
MATH 5112 – Advanced Algebra II (Spring 2026) Lecture 7

1 Review: semisimple algebras and characters

Let K be an algebraically closed field. Suppose A is a finite-dimensional algebra over K.

Then every irreducible A-representation V has dimV < ∞ since if 0 ̸= x ∈ V then Ax = V but

dim(Ax) ≤ dim(A) < ∞.

Recall that an A-representation is semisimple if it is a direct sum of irreducible subrepresentations.

The algebra A is semisimple if any (and hence all) of the following equivalent properties hold:

(1) Rad(A)
def
= {elements in A that act as zero on every irreducible A-representation} is zero.

(2) If V1, V2, . . . , Vr represent all distinct isomorphism classes of irreducible A-representations, then

dim(A) =
∑r

i=1 dim(Vi)
2.

(3) A is isomorphic to a finite direct sum of matrix algebras Matd1
(K)⊕Matd2

(K)⊕ · · · ⊕Matdr
(K).

(4) Every A-representation of finite dimension is semisimple.

(5) The regular representation of A is semisimple.

Let A be any K-algebra (not necessarily of finite dimension).

Assume (ρ, V ) is an A-representation with dim(V ) < ∞.

The character of (ρ, V ) is the linear map χ(ρ,V ) : A → K with the formula

χ(ρ,V )(a) = trace(ρ(a))
def
=

∑n
i=1 (coefficient of bi in ρ(a)(bi)) for any basis b1, b2, . . . , bn of V .

Fact. If (ρ, V ) and (ρ′, V ′) are isomorphic finite-dimensional A-representations then χ(ρ,V ) = χ(ρ′,V ′).

We say that χ(ρ,V ) is irreducible when (ρ, V ) is irreducible.

Theorem. The characters of non-isomorphic irreducible finite-dimensional A-representations are linearly
independent (and therefore distinct).

Fact. It always holds that kernel(χ(ρ,V )) ⊃ [A,A]
def
= K-span{ab− ba : a, b ∈ A}

This means we can view a character as a linear map A/[A,A] → K.

Theorem. If A is finite-dimensional and semisimple, then the irreducible characters of A are a basis for
the dual space (A/[A,A])∗. If char(K) = 0, then two finite-dimensional A-representations are isomorphic
if and only if they have same characters.

2 Two general theorems

Our goal today is to establish two general theorems about representations of an algebra A that is not
necessarily semisimple. We proved the first of these theorems last time:

1



MATH 5112 – Advanced Algebra II (Spring 2026) Lecture 7

Theorem (Jordan-Hölder theorem). If V is an A-representation with dim(V ) < ∞ then there exists a
filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V where each Vi is a subrepresentation and each quotient Vi/Vi−1

is irreducible. Moreover, any other filtration with these properties has same length n and the same
irreducible quotients up to isomorphism and permutations of indices.

Today we will supply the proof of the next theorem:

Theorem (Krull-Schmidt theorem). If V is an A-representation with dim(V ) < ∞ then there exists a de-
composition V =

⊕
i∈I Vi where each Vi is an indecomposable subrepresentation, and this decomposition

is unique up to isomorphism and rearrangement of factors.

Remember that when A is semisimple, every indecomposable representation is irreducible, but for a
general algebra we may not be able to decompose a representation into a direct sum of irreducible
subrepresentations. The Krull-Schmidt theorem is relevant to the latter setting.

We will prove the Krull-Schmidt theorem after establishing a few lemmas.

A linear map θ : W → W is nilpotent if θN
def
= θ ◦ θ ◦ · · · ◦ θ is zero for some N > 0.

Lemma. Let W be an indecomposable A-representation where dimW < ∞.

Suppose θ : W → W is a morphism of A-representations. Then θ is either an isomorphism or nilpotent.

Proof. For λ ∈ K, the generalized λ-eigenspace of θ is

Wλ
def
= {x ∈ W : (θ − λ)N (x) = 0 for some N > 0}.

The subspace Wλ is nonzero if and only if λ is an eigenvalue of θ.

By standard linear algebra we have W =
⊕

λ Wλ where the direct sum is over the eigenvalues of θ.

Observe that each Wλ is an A-subrepresentation.

SinceW is indecomposable, θ must only have one eigenvalue λ. If λ = 0 then θ is nilpotent sinceW = Wλ.

If λ ̸= 0 then θ is invertible, and hence an isomorphism of A-representations.

Lemma. Let W be an indecomposable A-representation where dim(W ) < ∞.

Suppose θs : W → W for s = 1, 2, . . . , n are nilpotent morphisms of A-representations.

Then the sum θ = θ1 + · · ·+ θn is also nilpotent.

Proof. We argue by contradiction. Let n be minimal such that the lemma fails.

Then we must have n > 1 and θ is not nilpotent. Hence θ is invertible by previous lemma.

Therefore we can write 1 = θ−1θ =
∑n

s=1 θ
−1θs.

Since kernel(θ−1θs) = θ−1(kernel(θs)) ̸= 0, each θ−1θs is not invertible, hence nilpotent by the lemma.

But then 1− θ−1θn =
∑n−1

s=1 θ−1θs is invertible, and therefore not nilpotent, since if X is nilpotent then

(1−X)−1 = 1 +X +X2 + . . . .

This contradicts the minimality of n, so we conclude that the lemma actually holds for all n.
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Proof of the Krull-Schmidt theorem. To show the existence of an indecomposable decomposition

V =
⊕

i∈I Vi

note that if V is not indecomposable then must exist nonzero subrepresentations U and W with

V = U ⊕W,

and by induction on dimension we can assume that U and W have indecomposable decompositions.

The hard part is showing the uniqueness of the resulting decomposition.

Suppose V =
⊕m

s=1 Vs =
⊕n

s=1 Ws where each Vs and Ws is an indecomposable subrepresentation. Let

is : Vs ↪→ V

js : Ws ↪→ V
and

ps : V ↠ Vs

qs : V ↠ Ws

be the natural inclusion and projection maps.

Define θs = p1 ◦ js ◦ qs ◦ i1 so that

θs : V1 V Ws V V1.
i1 qs js p1

Note that is, ps, js, qs, and θs are all morphisms of A-representations.

Also, notice that the sum θ1 + θ2 + · · ·+ θn is the identity map V1 → V1.

Each θs is either nilpotent or an isomorphism by our first lemma.

Since
∑n

s=1 θs is not nilpotent, some θs is an isomorphism by our second lemma.

Without loss of generality we can assume that θ1 : V1 → V1 is an isomorphism. Since

θ1 : V1 W1 V1
q1◦i1 p1◦j1

is an isomorphism, we must have W1 = image(q1 ◦ i1)⊕ kernel(p1 ◦ j1).

As W1 is indecomposable, both p1 ◦ j1 : W1 → V1 and q1 ◦ i1 : V1 → W1 must be isomorphisms.

Let V ′ =
⊕m

s=2 Vs and W ′ =
⊕n

s=2 Ws so that V = V1 ⊕ V ′ = W1 ⊕W ′. Let

h : V ′ V W ′

be the composition of the obvious inclusion and projection maps.

Clearly kernel(h) = V ′ ∩W1, but (p1 ◦ j1)(V ′ ∩W1) = 0.

Since p1 ◦ j1 : W1 → V1 is isomorphism, must have kernel(h) = 0 so h : V ′ → W ′ is isomorphism.

Now by induction applied to the decompositions

V ′ =

m⊕
s=2

Vs
∼=

n⊕
s=2

Ws = W ′, (1)

we must have m = n and there must exist a permutation σ with Vs
∼= Wσ(s) for all s.

This establishes that the same holds for our starting decompositions V =
⊕m

s=1 Vs =
⊕n

s=1 Ws.
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3 Tensor products of algebras and representations

To finish today’s lecture, we briefly discuss representations of tensor product algebras.

Let A and B be K-algebras and write ⊗ = ⊗K for the tensor product for K-vector spaces.

Since A and B are vector spaces, we can consider the vector space A⊗B. It has more structure:

Fact. The vector space A⊗B is itself a K-algebra for the product given by the bilinear operation

(A⊗B)× (A⊗B) → A⊗B

satisfying (a⊗ b)(a′ ⊗ b′)
def
= aa′ ⊗ bb′ for a, a′ ∈ A, b, b′ ∈ B. The unit for this product is 1A ⊗ 1B .

Let V be an A-representation and let W be a B-representation.

Then V ⊗W has a unique structure as an A⊗B-representation in which

(a⊗ b)(v ⊗ w)
def
= av ⊗ bw for a ∈ A, b ∈ B, v ∈ V , and w ∈ W .

Theorem. Assume dim(V ) < ∞ and dim(W ) < ∞.

Then V ⊗W is irreducible (as an A⊗B-representation) if V and W are both irreducible.

Proof. Assume V and W are both irreducible and of finite dimension.

By the density theorem, we have surjective maps ρV : A → End(V ) and ρW : A → End(W ).

By general properties of tensor product, the map ρV ⊗ρW : A⊗B → End(V )⊗End(W ) is also surjective.

If dim(V ) < ∞ and dim(W ) < ∞ then there is an isomorphism End(V )⊗ End(W ) ∼= End(V ⊗W ).

But the map ρV⊗W : A⊗B → End(V ⊗W ) is thus surjective as it is the composition

A⊗B End(V )⊗ End(W ) End(V ⊗W ).
ρV ⊗ρW ∼=

Hence V ⊗W is irreducible, since ρV⊗W being surjective implies that every 0 ̸= x ∈ V ⊗W is cyclic.

(A vector in a representation is cyclic if no proper subrepresentation contains it.)

The previous theorem has a converse.

Theorem. Suppose M is an irreducible A⊗B-representation of finite dimension.

Then M ∼= V ⊗W for some irreducible A-representation V and irreducible B-representation W .

Proof sketch. We can assume A and B are finite-dimensional by replacing each algebra by its image under

A A⊗B End(M) and B A⊗B End(M)

where the inclusions send a 7→ a⊗ 1B and b 7→ 1A ⊗ b. Next, check that

Rad(A⊗B) = Rad(A)⊗B +A⊗ Rad(B)

so we have
(A⊗B)/Rad(A⊗B) ∼= A/Rad(A)⊗B/Rad(B)
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and M is an irreducible representation of this quotient.

Finally, the result can be deduced by identifying the quotient algebras A/Rad(A) and B/Rad(B) with
explicit (direct sums of) matrix algebras, using the classification of irreducible representations for such
algebras and the homework exercise checking that Matn(K)⊗Matm(K) ∼= Matmn(K).
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