“simple” = “irreducible” and “semisimple” = “(direct) sum of simple objects”.

Notation. Suppose V is a left A-module. Often we will say that “V is a representation of A”: this just
means the representation (p, V') where p: A — End(V) is defined by p(a) : ¢ — ax for a € A and x € V.
Example (Matrix algebras). Let A = Mat,(K) be the algebra of n x n matrices over K.

Let V = K" be the K-vector space of column vectors with n rows.

We can transform any v € V' by multiplying it on the left by a matrix X € A to get another vector Xwv.
This makes V' into an A-representation.
This representation is irreducible since if v,w € W and v # 0 then some X € A has Xv = w.

Therefore every nonzero vector is cyclic in the sense that it is not contained in any proper A-subrepresentation.

We have End(V)) = A, which is also an A-representation, via the (left) reqular representation in which
one matrix acts on another by matrix multiplication X : Y — XY.

The regular representation of A is semisimple as we have A = VO as A-representations.

An explicit isomorphism A = V®" is the map sending

X - X X1 X12 Xin
X=| e
an e er an Xn2 X'rm
Notation. Here we define V®” to be the set of n-tuples (v1,v2,...,v,) where each v; € V' and where
def
(v1,v2,...,0p) + (W1, w2, ..., wy) = (v1 + wi,v2 + wa, ..., vy + Wy),
def
c(v,va,...,0,) = (cv1, v, ..., coy),

for v;,w; € V and ¢ € K.

Example. Suppose A is any algebra and V' is an irreducible A-representation with dim(V) =n < cc.

Then End(V) = {all linear maps L : V' — V'} is an A-representation for the action
a-L:v—a-Lv) forae AandveV.

This representation is semisimple with End(V) = V®" as A-representations.
If V has basis {vy,...,v,} then the map L ~ (L(vy),---, L(v,)) is an isomorphism End(V) = Vo,
3 Subrepresentation of semisimple representations

Our main results today are derived from the following technical property.

It tells us that all subrepresentations of semisimple representations are semisimple.
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Proposition. Let Vi,---,V,, be irreducible A-representations with dim(V;) < co and V; 2 Vj if ¢ # j.
Consider the A-representation V = @, Vi@"" where ny,no,...,n,, are nonnegative integers.
Now suppose W is a subrepresentation of V. Then:

(1) For some integers 0 < r; < n; there is an isomorphism ¢ : @, V2" = W.
(2) The map ;" , V=" 24 W < V is a direct sum of inclusions ¢i : Vi < V. of the form
pi(ar,az, - ,ar) = ar az -+ ar, | X;
where each X; is a full rank r; X n; matrix with values in K.

Proof sketch. If W = 0 then the proposition is trivial. Assume W # 0.

We proceed by induction on n def ny+ng + -+ Ny

If n =1 then we must have 0 % W = V in which case the result is again obvious.

Assume n > 1. Since W is finite-dimensional, it has an irreducible subrepresentation P (see HW1).
Observe that Homa (P, V) = @."; Homy4 (P, V;)®". In this equation:

e cach term Hom 4 (P, V;) on the right side is nonzero if and only if P = V; by Schur’s lemma;

e the left side is nonzero since it contains inclusion P — W — V.

Therefore P must be isomorphic to V; for some 1.

The inclusion V; = P — Vi@"i — V must be given by a map of the form
v (qus o, v)
for some scalars ¢; € K that are not all zero. This is because composing this map with each projection
(@1, -+ ,an,) ~a; €V;

is a morphism of A-representations V; — V;, which must be a scalar map by Schur’s lemma.

Let g € GL,,, (K) = {invertible n; x n; matrices} act on V¥ on the right by the formula
g (v1, 02, ,vp,) = [ V1 V2 -t Up }9

while acting on Vj@”j for i # j as the identity. This gives a right action of the general linear group on V.

We may choose g € GL,,, (K) such that
Pg = {(0,0,---,0,v) :v € V;} C Vo™,
Then Wg = W’ @ V; where V; = Pg and W' is the kernel of projection Wg — Pg, which satisfies
Wcveig. ..oV g.. . gyom,

Now we apply the proposition to W’ by induction, and multiply the resulting inclusion by g~*. O

Corollary. Assume the following setup:

e V is an irreducible finite-dimensional representation of A.
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e The elements vy, vo,...,v, € V are linearly independent.
e The elements wy,ws, ..., w, € V are arbitrary.
Then there exists an element a € A such that av; = w; for alli =1,2,...,n.

Proof. Assume no such element exists. Then the image of A under the map
a— (avy,...,avy)

is a proper subrepresentation of V¥, which we denote by W.

By Proposition [3| we know that W =2 V®™ for some 0 < m < n and there exists an inclusion
G VI LW s YO
of the form ¢(ay,as, -+ ,amy) = [ ar Qs v Qo ] X where X is a full rank m x n matrix.

Since (v, va,- -+ ,v,) € W, we may choose a; € V such that ¢(a1,as, - ,am) = (v1,v2, - ,Up).

Also, since m < n, there is nonzero vector

q1 q1
] eK” such that X - | =0.
dn qn
But now
n q1 q1
Zqivi:[vl Vg ... vn] :[al as - am]X -1 =0
i=1 n n
which contradicts the linear independence of vy, --- ,v,. O

Theorem (Density theorem). Let (p, V) be an irreducible, finite-dimensional A-representation.
Then the map p: A — End(V) is surjective.
More strongly, suppose (p1, V1), (p2, Va), ... (pr, V;) are irreducible finite-dimensional A-representations.

Assume (p;, V;) % (p;, V;) for all i # j. Then @;_, p; : A — @;_, End(V;) is also surjective.

Proof. For the first claim, choose any L € End(V') and suppose vy, vs, ..., v, is a basis of V.

Set w; = L(v;). By the previous corollary, some a € A has p(a)v; = w; for all i so p(a) = L.

The second claim is nontrivial since direct sums of surjective maps are not necessarily surjective.
For example, the direct sum of the identity map with itself z — (z, z) which is not surjective.

The desired surjectivity property will be a consequence of the second part of the previous proposition.

Let Y = @;_, End(V;). This is a semisimple A-representation as End(V;) = V%4 where d; = dim(V;).

By the previous proposition, the subrepresentation

W= (@iz1pi) (A CY
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is isomorphic to @::1 Vme"' for some integers 0 < m; < d;, and there is an inclusion
s DSm; ~
¢ : eai:l ‘/,L — W =Y
that is given by a direct sum of inclusions ¢; : VZ@"” — Vl@di.

Since each p; is surjective, the composition of this inclusion with the projection Y — End(V;) is surjective.

Hence each ¢; is surjective and m; = d;. This shows that @, p; is surjective. O
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