
MATH 5112 – Advanced Algebra II (Spring 2026) Lecture 9

1 Review: Maschke’s theorem and group characters

Let K be an algebraically closed field and let G be a group.

A representation of G is a representation (ρ, V ) of the group algebra K[G].

This is the same data as a pair (ρ, V ) such that ρ : G→ GL(V ) is a group homomorphism.

Here V is required to be a K-vector space, and we have ρ(K[G]) ⊆ End(V ) and ρ(G) ⊆ GL(V ).

Now assume G is a finite group.

Theorem (Maschke’s theorem). The group algebra K[G] is semisimple (meaning that all irreducible
G-representations are finite-dimensional and finite-dimensional G-representations are direct sums of irre-
ducible representations) if and only if char(K) does not divide |G|.

Assume (ρ, V ) is a finite dimensional G-representation.

The character of (ρ, V ) is a linear map χ(ρ,V ) : K[G]→ K sending g 7→ trace(ρ(g)) for all g ∈ G.

Notice that dim(V ) = χ(ρ,V )(1). Sometimes this is called the degree of the character.

Example. If (ρ, V ) is a G-representation with dim(V ) = 1, then χ(ρ,V ) = ρ.

We say that χ(ρ,V ) is irreducible if (ρ, V ) is an irreducible representation.

Let Irr(G) denote the set of irreducible characters of G.

For any G-representations (ρ, V ) and (ρ′, V ′), the following properties hold:

(1) If (ρ, V ) ∼= (ρ′, V ′) then χ(ρ,V ) = χ(ρ′,V ′).

(2) The character χ(ρ,V ) is a class function on G, meaning that it is constant on conjugacy classes.

When K[G] is semisimple, some additional properties hold:

(3) Irr(G) is a basis for the K-vector space of class functions G→ K.

(4) If char(K) = 0, then χ(ρ,V ) = χ(ρ′,V ′) if and only if (ρ, V ) ∼= (ρ′, V ′).

(5)
∑
χ∈Irr(G) χ(1)2 = |G|.

Example. Suppose K = C and G is a cyclic group of order n ≥ 1 generated by an element x.

Let χm be the map C[G]→ C with xj 7→ ζmj where ζ = e2π
√
−1/n.

Then Irr(G) = {χ0, χ1, χ2, . . . , χn−1}.

We can also form duals and tensor products of group representations.

When the representations are finite-dimensional, there are some related character formualas.

Remark. A G-representation is a left K[G]-module. The algebra K[G] is often noncommutative.

Earlier, we emphasized that if A is a noncommutative algebra then the tensor product of two left A-
modules is not a well-defined left A-module in general.

So how do we explain the existence of a tensor product for group representations?
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The tensor product of two left A-modules always has the structure of a left A⊗A-module.

So the tensor product of G-representations (ρV , V ) and (ρW ,W ) is a representation of K[G]⊗K[G].

A special property of group algebras is that K[G]⊗K[G] has a subalgebra K-span{g⊗g : g ∈ G} ∼= K[G].

By identifying K[G] with this subalgebra, any K[G]⊗K[G]-representation becomes a K[G]-representation.

This is how we define the G-representation (ρV , V )⊗ (ρW ,W ).

2 More special properties of characters

For the rest of today, we assume that G is a finite group.

Suppose V and W are G-representations. Let Hom(W,V ) denote the set of K-linear maps W → V .

The vector space Hom(W,V ) is a left K[G]⊗K[G]-module for the action

(g ⊗ h) · ϕ : w 7→ gϕ(h−1w) for g, h ∈ G.

Indeed, notice that if φ : W → V is linear and w ∈W then for any g1, g2, h1, h2 ∈ G(
(g1g2 ⊗ h1h2) · ϕ

)
(w) = g1g2ϕ(h−12 h−11 w)

= g1
(
g2 ⊗ h2 · ϕ

)
(h−11 w) =

(
(g1 ⊗ h1)(g2 ⊗ h2) · ϕ

)
(w).

Now assume that V and W are finite-dimensional.

Proposition. It holds that V ⊗W ∗ ∼= Hom(W,V ) as K[G]⊗K[G]-modules.

Proof. Let F : V ⊗W ∗ → Hom(W,V ) be the linear map sending

v ⊗ ϕ 7→ (w 7→ ϕ(w)v) for v ∈ V and ϕ ∈W ∗.

If {vi} is a basis for V , {wj} is basis for W , and {δj} is the dual basis for W ∗, then F sends vi ⊗ δj to
the linear map W → V whose matrix in the chosen bases has a 1 in position (i, j) and 0 everywhere else.

Any linear map W → V is a linear combination of such images F (vi ⊗ δj), so F is surjective.

Because
dim(V ⊗W ∗) = dim(V ) dim(W ∗) = dim(V ) dim(W ) = dim(Hom(W,V ))

the map F is an isomorphism of K-vector spaces.

For any g, h ∈ G, v ∈ V , w ∈W , and ϕ ∈W ∗, we have(
(g ⊗ h) · F (v ⊗ ϕ)

)
(w) = gϕ(h−1w)v

which is the same as

F
(
(g ⊗ h) · (v ⊗ ϕ)

)
(w) = F ((gv)⊗ (ϕ ◦ h−1))(w) = ϕ(h−1w)(gv) = gϕ(h−1w)v.

Hence F is an isomorphism of K[G]⊗K[G]-modules.

By letting g ∈ G act as g ⊗ g, we can view V ⊗W ∗ ∼= Hom(W,V ) as isomorphic G-modules.

Let HomG(W,V ) ⊆ Hom(W,V ) be the subspace of linear maps that commute with the action of G.
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Proposition. The set Hom(W,V )G of elements in Hom(W,V ) fixed by all g ∈ G is HomG(W,V ).

Proof. If ϕ ∈ HomG(W,V ) then for any g ∈ G we have the following commutative diagram

V V

V V

ϕ

g g

ϕ

and since the vertical map is invertible, it follows that ϕ(w) = g(ϕ(g−1w)) = (g · ϕ)(w) for any w ∈W .

Thus, HomG(W,V ) ⊆ Hom(W,V )G.

Conversely, if ϕ ∈ Hom(W,V )G, then for any g ∈ G and w ∈W , we have

ϕ(gw) = (g · ϕ)(gw) = gϕ(g−1gw) = gϕ(w).

Thus, ϕ ∈ HomG(W,V ) and Hom(W,V )G ⊆ HomG(W,V ).

Combining the preceding results lets us deduce that:

Corollary. There is an isomorphism (V ⊗W ∗)G ∼= HomG(W,V ) as G-modules.

Now assume K = C. For any maps f1, f2 : G→ C, we define a positive-definite Hermitian form

(f1, f2)
def
=

1

|G|
∑
g∈G

f1(g)f2(g).

Theorem. The set Irr(G) is an orthonormal basis for the class functions on G with respect to (·, ·).

In other words, for any χ, ψ ∈ Irr(G) we have (χ, ψ) =

{
1 if χ = ψ

0 otherwise.

Proof. By Schur’s Lemma, it suffices to prove that for any G-representations V and W , we have

(χV , χW ) = dim HomG(W,V ).

Let π = 1
|G|
∑
g∈G ∈ K[G]. Then

(χV , χW ) =
1

|G|
∑
g∈G

χV (g)χW (g) =
1

|G|
∑
g∈G

χV (g)χW∗(g) =
1

|G|
∑
g∈G

χV⊗W∗(g) = χV⊗W∗(π).

If X is any G-representation, then XG def
= {x ∈ X : gx = x} is a subrepresentation of G.

Notice that gπ = 1
|G|
∑
h∈G gh = 1

|G|
∑
gh∈G gh = π for any g ∈ G.

Therefore, we have πx ∈ XG for any x ∈ X and π : X � XG is a projection map.

Thus dim(XG) is the character of X evaluated at π.

Applying this when X = V ⊗W ∗ gives χV⊗W∗(π) = dim
(
(V ⊗W ∗)G

)
= dim(HomG(W,V )).
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For g ∈ G, let Zg = {h ∈ G : hgh−1 = g} be the centralizer of g.

Also let Kg = {hgh−1 : h ∈ G} be the conjugacy class of g.

Fact. By the Orbit-Stabilizer Theorem it holds that |Kg| = |G|
|Zg| .

Theorem. Let g, h ∈ G. Then

∑
ψ∈Irr(G)

ψ(g)ψ(h) =

{
|Zg| Kg = Kh
0 Kg 6= Kh.

Proof sketch. We want to describe this sum as the trace of a C-endomorphism of C[G].

If we write Vψ for an irreducible representation with character ψ, then we have∑
ψ∈Irr(G)

ψ(g)ψ(h) =
∑

ψ∈Irr(G)

χVψ (g)χV ∗ψ (h)

=
∑

ψ∈Irr(G)

χVψ⊗V ∗ψ (g ⊗ h)

= trace
((⊕

ψ∈Irr(G) ρVψ⊗V ∗ψ

)
(g ⊗ h)

)
.

We have an isomorphism
⊕

ψ∈Irr(G) Vψ ⊗V ∗ψ ∼= ⊕ψ∈Irr(G)End(Vψ) ∼= C[G] of C[G]⊗C[G] representations.

Under this isomorphism g ⊗ h acts on C[G] as the linear map sending x ∈ G to gxh−1.

Thus
∑
ψ∈Irr(G) ψ(g)ψ(h) is the trace of x 7→ gxh−1 which is

|{x ∈ G : x = gxh−1}| = |{x ∈ G : g = xhx−1}| =

{
|Zg| if Kg = Kh
0 if Kg 6= Kh.

3 Unitary representations

A finite-dimensional representation (ρ, V ) of a group G (over C) is unitary if

(ρ(g)v, ρ(g)w) = (v, w) for all v, w ∈ V and g ∈ G

for some positive-definite Hermitian form (·, ·) : V × V → C.

Proposition. If G is a finite group, then any finite dimensional G-representation is unitary.

Proof. Pick any basis {vi} for V . We define a positive-definite Hermitian form 〈·, ·〉 : V × V → C with

〈vi, vj〉 =

{
1 if i = j

0 if i 6= j.

Then the form (vi, vj)
def
=
∑
g∈G〈gvi, gvj〉 is positive-definite, Hermitian, and G-invariant.

Proposition. Any finite-dimensional unitary representation of a (possibly infinite) group is semisimple.
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Proof. Any irreducible representation is semisimple so assume V is reducible.

Choose an irreducible subrepresentation of U ( V . Write (·, ·) for the form that makes V unitary.

Let U⊥ = {v ∈ V : (v, u) = 0 for all u ∈ U}.

Then V = U ⊕ U⊥ and U⊥ is a subrepresentation since the relevant form is G-invariant.

The result now follows by induction on dimension.

4 Matrix elements

Assume that G is a finite group and V is a finite-dimensional irreducible C[G]-module.

Choose a G-invariant positive definite Hermitian form (·, ·) on V .

Let {vi} be an orthonormal basis on V with respect to (·, ·). Define

tVij(g) = (gvi, vj) and for g ∈ G.

For each pair (i, j) with 1 ≤ i, j ≤ dimV , the map tVij : G→ C is a called a matrix element .

Proposition. The rescaled matrix elements

1√
dimV

tVij : G→ C

give an orthonormal basis of the space of maps G→ C (as V ranges over all isomorphism classes of finite
dimensional irreducible G-representations and i, j range over the indices of an orthonormal basis of V ).

For a proof, see the textbook. Note that the number of distinct matrix elements is
∑
V (dimV )2 = |G|.

5 Character tables

Suppose G is a finite group. Choose representatives 1 = g1, g2, · · · , gr for the conjugacy classes in G.

Suppose 1 = χ1, χ2, · · · , χr are the distinct irreducible characters that make up Irr(G).

Here 1 denotes the irreducible character G→ {1}.

Then everything one wants to know about Irr(G) is encoded by the matrix

Irr(G) 1 = g1 g2 · · · gr
1 = χ1 1 1 · · · 1
χ2 χ2(1) χ2(g2) · · · χ2(gr)
...

...
...

...
...

χr χr(1) χr(g2) · · · χ(gr)

which is called the character table of G.

Example. If G = S3 then the character table of G is

Irr(S3) 1 (1, 2) (1, 2, 3)
χ(3) 1 1 1
χ(2,1) 2 0 −1
χ(1,1,1) 1 −1 1

Using the character table orthogonality relations from today, you can compute the sizes of all conjugacy
classes in G. Then you can decompose arbitrary products of characters into irreducibles.
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