MATH 5112 — Advanced Algebra IT (Spring 2026) Lecture 5

1 Review: direct sums and the density theorem

In the last lecture we discussed semisimple representations.

These are representations isomorphic to direct sums of irreducible representations.

Notation. If V;,V5,...,V,, are K-vector spaces, then we view elements of the direct sum

either as tuples (vq,va,...,v,) or as row vectors [ v Uy ... Uy ] where each v; € V.

Assume A is an algebra defined over an algebraically closed field K.

We proved the following technical result last time:

Proposition. Let Vi,---, V), be irreducible A-representations with dim(V;) < oo and V; 2 Vj if i # j.
Consider the A-representation V = @:’;1 Vi@"i where n1,n9,...,n,, are nonnegative integers.
Now suppose W is a subrepresentation of V. Then:

(1) For some integers 0 < r; < n,; there is an isomorphism ¢ : @7;1 Vi@” =W

(2) The map @~ Vo 5 W < V is a direct sum of inclusions ¢i : VT 5 V. of the form

ie
¢i(al,az,"'aan):[al az - a”}X,;

where each X; is a full rank r; x n; matrix with values in K.

Here are two consequences of this proposition:
e Suppose V is a finite-dimensional A-representation and vy, ...,v, € V are linearly independent.
If V is irreducible then the map a — (avy,...,av,) is a surjection A — V&,
e Density theorem: Let (p1, V1), (p2, V2), ... (pr, Vr) be irreducible finite-dimensional A-representations.
If we have (p;, Vi) % (p;,V;) for all i # j then @._, p; : A — @,_, End(V;) is surjective.

2 DMatrix algebras

We have already seen that the algebra of all n x n matrices over K has a unique isomorphism class of
irreducible representations, corresponding to the space of column vectors K™.

We can generalize this to block diagonal matrix algebras.

Choose integers dy,da,...,d, > 0. Set n=>""_, d;.
Let A = P;_, Matg, (K) where we define Mat,(K) to be the algebra of d x d matrices over K.
Identify A with the subalgebra of Mat,, (K) of all block diagonal matrices with blocks of size d; x d;.

The vector space K" is automatically an A-representation. We construct a sequence of subrepresentations:
e Let V3 C K" be the subspace of vectors with zeros outside rows 1,2,...,d;
e Let V5 C K™ be the subspace of vectors with zeros outside rows dy + 1,dy + 2,...,d1 + ds.
e Let V3 C K™ be the subspace of vectors with zeros outside rows dy+do+1,d1+da+2, ..., dy+do+d3.
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e Define Vy, ..., V, likewise, so V,. C K" is the subspace of vectors with zeros outside the last d, rows.

Notice that we have dim(V;) = d;.

Theorem. In this setup, each V; is an irreducible A-representation.

Every finite-dimensional A-representation is isomorphic to a direct sum of zero or more copies of Vi, Vs, ..., V.
Before proving this theorem, we introduce another definition.

Definition. Suppose (V, p) is an A-representation.
Let V* be the vector space of all K-linear maps A : V' — K.
Also let p* : A — End(V*) be the linear map defined by

p*(a)(A) :z— Ap(a)(z)) forae Aand A e V™.

We refer to the pair (V*, p*) as the dual of (V, p). It is a representation of the opposite algebra A°P.
Fact. For A = @);_, Maty, (K) C Mat,,(K), the transpose X ~— X ' is an algebra isomorphism A4 & A°P.
Given a linear map between vector spaces L : V — W, define L* : W* — V* by L*(f) = f o L.

Fact. If L is injective then L* is surjective, and if L is surjective then L* is injective.

Proof of the theorem. If v,w € V; are nonzero then we can always find a matrix M € A with Mv = w.

It follows that V; has no proper subrepesentations so is an irreducible A-representation.

Let X be some finite m-dimensional representation of A where m < oo.
Then X* is representation of A°P = A.

In other words, X™* can be viewed as an A-representation for the action
a-A:x—Na'z) forze X, A€ X*, ac A
Choose a basis {A1,..., Ay} for X*. Thenlet ¢p: A AD---® A= A®™ — X* be the map
dlar,az,...,am) = a1y + a2da + - + amAnm.
Because K C A, this map is surjective. Therefore, the dual map ¢* : X — (A®P™)* is injective.
Key claim: The A-representations (A®™)* and A®™ are isomorphic.
If we can prove this, then it will follow that X is isomorphic to a subrepresentation of A®™.

Viewing a matrix as a tuple of column vectors gives an isomorphism A = @;_, Vi@d"' as A-representations.

So if we can prove our key claim that it would follow that
o~ ~ ‘ 1 ~ D d1
X = (a subrepresentation of A%™ =~ @ VO™ ) .

By our technical proposition this would imply that X = @;_, V;%*' for some integers s; > 0 as desired.
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It suffices to show the m = 1 case of the key claim since (A*)®™ =2 (A®™M)*
Let Aacton A* by a-A:2+ ANa'x) fora € Aand \ € A*.

Define © : A — A* to be the linear map O : a + (x ~ trace(a'z)).

Then O is a bijection since it is a nonzero linear map with trivial kernel and dim(A4) = dim(4*) < oo.

The map © also a homomorphism of A-representations since we have
O(gh)(x) = trace(h' g 'x) = O(h)(g" @) = (9- O(h))(z) for g,h,z € A,

which implies that ©(gh) = g - ©(h). Thus © : A = A* is an isomorphism of A-representations. O

3 Filtrations

Let A be an algebra defined over any field. Suppose V is an A-representation.

Definition. A filtration of V is a finite, increasing sequence of subspaces
0=VCchnc.--CV,=V

where each V; is subrepresentation of V.

Lemma. If dim(V) < co then V has a filtration with V;/V;_; an irreducible A-representation if ¢ > 0.
Proof. We argue by induction on dim V.

If dim V' < 1 then the result is trivial: just take n =1 and V,, = V.

Assume dim V' > 1 and choose any irreducible subrepresentation V; C V.

Then let U = V/V;. By induction there is a filtration
0=UycU,cCc---cU,.1=U

in which each quotient U, /U;_; is irreducible.

Let V; be the preimage of U;_; under the quotient map V' — V/V; = U. Then
o=VycVLc---CV,=V

gives the desired filtration, since V;/V;_1 ~ (V;/V1)/(Vic1/V1) = U;—1/U;—2 for i > 1. O

4 Radicals of finite-dimensional algebras

Continue to let A be an algebra defined over any field, but now assume that dim(A) < oco.

Definition. The radical of A is the set of elements

Rad(A4) = {a € A : p(a) = 0 for all irreducible A-representations (p,V)}.

Proposition. The set Rad(A) is a two-sided ideal of A.



MATH 5112 — Advanced Algebra IT (Spring 2026) Lecture 5

Proof. The set Rad(A) is a subspace of A since if (p, V') is a representation then

p(x) =0 = plcz) =cp(x) =0 and p(z)=0=p(y) = p(x+y)=p(x)+p(y) =0

for all z,y € A and ¢ € K. The radical of A is a two-sided ideal since if a,b € A then

p(z) =0 = p(axd) = p(a)p(x)p(b) = 0.

Let I be a two-sided idea in A. For integers n > 1, let

I" =K-span{z122 -+ Xy : T1,Z2,...,2n € [} C 1.

We say that I is nilpotent if I™ = 0 for some n > 0.

For example, the subspace of strictly upper triangular matrices is a nilpotent ideal in Mat,, (K).
Proposition. Suppose [ is a nilpotent two-sided ideal in A. Then I C Rad(A).

Proof. Choose any irreducible A-representation V' and pick a nonzero element 0 # v € V.

Then the subspace Iv = {zv : x € I} is a subrepresentation, which therefore must be either V" or 0.

We cannot have Iv =V as then there is some x € I with zv = v, which is impossible as ™ = 0.
Therefore v = 0. Since V' was arbitrary, it follows that I C Rad(A). O

The following shows that Rad(A) is the largest nilpotent two-sided ideal in A.

Proposition. Rad(A) is itself a nilpotent two-sided ideal in A.

Proof. Since dim(A) < oo, the previous section gives us a filtration of the regular representation
O:AogAl ggAn:A

in which each A; is a left ideal and each quotient A;/A;_; is irreducible as an A-representation.
Each 2 € Rad(A) acts as zero on A;/A;_; and this means that ©A; C A;_;.
Therefore if z1,za,...,2, € Rad(A) then z125---x,A C Ag = 0. Hence Rad(A) is nilpotent. O

5 Representations of finite-dimensional algebras

Now let A be a finite-dimensional algebra defined over an algebraically closed field.

As a final application, we classify all representations of A.

Theorem. A has finitely many isomorphism classes of irreducible representations Vi, Vo, ..., V. and
A/Rad(A) = @)_, End(V;)
as K-algebras. Moreover, every irreducible A-representation is finite-dimensional.

Notice that since dim(V;) is finite, we have End(V;) = Mat4(K) for d = dim V;.

Therefore A/Rad(A) is isomorphic to a block diagonal matrix algebra of the form considered earlier today.



MATH 5112 — Advanced Algebra IT (Spring 2026) Lecture 5

Proof. Suppose V is an A-representation.
If 0 # x € V then Az is a nonzero subrepresentation of dimension at most dim(A) < oo.

Therefore, if V' is irreducible then we must have V = Az and dim V' < dim(A4) < oo.

Now suppose (p1, V1), (p2,V2), ... (pr, V;-) are pairwise non-isomorphic, irreducible A-representations.

We know from the density theorem (which requires K to be algebraically closed) that the direct sum
¢ =@y pi: A— D, End(V))

is a surjective map. Since each End(V;) has dimension (dim V;)?, we have
r <> (dimV;)? < dim A < oo.

Thus the number of isomorphism classes of irreducible A-representations is finite and at most dim(A).

Finally, assume r is maximal above, so that every irreducible A-representation is isomorphic to some V;.

Then Rad(A) = ker(¢) so ¢ passes to an isomorphism A/Rad(A) = @;_, End(V;). O

Corollary. If Vi, V5, ..., V, are pairwise non-isomorphic irreducible A-representations then

S (dim V;)? < dim A.
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