MATH 5112 — Advanced Algebra IT (Spring 2026) Lecture 9

1 Review: Maschke’s theorem and group characters

Let K be an algebraically closed field and let G be a group.

A representation of G is a representation (p, V') of the group algebra K[G].

This is the same data as a pair (p, V') such that p : G — GL(V) is a group homomorphism.
Here V is required to be a K-vector space, and we have p(K[G]) C End(V) and p(G) C GL(V).

Now assume G is a finite group.

Theorem (Maschke’s theorem). The group algebra K[G] is semisimple (meaning that all irreducible
G-representations are finite-dimensional and finite-dimensional G-representations are direct sums of irre-
ducible representations) if and only if char(K) does not divide |G].

Assume (p, V) is a finite dimensional G-representation.
The character of (p, V') is a linear map x(,,v) : K[G] — K sending g — trace(p(g)) for all g € G.
Notice that dim(V') = x(,,v)(1). Sometimes this is called the degree of the character.

Example. If (p, V) is a G-representation with dim(V') = 1, then x(,,v) = p.

We say that x(,, vy is irreducible if (p, V') is an irreducible representation.

Let Irr(G) denote the set of irreducible characters of G.

For any G-representations (p, V') and (p’, V'), the following properties hold:

(1) If (p, V) = (', V') then x(p,v) = X(pr,v1)-

(2) The character x(,,v) is a class function on G, meaning that it is constant on conjugacy classes.
When K[G] is semisimple, some additional properties hold:

(3) Irr(G) is a basis for the K-vector space of class functions G — K.

(4) If char(K) = 0, then x(,v) = X(,,v) if and only if (p, V) = (o', V").

(5) erlrr(G) x(1)* = G|.

Example. Suppose K = C and G is a cyclic group of order n > 1 generated by an element x.
Let x, be the map (C[G] — C with 27 — ij where ( = e2mV—=1/n

Then Trr(G) = {x0, X1, X2, » Xn—1}-

We can also form duals and tensor products of group representations.

When the representations are finite-dimensional, there are some related character formualas.

Remark. A G-representation is a left K[G]-module. The algebra K[G] is often noncommutative.

Earlier, we emphasized that if A is a noncommutative algebra then the tensor product of two left A-
modules is not a well-defined left A-module in general.

So how do we explain the existence of a tensor product for group representations?
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The tensor product of two left A-modules always has the structure of a left A ® A-module.

So the tensor product of G-representations (py, V) and (pw, W) is a representation of K[G] ® K[G].

A special property of group algebras is that K[G] ® K[G] has a subalgebra K-span{g® g : g € G} 2 K[G].
By identifying K[G] with this subalgebra, any K[G]®K[G]-representation becomes a K[G]-representation.
This is how we define the G-representation (py, V) ® (pw, W).

2 More special properties of characters

For the rest of today, we assume that G is a finite group.
Suppose V and W are G-representations. Let Hom(W, V') denote the set of K-linear maps W — V.
The vector space Hom(W, V) is a left K[G] ® K[G]-module for the action

(g@h)-p:ww go(h~tw) for g,h €G.
Indeed, notice that if ¢ : W — V is linear and w € W then for any g1, g2, h1, ho € G

((9192 ® hihs) - @) (w) = g1gap(hy " hy ' w)
=g1(92 ® ha - ) (h1'w) = ((91 ® h1)(g2 ® h2) - ) (w).

Now assume that V' and W are finite-dimensional.
Proposition. It holds that V @ W* = Hom(W, V) as K[G] ® K[G]-modules.
Proof. Let F: V @ W* — Hom(W, V) be the linear map sending

v @ (w— p(w)v) forveV and ¢ € W*.

If {v;} is a basis for V, {w;} is basis for W, and {¢;} is the dual basis for W*, then F sends v; ® 0, to
the linear map W — V whose matrix in the chosen bases has a 1 in position (¢, j) and 0 everywhere else.

Any linear map W — V is a linear combination of such images F(v; ® d,), so F' is surjective.
Because

dim(V @ W*) = dim(V) dim(W*) = dim(V') dim(W) = dim(Hom(W, V))
the map F' is an isomorphism of K-vector spaces.

For any g,h e G,v eV, we W, and p € W*, we have

((g@h)-Flv@e))(w) = go(h™ w)v

which is the same as

F((g@h) - (v®e))(w) = F((gv) ® (o h™))(w) = p(h~ w)(gv) = gp(h~ w)o.

Hence F is an isomorphism of K[G] ® K[G]-modules. O

By letting g € G act as g ® g, we can view V @ W* = Hom(W, V) as isomorphic G-modules.
Let Homg (W, V) C Hom(W, V) be the subspace of linear maps that commute with the action of G.
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Proposition. The set Hom(W, V)¢ of elements in Hom(W, V') fixed by all g € G is Homg (W, V).
Proof. If ¢ € Homg (W, V) then for any g € G we have the following commutative diagram

VAN, v
g g
| QAN v
-1

and since the vertical map is invertible, it follows that p(w) = g(p(¢  w)) = (g - ¢)(w) for any w € W.
Thus, Homg (W, V') € Hom(W, V)<,

Conversely, if ¢ € Hom(W, V)%, then for any g € G and w € W, we have

plgw) = (9-9)(gw) = gp(g~" gw) = gp(w).
Thus, ¢ € Homg (W, V) and Hom(W, V)¢ C Homg(W, V). O

Combining the preceding results lets us deduce that:

Corollary. There is an isomorphism (V ® W*)¢ = Homg(W, V) as G-modules.

Now assume K = C. For any maps f1, fo : G — C, we define a positive-definite Hermitian form

(fr. f2) & \G| > hi9)fa(9)

geG

Theorem. The set Irr(G) is an orthonormal basis for the class functions on G with respect to (-, -).

1 ifx=4v

In other words, for any x,# € Irr(G) we have (x,v) =
0 otherwise.

Proof. By Schur’s Lemma, it suffices to prove that for any G-representations V and W, we have
(xv, xw) = dim Homg (W, V).

Let = 157 X gec € K[G]. Then

(Xv,xw) = |G| Z xv(9)xw(g) |G| Z xv (9)xw+(9) \G\ Z xvew=(9) = xvew-(T).
geG geG geG
If X is any G-representation, then X def {z € X : gz = z} is a subrepresentation of G.

Notice that gm = ﬁ >heq 9h = \%I Yogheq gh = for any g € G.
Therefore, we have 72 € X for any € X and 7 : X — X is a projection map.

Thus dim(X¢) is the character of X evaluated at 7.

Applying this when X =V ® W* gives xvgw+(m) = dim ((V @ W*)¢) = dim(Homg (W, V)). O
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For g € G, let Z, = {h € G : hgh™" = g} be the centralizer of g.
Also let K, = {hgh™! : h € G} be the conjugacy class of g.

Fact. By the Orbit-Stabilizer Theorem it holds that |[KCg| = ‘ZGl

Theorem. Let g,h € G. Then

N |Zg‘ ]Cg =Kn
B —
%%:(G)w(g)w( ) {0 K. %K.

Proof sketch. We want to describe this sum as the trace of a C-endomorphism of C[G].
If we write V,, for an irreducible representation with character 1, then we have
> dlw) = > xv(9)xv;(h)
PElrr(G) Pelrr(G)

= Z Xvyev; (g ®h)
Pelrr(G)

= trace ((@welrr(G) pr®Vg) (9® h)) .

We have an isomorphism €D ey, (q) Voo @ V) = @yperr(c) End(Vy) = C[G] of C[G] @ C[G] representations.

Under this isomorphism g ® h acts on C[G] as the linear map sending = € G to gzh™!.

Thus > cre(q) ¥(9)¢(h) is the trace of z — grh~! which is

Z,| ifK,=K
HreG:x=geh '} =|{z €G:g=xha™ '} = 2] 1 g "
0 if K, #Kn
0
3 Unitary representations
A finite-dimensional representation (p, V') of a group G (over C) is unitary if
(p(g)v, p(g)w) = (v, w) forallv,w eV andge G
for some positive-definite Hermitian form (-,-) : V. x V — C.
Proposition. If G is a finite group, then any finite dimensional G-representation is unitary.
Proof. Pick any basis {v;} for V. We define a positive-definite Hermitian form (-,-) : V' x V — C with
1 ifi=j
<Uivvj> = P .
0 ifi#j.
Then the form (v;, v;) def ng;(gvi, gv;) is positive-definite, Hermitian, and G-invariant. O

Proposition. Any finite-dimensional unitary representation of a (possibly infinite) group is semisimple.
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Proof. Any irreducible representation is semisimple so assume V' is reducible.

Choose an irreducible subrepresentation of U C V. Write (-, -) for the form that makes V unitary.
Let Ut ={v eV : (v,u) =0 for all u € U}.

Then V =U @ U+ and U" is a subrepresentation since the relevant form is G-invariant.

The result now follows by induction on dimension. O

4 Matrix elements

Assume that G is a finite group and V is a finite-dimensional irreducible C[G]-module.
Choose a G-invariant positive definite Hermitian form (-,-) on V.
Let {v;} be an orthonormal basis on V' with respect to (-, ). Define

tx»(g) = (gvi, v;) and for g € G.
For each pair (7,7) with 1 < 4,57 < dimV, the map thj : G — C is a called a matriz element.

Proposition. The rescaled matrix elements

1,V
rmvtij.G—HC

give an orthonormal basis of the space of maps G — C (as V ranges over all isomorphism classes of finite
dimensional irreducible G-representations and i, j range over the indices of an orthonormal basis of V).

For a proof, see the textbook. Note that the number of distinct matrix elements is Y, (dim V)? = |G|.

5 Character tables

Suppose G is a finite group. Choose representatives 1 = g1, go,- - , g, for the conjugacy classes in G.
Suppose 1 = x1, X2, , Xr are the distinct irreducible characters that make up Irr(G).
Here 1 denotes the irreducible character G — {1}.

Then everything one wants to know about Irr(G) is encoded by the matrix

Ir(G) | 1=g g2 gr

1=x:1]| 1 T 1
X2 x2(1)  x2(92) -+ x2(gr)
X xr(1) xr(g2) -+ x9r)

which is called the character table of G.

Example. If G = S3 then the character table of G is
Irr(S3) ‘ 1 (1,2) (1,2,3)

X(B) 1 1 1
X(2,1) 2 0 -1
X@,1,1) | 1 -1 1

Using the character table orthogonality relations from today, you can compute the sizes of all conjugacy
classes in G. Then you can decompose arbitrary products of characters into irreducibles.
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