MATH 5112 — Advanced Algebra IT (Spring 2026) Lecture 7

1 Review: semisimple algebras and characters

Let K be an algebraically closed field. Suppose A is a finite-dimensional algebra over K.

Then every irreducible A-representation V' has dim V' < oo since if 0 # z € V then Az =V but

dim(Az) < dim(A) < oo.

Recall that an A-representation is semisimple if it is a direct sum of irreducible subrepresentations.
The algebra A is semisimple if any (and hence all) of the following equivalent properties hold:
(1) Rad(A4) def {elements in A that act as zero on every irreducible A-representation} is zero.

(2) If V1, Va,..., V. represent all distinct isomorphism classes of irreducible A-representations, then

dim(4) = 7_, dim(V;)*

(3) A is isomorphic to a finite direct sum of matrix algebras Matg, (K) @ Matg, (K) @ - - - @& Matg, (K).
(4) Every A-representation of finite dimension is semisimple.

(5) The regular representation of A is semisimple.

Let A be any K-algebra (not necessarily of finite dimension).
Assume (p, V) is an A-representation with dim(V) < occ.

The character of (p,V) is the linear map x(,,v) : A — K with the formula

X(p,v)(a) = trace(p(a)) et >, (coefficient of b; in p(a)(b;))  for any basis by, bs,..., b, of V.

Fact. If (p,V) and (p, V') are isomorphic finite-dimensional A-representations then x(, vy = X(»,v")-

We say that x(, vy is irreducible when (p, V') is irreducible.

Theorem. The characters of non-isomorphic irreducible finite-dimensional A-representations are linearly
independent (and therefore distinct).

Fact. It always holds that kernel(x(,,v)) D [A, 4] ef K-span{ab — ba : a,b € A}

This means we can view a character as a linear map A/[4, A] — K.

Theorem. If A is finite-dimensional and semisimple, then the irreducible characters of A are a basis for
the dual space (A/[A, A])*. If char(K) = 0, then two finite-dimensional A-representations are isomorphic
if and only if they have same characters.

2 Two general theorems

Our goal today is to establish two general theorems about representations of an algebra A that is not
necessarily semisimple. We proved the first of these theorems last time:
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Theorem (Jordan-Holder theorem). If V is an A-representation with dim(V') < oo then there exists a
filtration 0 = Vp € V3 C -+ C V,, = V where each V] is a subrepresentation and each quotient V;/V;_1
is irreducible. Moreover, any other filtration with these properties has same length n and the same
irreducible quotients up to isomorphism and permutations of indices.

Today we will supply the proof of the next theorem:

Theorem (Krull-Schmidt theorem). If V' is an A-representation with dim(V') < oo then there exists a de-
composition V' = @, ; Vi where each V; is an indecomposable subrepresentation, and this decomposition
is unique up to isomorphism and rearrangement of factors.

Remember that when A is semisimple, every indecomposable representation is irreducible, but for a
general algebra we may not be able to decompose a representation into a direct sum of irreducible
subrepresentations. The Krull-Schmidt theorem is relevant to the latter setting.

We will prove the Krull-Schmidt theorem after establishing a few lemmas.
A linear map 6 : W — W is nilpotent if 0N 900000 is zero for some N > 0.

Lemma. Let W be an indecomposable A-representation where dim W < co.

Suppose 6 : W — W is a morphism of A-representations. Then 6 is either an isomorphism or nilpotent.

Proof. For A € K, the generalized A-eigenspace of 0 is

W/\dﬁf{xGW:(HfA)N(x):OforsomeN>O}.

The subspace W), is nonzero if and only if A is an eigenvalue of 6.

By standard linear algebra we have W = @@, W where the direct sum is over the eigenvalues of 6.

Observe that each W), is an A-subrepresentation.

Since W is indecomposable, § must only have one eigenvalue A. If A = 0 then 6 is nilpotent since W = Wj.

If XA £ 0 then 6 is invertible, and hence an isomorphism of A-representations. O

Lemma. Let W be an indecomposable A-representation where dim(W) < oco.
Suppose s : W — W for s =1,2,...,n are nilpotent morphisms of A-representations.

Then the sum 6 = 6 + - - - + 0,, is also nilpotent.

Proof. We argue by contradiction. Let n be minimal such that the lemma fails.
Then we must have n > 1 and 6 is not nilpotent. Hence 6 is invertible by previous lemma.

Therefore we can write 1 =671 =>""_ 60716,.

Since kernel(§~10;) = 61 (kernel(65)) # 0, each §~10; is not invertible, hence nilpotent by the lemma.
But then 1 —07%9,, = Zz;ll 6~10, is invertible, and therefore not nilpotent, since if X is nilpotent then

A-X)'=14+X+X2+....

This contradicts the minimality of n, so we conclude that the lemma actually holds for all n. O
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Proof of the Krull-Schmidt theorem. To show the existence of an indecomposable decomposition
V= 692'6[ Vi

note that if V' is not indecomposable then must exist nonzero subrepresentations U and W with
V=UasW,

and by induction on dimension we can assume that U and W have indecomposable decompositions.

The hard part is showing the uniqueness of the resulting decomposition.

Suppose V =@, V, = @._, W, where each V; and Wj is an indecomposable subrepresentation. Let

is: Ve =V ps:V — Vg
an

js : W =V qs : V. — Wy

be the natural inclusion and projection maps.

Define 6, = py 0 js 0 g5 041 so that

0,: Vi s V LW, L v Py
Note that is, ps, js, ¢s, and € are all morphisms of A-representations.

Also, notice that the sum 6; 4+ 05 + - - - 4+ 0,, is the identity map V; — V7.
Each 6 is either nilpotent or an isomorphism by our first lemma.

Since Z:zl s is not nilpotent, some 6, is an isomorphism by our second lemma.

Without loss of generality we can assume that 6; : V1 — V; is an isomorphism. Since

q10% p10Jj
911‘/14)1 ! W14>1]1 V1

is an isomorphism, we must have W = image(q; o i1) @ kernel(py o j1).

As W7 is indecomposable, both p; o j; : W7 — Vi and ¢ o 41 : V1 — Wi must be isomorphisms.

Let V! =@V, Vi and W =P, _, Wy sothat V=V, & V' =W; ®W'. Let
h:Ve—sV —n W

be the composition of the obvious inclusion and projection maps.

Clearly kernel(h) = V' N W1, but (p1 0 71)(V' N Wy) =0.

Since p; o j1 : Wi — Vj is isomorphism, must have kernel(h) =0 so h: V' — W’ is isomorphism.
Now by induction applied to the decompositions

m

V':@ngEEWS:W’, (1)

we must have m = n and there must exist a permutation o with Vi = Wy, for all s.

This establishes that the same holds for our starting decompositions V =@, V, = @._, W,. O

s=
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3 Tensor products of algebras and representations

To finish today’s lecture, we briefly discuss representations of tensor product algebras.
Let A and B be K-algebras and write ® = ®xk for the tensor product for K-vector spaces.

Since A and B are vector spaces, we can consider the vector space A ® B. It has more structure:

Fact. The vector space A ® B is itself a K-algebra for the product given by the bilinear operation
(A B)x (A®B) > A®B

)=

satisfying (a ® b)(a’ @ b’ aa' @bb for a,a’ € A, b,b' € B. The unit for this product is 14 ® 15.

Let V be an A-representation and let W be a B-representation.
Then V ® W has a unique structure as an A ® B-representation in which

(a®b)(v®w)d§av®bw forac A,beB,veV, and we W.

Theorem. Assume dim(V) < co and dim(W) < oo.
Then V @ W is irreducible (as an A ® B-representation) if V' and W are both irreducible.

Proof. Assume V and W are both irreducible and of finite dimension.
By the density theorem, we have surjective maps py : A — End(V) and pw : A — End(W).
By general properties of tensor product, the map py ® pw : A® B — End(V) ® End(W) is also surjective.

If dim(V) < oo and dim(W) < oo then there is an isomorphism End(V) ® End(W) = End(V @ W).
But the map pyew : A ® B — End(V ® W) is thus surjective as it is the composition
A® B2 End(V) ® End(W) —— End(V @ W).

Hence V ® W is irreducible, since pygw being surjective implies that every 0 # x € V ® W is cyclic.

(A vector in a representation is cyclic if no proper subrepresentation contains it.) O

The previous theorem has a converse.

Theorem. Suppose M is an irreducible A ® B-representation of finite dimension.

Then M =2V @ W for some irreducible A-representation V' and irreducible B-representation .

Proof sketch. We can assume A and B are finite-dimensional by replacing each algebra by its image under
A—— A®B —» End(M) and B —— A® B —» End(M)

where the inclusions send a — a ® 1 and b +— 14 ® b. Next, check that
Rad(A® B) = Rad(4) ® B+ A ® Rad(B)

so we have

(A® B)/Rad(A® B) = A/Rad(A) ® B/Rad(B)
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and M is an irreducible representation of this quotient.

Finally, the result can be deduced by identifying the quotient algebras A/Rad(A) and B/Rad(B) with
explicit (direct sums of) matrix algebras, using the classification of irreducible representations for such
algebras and the homework exercise checking that Mat, (K) ® Mat,, (K) = Mat,,,, (K). O
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