
MATH 5112 – Advanced Algebra II (Spring 2026) Lecture 5

1 Review: direct sums and the density theorem

In the last lecture we discussed semisimple representations.

These are representations isomorphic to direct sums of irreducible representations.

Notation. If V1, V2, . . . , Vn are K-vector spaces, then we view elements of the direct sum

V1 ⊕ V2 ⊕ · · · ⊕ Vn

either as tuples (v1, v2, . . . , vn) or as row vectors
[
v1 v2 . . . vn

]
where each vi ∈ Vi.

Assume A is an algebra defined over an algebraically closed field K.

We proved the following technical result last time:

Proposition. Let V1, · · · , Vm be irreducible A-representations with dim(Vi) < ∞ and Vi ̸∼= Vj if i ̸= j.

Consider the A-representation V =
⊕m

i=1 V
⊕ni
i where n1, n2, . . . , nm are nonnegative integers.

Now suppose W is a subrepresentation of V . Then:

(1) For some integers 0 ≤ ri ≤ ni there is an isomorphism ϕ :
⊕m

i=1 V
⊕ri
i

∼−→ W .

(2) The map
⊕m

i=1 V
⊕ri
i

ϕ−−→ W ↪→ V is a direct sum of inclusions ϕi : V
⊕ri
i ↪→ V ⊕ni

i of the form

ϕi(a1, a2, · · · , ari) =
[
a1 a2 · · · ari

]
Xi

where each Xi is a full rank ri × ni matrix with values in K.

Here are two consequences of this proposition:

• Suppose V is a finite-dimensional A-representation and v1, . . . , vn ∈ V are linearly independent.

If V is irreducible then the map a 7→ (av1, . . . , avn) is a surjection A → V ⊕n.

• Density theorem: Let (ρ1, V1), (ρ2, V2), . . . (ρr, Vr) be irreducible finite-dimensionalA-representations.

If we have (ρi, Vi) ̸∼= (ρj , Vj) for all i ̸= j then
⊕r

i=1 ρi : A →
⊕r

i=1 End(Vi) is surjective.

2 Matrix algebras

We have already seen that the algebra of all n × n matrices over K has a unique isomorphism class of
irreducible representations, corresponding to the space of column vectors Kn.

We can generalize this to block diagonal matrix algebras.

Choose integers d1, d2, . . . , dr > 0. Set n =
∑r

i=1 di.

Let A =
⊕r

i=1 Matdi
(K) where we define Matd(K) to be the algebra of d× d matrices over K.

Identify A with the subalgebra of Matn(K) of all block diagonal matrices with blocks of size di × di.

The vector space Kn is automatically an A-representation. We construct a sequence of subrepresentations:

• Let V1 ⊆ Kn be the subspace of vectors with zeros outside rows 1, 2, . . . , d1

• Let V2 ⊆ Kn be the subspace of vectors with zeros outside rows d1 + 1, d1 + 2, . . . , d1 + d2.

• Let V3 ⊆ Kn be the subspace of vectors with zeros outside rows d1+d2+1, d1+d2+2, . . . , d1+d2+d3.
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• Define V4, . . . , Vr likewise, so Vr ⊆ Kn is the subspace of vectors with zeros outside the last dr rows.

Notice that we have dim(Vi) = di.

Theorem. In this setup, each Vi is an irreducible A-representation.

Every finite-dimensionalA-representation is isomorphic to a direct sum of zero or more copies of V1, V2, . . . , Vr.

Before proving this theorem, we introduce another definition.

Definition. Suppose (V, ρ) is an A-representation.

Let V ∗ be the vector space of all K-linear maps λ : V → K.

Also let ρ∗ : A → End(V ∗) be the linear map defined by

ρ∗(a)(λ) : x 7→ λ(ρ(a)(x)) for a ∈ A and λ ∈ V ∗.

We refer to the pair (V ∗, ρ∗) as the dual of (V, ρ). It is a representation of the opposite algebra Aop.

Fact. For A =
⊕r

i=1 Matdi
(K) ⊆ Matn(K), the transpose X 7→ X⊤ is an algebra isomorphism A ∼= Aop.

Given a linear map between vector spaces L : V → W , define L∗ : W ∗ → V ∗ by L∗(f) = f ◦ L.

Fact. If L is injective then L∗ is surjective, and if L is surjective then L∗ is injective.

Proof of the theorem. If v, w ∈ Vi are nonzero then we can always find a matrix M ∈ A with Mv = w.

It follows that Vi has no proper subrepesentations so is an irreducible A-representation.

Let X be some finite m-dimensional representation of A where m < ∞.

Then X∗ is representation of Aop ∼= A.

In other words, X∗ can be viewed as an A-representation for the action

a · λ : x 7→ λ(a⊤x) for x ∈ X, λ ∈ X∗, a ∈ A.

Choose a basis {λ1, . . . , λm} for X∗. Then let ϕ : A⊕A⊕ · · · ⊕A = A⊕m → X∗ be the map

ϕ(a1, a2, . . . , am) = a1λ1 + a2λ2 + · · ·+ amλm.

Because K ⊆ A, this map is surjective. Therefore, the dual map ϕ∗ : X → (A⊕m)∗ is injective.

Key claim: The A-representations (A⊕m)∗ and A⊕m are isomorphic.

If we can prove this, then it will follow that X is isomorphic to a subrepresentation of A⊕m.

Viewing a matrix as a tuple of column vectors gives an isomorphism A ∼=
⊕r

i=1 V
⊕di
i as A-representations.

So if we can prove our key claim that it would follow that

X ∼=
(
a subrepresentation of A⊕m ∼=

⊕r
i=1 V

⊕mdi
i

)
.

By our technical proposition this would imply that X ∼=
⊕r

i=1 V
⊕si
i for some integers si ≥ 0 as desired.
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It suffices to show the m = 1 case of the key claim since (A∗)⊕m ∼= (A⊕m)∗.

Let A act on A∗ by a · λ : x 7→ λ(a⊤x) for a ∈ A and λ ∈ A∗.

Define Θ : A → A∗ to be the linear map Θ : a 7→ (x 7→ trace(a⊤x)).

Then Θ is a bijection since it is a nonzero linear map with trivial kernel and dim(A) = dim(A∗) < ∞.

The map Θ also a homomorphism of A-representations since we have

Θ(gh)(x) = trace(h⊤g⊤x) = Θ(h)(g⊤x) = (g ·Θ(h))(x) for g, h, x ∈ A,

which implies that Θ(gh) = g ·Θ(h). Thus Θ : A
∼−→ A∗ is an isomorphism of A-representations.

3 Filtrations

Let A be an algebra defined over any field. Suppose V is an A-representation.

Definition. A filtration of V is a finite, increasing sequence of subspaces

0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn = V

where each Vi is subrepresentation of V .

Lemma. If dim(V ) < ∞ then V has a filtration with Vi/Vi−1 an irreducible A-representation if i > 0.

Proof. We argue by induction on dimV .

If dimV ≤ 1 then the result is trivial: just take n = 1 and Vn = V .

Assume dimV > 1 and choose any irreducible subrepresentation V1 ⊂ V .

Then let U = V/V1. By induction there is a filtration

0 = U0 ⊂ U1 ⊂ · · · ⊂ Un−1 = U

in which each quotient Ui/Ui−1 is irreducible.

Let Vi be the preimage of Ui−1 under the quotient map V → V/V1 = U . Then

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

gives the desired filtration, since Vi/Vi−1 ≃ (Vi/V1)/(Vi−1/V1) = Ui−1/Ui−2 for i > 1.

4 Radicals of finite-dimensional algebras

Continue to let A be an algebra defined over any field, but now assume that dim(A) < ∞.

Definition. The radical of A is the set of elements

Rad(A) = {a ∈ A : ρ(a) = 0 for all irreducible A-representations (ρ, V )} .

Proposition. The set Rad(A) is a two-sided ideal of A.
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Proof. The set Rad(A) is a subspace of A since if (ρ, V ) is a representation then

ρ(x) = 0 =⇒ ρ(cx) = cρ(x) = 0 and ρ(x) = 0 = ρ(y) =⇒ ρ(x+ y) = ρ(x) + ρ(y) = 0

for all x, y ∈ A and c ∈ K. The radical of A is a two-sided ideal since if a, b ∈ A then

ρ(x) = 0 =⇒ ρ(axb) = ρ(a)ρ(x)ρ(b) = 0.

Let I be a two-sided idea in A. For integers n ≥ 1, let

In = K-span{x1x2 · · ·xn : x1, x2, . . . , xn ∈ I} ⊆ I.

We say that I is nilpotent if In = 0 for some n > 0.

For example, the subspace of strictly upper triangular matrices is a nilpotent ideal in Matn(K).

Proposition. Suppose I is a nilpotent two-sided ideal in A. Then I ⊆ Rad(A).

Proof. Choose any irreducible A-representation V and pick a nonzero element 0 ̸= v ∈ V .

Then the subspace Iv = {xv : x ∈ I} is a subrepresentation, which therefore must be either V or 0.

We cannot have Iv = V as then there is some x ∈ I with xv = v, which is impossible as xn = 0.

Therefore Iv = 0. Since V was arbitrary, it follows that I ⊆ Rad(A).

The following shows that Rad(A) is the largest nilpotent two-sided ideal in A.

Proposition. Rad(A) is itself a nilpotent two-sided ideal in A.

Proof. Since dim(A) < ∞, the previous section gives us a filtration of the regular representation

0 = A0 ⊆ A1 ⊆ · · · ⊆ An = A

in which each Ai is a left ideal and each quotient Ai/Ai−1 is irreducible as an A-representation.

Each x ∈ Rad(A) acts as zero on Ai/Ai−1 and this means that xAi ⊆ Ai−1.

Therefore if x1, x2, . . . , xn ∈ Rad(A) then x1x2 · · ·xnA ⊆ A0 = 0. Hence Rad(A) is nilpotent.

5 Representations of finite-dimensional algebras

Now let A be a finite-dimensional algebra defined over an algebraically closed field.

As a final application, we classify all representations of A.

Theorem. A has finitely many isomorphism classes of irreducible representations V1, V2, . . . , Vr and

A/Rad(A) ∼=
⊕r

i=1 End(Vi)

as K-algebras. Moreover, every irreducible A-representation is finite-dimensional.

Notice that since dim(Vi) is finite, we have End(Vi) ∼= Matd(K) for d = dimVi.

Therefore A/Rad(A) is isomorphic to a block diagonal matrix algebra of the form considered earlier today.
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Proof. Suppose V is an A-representation.

If 0 ̸= x ∈ V then Ax is a nonzero subrepresentation of dimension at most dim(A) < ∞.

Therefore, if V is irreducible then we must have V = Ax and dimV ≤ dim(A) < ∞.

Now suppose (ρ1, V1), (ρ2, V2), . . . (ρr, Vr) are pairwise non-isomorphic, irreducible A-representations.

We know from the density theorem (which requires K to be algebraically closed) that the direct sum

ϕ =
⊕r

i=1 ρi : A →
⊕r

i=1 End(Vi)

is a surjective map. Since each End(Vi) has dimension (dimVi)
2, we have

r ≤
∑r

i=1(dimVi)
2 ≤ dimA < ∞.

Thus the number of isomorphism classes of irreducible A-representations is finite and at most dim(A).

Finally, assume r is maximal above, so that every irreducible A-representation is isomorphic to some Vi.

Then Rad(A) = ker(ϕ) so ϕ passes to an isomorphism A/Rad(A) ∼=
⊕r

i=1 End(Vi).

Corollary. If V1, V2, . . . , Vr are pairwise non-isomorphic irreducible A-representations then∑r
i=1(dimVi)

2 ≤ dimA.
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