MATH 5112 — Advanced Algebra IT (Spring 2026) Lecture 8

1 Review: two structure theorems and tensor products

Let A be an algebra over an algebraically closed field K.

Suppose V is an A-representation with dim(V') < co. We have seen general theorems concerning V:

Theorem (Jordan-Hélder theorem). There exists a filtration of subrepresentations
O=VwcWc---CcV,=V

with irreducible quotients V;/V;_1, and the length n of the filtration and the isomorphism classes of the
quotients are uniquely determined up to permutation of indices.

Theorem (Krull-Schmidt theorem). There is a direct sum decomposition of V' into indecomposable
subrepresentations that is unique up to isomorphism and rearrangement of factors.

Remark. In both theorems, the algebra A can have infinite dimension as long as dim(V) < oo, since
the relevant statements hold for V' viewed as an A-representation if and only if they hold for V' viewed
as a representation of the finite-dimensional algebra py (A4) C End(V).

More strongly, one can show that the results even hold when the field K is not algebraically closed.

However, our proofs from last time do not handle this case.

We also discussed the representations of the tensor product of two K-algebras A and B.
The vector space A ® B is also a K-algebra for the product defined on pure tensors by

(a1 ® bl)(ag ® bg) déf a1as ® b1by for a,a € A and bl,bQ € B.

If V is an A-representation and W is a B-representation then V ® W is an A ® B-representation with

(a®b)-(v®w)d§fow®bw forac A, beB,veV, we W

Theorem. Suppose V is an A-representation and W is a B-representation. If V and W are both
irreducible and finite-dimensional then so is V ® W (viewed as an A ® B-representation). Moreover, up
to isomorphism, all irreducible finite-dimensional representations of A ® B arise in this way.

We reduced the proof of this theorem to when A and B are semisimple and finite-dimensional.

In this case each algebra is isomorphic to a direct sum of matrix algebras.

In this concrete setting, the theorem is easy to check directly:
Up to isomorphism, Mat,,(K) and Mat, (K) have unique irreducible representations K™ and K".
Hence K™ @ K™ =2 K™" is the unique irreducible representation of Mat,, (K) ® Mat, (K) = Mat,,, (K).

2 Finite group representations

For a K-vector space V' let GL(V') be the group of invertible linear maps V — V.
Let G be a group.

A representation of G is a pair (p, V') where V is a vector space and p : G — GL(V) is a homomorphism.
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Representations of G are equivalent to representations of the group algebra K[G] = K-span{a, : g € G}.
We think of elements of K[G] as formal (finite) linear combinations of group elements, writing

>gec CqY and  instead of >_gec Cglyg

where ¢, € K and a4 is the formal symbol indexed by g € G.

We are interested in representations of finite groups G. In this case K[G] has finite dimension.
Our first important question to answer is: when is K[G] semisimple?

From this point on, assume that the group G is finite. Write |G| for its number of elements.
Theorem (Maschke’s theorem). Assume that char(K) does not divide |G|. Then K[G] is semisimple.

Proof. Let (p, V) be a finite-dimensional G-representation, and hence also a K[G]-representation.
It suffices to check that V is a direct sum of irreducible subrepresentations.

This clearly holds if (p, V') is irreducible so assume this is not the case.

Then V must have an irreducible subrepresentation W by one of our homework exercises.

By induction dim(V'), it is enough to show that V has a nonzero subrepresentation U with V =W @ U.

We can find a subspace U , not necessarily a subrepresentation, with V=W & U as vector spaces.
Just choose a basis wq, ws, ..., w,, of W, extend this to a basis w1, ..., wmn,u1,...,u, for V, and set

U= K-span{uy, ..., up}.

Here is the key idea to the proof.
Let m: V — W be linear map with 7(w;) = w; for all ¢ and m(u;) = 0 for all j. Then define
alrel g; Jemeply™)
Finally consider U = kernel(c). We claim that:
(1) U is a subrepresentation.

Q) V=waru.

Property (1) holds because for any h € G we have
GZ yomop(g GZ p(hz) oo plz™) = p(h)o,
| | geG ‘ I z€G

making the substitution x = h~1g in the second equality.

Thus o(u) = 0 if and only if op(h)(u) = p(h)o(u) =0 for any h € G and u € U, as p(h) is invertible.

For property (2), note that p(W) C W and 7(w) = w for all w € W, so o(w) = w for all w € W.
Since o(V) C W, it follows that 02 = o. Thus any v € V can be written as
v=o0()+ (v—0(v))
where o(v) € W and (v — o(v)) € U, and we have W NU = 0 since if £ € W NU then = o(xz) = 0.
Thus V =W @ U as needed. O
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Corollary. Assume char(K) does not divide |G|. Then there are finitely many isomorphism classes of
irreducible G-representations {(p;, Vi) }ic1, all of which have finite dimension, and we have

|G| =35, dim(V;)*  and  K[G] = ;¢ End(V).

The representation theory of finite-dimensional semisimple algebras is trivial in the sense that everything
is just a direct sum of matrix algebras. What makes the representation theory of finite groups more
interesting is the distinguished basis of K[G] provided by G itself.

Going from this basis to the natural bases of K[G] viewed as a sum of matrix algebras is complicated.
It turns out that the converse to Maschke’s theorem is also true.
Theorem. If K[G] is semisimple then char(K) does not divide |G|.
Proof. Assume K[G] is semisimple and consider the subspace
= K-span {deG g} .
This is a 1-dimensional subrepresentation of K[G].

By semisimplicity, there exists a complementary subrepresentation V' C K[G] with K[G] =U @ V.

View K as a G-representation with g-c = ¢ for all g € G and ¢ € K.
Then define ¢ : K[G] — K to be linear map that sends V' — 0 and 3> ;g k.

Because U and V are subrepresentations, the map ¢ is a morphism of K[G]-representations.

Thus ¢(g) = (g 1g) =g d(lg) = ¢(1g) € K for all g € G.
But this means that 1lx = ¢(3_,c59) = 2,0 #(9) = X cq ¢(1a) = |Glo(1a).
Thus |G| is invertible (and nonzero) in K, so char(K) must not divide |G]|. O

3 Characters of group representations
Continue to let G be a finite group.
If (p, V) is a G-representation with dim(V) < oo then its character is the map x(, v : G — K with

X(p.v)(9) = trace(p(g)).

Since traces are invariant under change of basis, it follows that:
Fact. If (p,V) = (p/,V’) as G-representations then x(, vy = X(p/,v")-
The conjugacy classes of G are the sets g def {zgz=':2€ G} for g€ G.

A class function of G is a map G — K that is constant on all elements in each conjugacy class.

Equivalently, f : G — K is a class function if and only if f(zgz~1) = f(g) for all ,g € G.

Fact. The character of any finite-dimensional G-representation is a class function.
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We say that the character x(, v is irreducible if (p, V') is an irreducible representation.

We mention some special properties of irreducible characters that hold when K[G] is semisimple.

Proposition. Assume char(K) does not divide |G].

Then the irreducible characters of GG are a basis for the vector space of class functions of G.

Proof. In this case K[G] is semisimple so the irreducible characters are a basis for (K[G]/[K[G], K[G]])*.
This dual space can be identified with the vector space of linear maps f : G — K that satisfy

F(XY) = f(YX) for all X,Y € K[G].
This is the same as the set of linear maps f : G — K with
f(gh) = f(hg) for all g,h € G

or equivalently with
flzgz™) = f(g) for all z,g € G.

Thus, we can identify (K[G]/[K[G],K[G]])* with the vector space of class functions of G. O

Corollary. Assume char(K) does not divide |G]|.

Then the number of isomorphism classes of irreducible G-representations is the same as the number of
distinct irreducible characters of G, which is also the number of distinct conjugacy classes of G.

Corollary. If char(K) = 0 then finite-dimensional G-representations are isomorphic if and only if they
have the same character.

A group G is abelian if gh = hg for all g,h € G.

This holds if and only if the group algebra K[G] is commutative, so the following is true:

Fact. If G is abelian then all irreducible G-representations are 1-dimensional.

Suppose f:V — W is a linear map between vector spaces.

Recall that V* is the vector space of linear maps A : V' — K.

Define f* : W* — V* to be the linear map with the formula f*(\) = Ao f.
If f € GL(V) then f* € GL(V*) since (f o g)* = g* o f*.

Now suppose (py, V) is a G-representation. Define py - : G — GL(V*) by the formula

pv-(9) = (pv(9)) " = (pv(9) ™) = pvig™)"
Fact. If (py, V) is a representation then so is (py«, V*).

From this point on, we assume dim(V) < oco.

Fact. We have trace(f) = trace(f*) so x(,+.v+)(9) = X(p,v)(g™") for all g € G.
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Proposition. Suppose K = C. Then for all g € G it holds that
X(ov v)(9) = X(ov 1) (971) = X(py v (9)-

Therefore, we have (pv,V) = (py«, V*) if and only if x(,, v takes all real values.

Proof. As G is a finite group, any g € G has g/ = 14, and so any eigenvalue of py-(g) is a root of unity.
The character value x(,, v(g) is the sum of the eigenvalues of py (g).

Hence this value is a sum of roots of unity in K.

When K = C, the inverse of any root of unity is its complex conjugate.

As the eigenvalues of py(g~1) are the inverses of the eigenvalues of py(g), the result follows. O

Finally suppose (py, V) and (pw, W) are G-representations.
Then (pyew,V ® W) is a G-representation if we define pygw (g) for g € G as the linear map sending

v@w = py(9)(v) ® pw(g)(w) forveV and we W.

Fact. If dim(V) < oo and dim(W) < oo then X(pveow, VW) = X(pv,V)X(pw ,W)-
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