
MATH 5112 – Advanced Algebra II (Spring 2026) Lecture 8

1 Review: two structure theorems and tensor products

Let A be an algebra over an algebraically closed field K.

Suppose V is an A-representation with dim(V ) <∞. We have seen general theorems concerning V :

Theorem (Jordan-Hölder theorem). There exists a filtration of subrepresentations

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

with irreducible quotients Vi/Vi−1, and the length n of the filtration and the isomorphism classes of the
quotients are uniquely determined up to permutation of indices.

Theorem (Krull-Schmidt theorem). There is a direct sum decomposition of V into indecomposable
subrepresentations that is unique up to isomorphism and rearrangement of factors.

Remark. In both theorems, the algebra A can have infinite dimension as long as dim(V ) < ∞, since
the relevant statements hold for V viewed as an A-representation if and only if they hold for V viewed
as a representation of the finite-dimensional algebra ρV (A) ⊆ End(V ).

More strongly, one can show that the results even hold when the field K is not algebraically closed.

However, our proofs from last time do not handle this case.

We also discussed the representations of the tensor product of two K-algebras A and B.

The vector space A⊗B is also a K-algebra for the product defined on pure tensors by

(a1 ⊗ b1)(a2 ⊗ b2)
def
= a1a2 ⊗ b1b2 for a1, a2 ∈ A and b1, b2 ∈ B.

If V is an A-representation and W is a B-representation then V ⊗W is an A⊗B-representation with

(a⊗ b) · (v ⊗ w)
def
= av ⊗ bw for a ∈ A, b ∈ B, v ∈ V, w ∈W.

Theorem. Suppose V is an A-representation and W is a B-representation. If V and W are both
irreducible and finite-dimensional then so is V ⊗W (viewed as an A⊗B-representation). Moreover, up
to isomorphism, all irreducible finite-dimensional representations of A⊗B arise in this way.

We reduced the proof of this theorem to when A and B are semisimple and finite-dimensional.

In this case each algebra is isomorphic to a direct sum of matrix algebras.

In this concrete setting, the theorem is easy to check directly:

Up to isomorphism, Matm(K) and Matn(K) have unique irreducible representations Km and Kn.

Hence Km ⊗Kn ∼= Kmn is the unique irreducible representation of Matm(K)⊗Matn(K) ∼= Matmn(K).

2 Finite group representations

For a K-vector space V let GL(V ) be the group of invertible linear maps V → V .

Let G be a group.

A representation of G is a pair (ρ, V ) where V is a vector space and ρ : G→ GL(V ) is a homomorphism.
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Representations of G are equivalent to representations of the group algebra K[G] = K-span{ag : g ∈ G}.

We think of elements of K[G] as formal (finite) linear combinations of group elements, writing∑
g∈G cgg and instead of

∑
g∈G cgag

where cg ∈ K and ag is the formal symbol indexed by g ∈ G.

We are interested in representations of finite groups G. In this case K[G] has finite dimension.

Our first important question to answer is: when is K[G] semisimple?

From this point on, assume that the group G is finite. Write |G| for its number of elements.

Theorem (Maschke’s theorem). Assume that char(K) does not divide |G|. Then K[G] is semisimple.

Proof. Let (ρ, V ) be a finite-dimensional G-representation, and hence also a K[G]-representation.

It suffices to check that V is a direct sum of irreducible subrepresentations.

This clearly holds if (ρ, V ) is irreducible so assume this is not the case.

Then V must have an irreducible subrepresentation W by one of our homework exercises.

By induction dim(V ), it is enough to show that V has a nonzero subrepresentation U with V = W ⊕ U .

We can find a subspace Ũ , not necessarily a subrepresentation, with V = W ⊕ Ũ as vector spaces.

Just choose a basis w1, w2, . . . , wm of W , extend this to a basis w1, . . . , wm, u1, . . . , un for V , and set

Ũ = K-span{u1, . . . , un}.

Here is the key idea to the proof.

Let π : V →W be linear map with π(wi) = wi for all i and π(uj) = 0 for all j. Then define

σ =
1

|G|
∑
g∈G

ρ(g) ◦ π ◦ ρ(g−1)

Finally consider U = kernel(σ). We claim that:

(1) U is a subrepresentation.

(2) V = W ⊕ U .

Property (1) holds because for any h ∈ G we have

σρ(h) =
1

|G|
∑
g∈G

ρ(g) ◦ π ◦ ρ(g−1h) =
1

|G|
∑
x∈G

ρ(hx) ◦ π ◦ ρ(x−1) = ρ(h)σ,

making the substitution x = h−1g in the second equality.

Thus σ(u) = 0 if and only if σρ(h)(u) = ρ(h)σ(u) = 0 for any h ∈ G and u ∈ U , as ρ(h) is invertible.

For property (2), note that ρ(W ) ⊆W and π(w) = w for all w ∈W , so σ(w) = w for all w ∈W .

Since σ(V ) ⊆W , it follows that σ2 = σ. Thus any v ∈ V can be written as

v = σ(v) + (v − σ(v))

where σ(v) ∈W and (v − σ(v)) ∈ U , and we have W ∩ U = 0 since if x ∈W ∩ U then x = σ(x) = 0.

Thus V = W ⊕ U as needed.
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Corollary. Assume char(K) does not divide |G|. Then there are finitely many isomorphism classes of
irreducible G-representations {(ρi, Vi)}i∈I , all of which have finite dimension, and we have

|G| =
∑
i∈I dim(Vi)

2 and K[G] ∼=
⊕

i∈I End(Vi).

The representation theory of finite-dimensional semisimple algebras is trivial in the sense that everything
is just a direct sum of matrix algebras. What makes the representation theory of finite groups more
interesting is the distinguished basis of K[G] provided by G itself.

Going from this basis to the natural bases of K[G] viewed as a sum of matrix algebras is complicated.

It turns out that the converse to Maschke’s theorem is also true.

Theorem. If K[G] is semisimple then char(K) does not divide |G|.

Proof. Assume K[G] is semisimple and consider the subspace

U
def
= K-span

{∑
g∈G g

}
.

This is a 1-dimensional subrepresentation of K[G].

By semisimplicity, there exists a complementary subrepresentation V ⊂ K[G] with K[G] = U ⊕ V .

View K as a G-representation with g · c = c for all g ∈ G and c ∈ K.

Then define φ : K[G]→ K to be linear map that sends V → 0 and
∑
g∈G g 7→ 1K.

Because U and V are subrepresentations, the map φ is a morphism of K[G]-representations.

Thus φ(g) = φ(g · 1G) = g · φ(1G) = φ(1G) ∈ K for all g ∈ G.

But this means that 1K = φ(
∑
g∈G g) =

∑
g∈G φ(g) =

∑
g∈G φ(1G) = |G|φ(1G).

Thus |G| is invertible (and nonzero) in K, so char(K) must not divide |G|.

3 Characters of group representations

Continue to let G be a finite group.

If (ρ, V ) is a G-representation with dim(V ) <∞ then its character is the map χ(ρ,V ) : G→ K with

χ(ρ,V )(g) = trace(ρ(g)).

Since traces are invariant under change of basis, it follows that:

Fact. If (ρ, V ) ∼= (ρ′, V ′) as G-representations then χ(ρ,V ) = χ(ρ′,V ′).

The conjugacy classes of G are the sets Kg
def
= {xgx−1 : x ∈ G} for g ∈ G.

A class function of G is a map G→ K that is constant on all elements in each conjugacy class.

Equivalently, f : G→ K is a class function if and only if f(xgx−1) = f(g) for all x, g ∈ G.

Fact. The character of any finite-dimensional G-representation is a class function.
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We say that the character χ(ρ,V ) is irreducible if (ρ, V ) is an irreducible representation.

We mention some special properties of irreducible characters that hold when K[G] is semisimple.

Proposition. Assume char(K) does not divide |G|.

Then the irreducible characters of G are a basis for the vector space of class functions of G.

Proof. In this case K[G] is semisimple so the irreducible characters are a basis for (K[G]/[K[G],K[G]])∗.

This dual space can be identified with the vector space of linear maps f : G→ K that satisfy

f(XY ) = f(Y X) for all X,Y ∈ K[G].

This is the same as the set of linear maps f : G→ K with

f(gh) = f(hg) for all g, h ∈ G

or equivalently with
f(xgx−1) = f(g) for all x, g ∈ G.

Thus, we can identify (K[G]/[K[G],K[G]])∗ with the vector space of class functions of G.

Corollary. Assume char(K) does not divide |G|.

Then the number of isomorphism classes of irreducible G-representations is the same as the number of
distinct irreducible characters of G, which is also the number of distinct conjugacy classes of G.

Corollary. If char(K) = 0 then finite-dimensional G-representations are isomorphic if and only if they
have the same character.

A group G is abelian if gh = hg for all g, h ∈ G.

This holds if and only if the group algebra K[G] is commutative, so the following is true:

Fact. If G is abelian then all irreducible G-representations are 1-dimensional.

Suppose f : V →W is a linear map between vector spaces.

Recall that V ∗ is the vector space of linear maps λ : V → K.

Define f∗ : W ∗ → V ∗ to be the linear map with the formula f∗(λ) = λ ◦ f .

If f ∈ GL(V ) then f∗ ∈ GL(V ∗) since (f ◦ g)∗ = g∗ ◦ f∗.

Now suppose (ρV , V ) is a G-representation. Define ρV ∗ : G→ GL(V ∗) by the formula

ρV ∗(g) = (ρV (g)∗)−1 = (ρV (g)−1)∗ = ρV (g−1)∗.

Fact. If (ρV , V ) is a representation then so is (ρV ∗ , V
∗).

From this point on, we assume dim(V ) <∞.

Fact. We have trace(f) = trace(f∗) so χ(ρ∗,V ∗)(g) = χ(ρ,V )(g
−1) for all g ∈ G.
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Proposition. Suppose K = C. Then for all g ∈ G it holds that

χ(ρV ,V )(g) = χ(ρV ,V )(g
−1) = χ(ρV ∗ ,V ∗)(g).

Therefore, we have (ρV , V ) ∼= (ρV ∗ , V
∗) if and only if χ(ρV ,V ) takes all real values.

Proof. As G is a finite group, any g ∈ G has g|G| = 1G, and so any eigenvalue of ρV (g) is a root of unity.

The character value χ(ρV ,V )(g) is the sum of the eigenvalues of ρV (g).

Hence this value is a sum of roots of unity in K.

When K = C, the inverse of any root of unity is its complex conjugate.

As the eigenvalues of ρV (g−1) are the inverses of the eigenvalues of ρV (g), the result follows.

Finally suppose (ρV , V ) and (ρW ,W ) are G-representations.

Then (ρV⊗W , V ⊗W ) is a G-representation if we define ρV⊗W (g) for g ∈ G as the linear map sending

v ⊗ w 7→ ρV (g)(v)⊗ ρW (g)(w) for v ∈ V and w ∈W .

Fact. If dim(V ) <∞ and dim(W ) <∞ then χ(ρV⊗W ,V⊗W ) = χ(ρV ,V )χ(ρW ,W ).
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