
MATH 5112 – Advanced Algebra II (Spring 2026) Lecture 10

1 Review: orthogonality relations and character tables

Let G be a finite group and consider its representations over C.

The vector space of functions G→ C has a positive definite Hermitian form

(f1, f2)
def
= 1

|G|
∑
g∈G f1(g)f2(g).

Write Irr(G) for the set of (complex) irreducible characters of G.

Theorem. Irr(G) is an orthonormal basis for the space of class functions G→ C relative to (·, ·).

Corollary. If χ and ψ are any (complex) characters of G then (χ, ψ) ∈ N = {0, 1, 2, 3, · · · }.

Proof. This holds as χ =
∑
ϕ∈Irr(G) aϕϕ and ψ =

∑
ϕ∈Irr(G) bϕϕ where aϕ, bϕ are nonnegative integers.

Corollary. If V and W are finite-dimensional representations of G over C then

(χV , χW ) = dim(HomG(V,W )).

Proof. If V and W are irreducible then

dim(HomG(V,W )) =

{
1 V ∼=W

0 V ̸∼=W

by Schur’s Lemma. If the irreducible decompositions of V and W are

V =
⊕r

i=1 niVi and W =
⊕s

j=1mjWj

then dimHomG(V,W ) =
∑
i,j nimjHomG(Vi,Wj) =

∑
i,j nimj(χVi

, χWj
) = (χV , χW ).

Theorem. Let g, h ∈ G and define Zg = {x ∈ G : xgx−1} and Kg = {xgx−1 : x ∈ g}. Then

∑
ψ∈Irr(G)

ψ(g)ψ(h) =

{
|Zg| Kg = Kh
0 Kg ̸= Kh.

Choose representatives 1 = g1, g2, · · · , gr for distinct conjugacy classes in G.

Suppose 1 = χ1, · · · , χr are the elements in Irr(G), with 1 the trivial character G→ {1}.

Then the character table of G is the matrix

Irr(G) g1 g2 · · · gr
χ1 1 1 1 1
χ2 χ2(1) χ2(g2) · · · χ2(gr)
...

...
...

...
...

χr χr(1) χr(g2) · · · χ(gr)

Suppose we are given the character table. The second theorem above let us compute |Zgi | and |Kgi |.

Namely: we have |Zg1 | = |G| =
∑r
i=1 |χi(1)|2 and |Zgi | =

∑r
j=1 |χj(gi)|2 and then |Kgi | =

|G|
|Zgi

| .
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This information and the first theorem lets us decompose any class function into irreducible characters.

For if f : G→ C is a class function, then f =
∑r
i=1(f, χi)χi and the coefficients satisfy

(f, χi) =
1
|G|

∑
g∈G f(g)χi(g) =

1
|G|

∑r
j=1 f(gj)χi(gj)|Kgj | =

∑r
j=1

χi(gj)
|Zgj

| f(gj).

Example. Suppose G = S3 is the group of permutations of {1, 2, 3}. The character table of G is

Irr(S3) 1 (1, 2) (1, 2, 3)
χ(3) 1 1 1
χ(2,1) 2 0 −1
χ(1,1,1) 1 −1 1

The column indices of this table are permutations written in cycle notation.

The irreducible characters indexing the rows are labeled by partitions of the number 3.

Using the orthogonality relations above we compute that

|Z1| = |S3| = 12 + 22 + 12 = 6, |Z(1,2)| = 12 + 02 + 12 = 2, and |Z(1,2,3)| = 12 + (−1)2 + 12 = 3.

One can check that

K1 = {1}, K(1,2) = {(1, 2), (1, 3), (2, 3)}, and K(1,2,3) = {(1, 2, 3), (1, 3, 2)}.

It is clear that χ(3)ψ = ψ for any class function ψ, while

(χ(1,1,1))
2 = χ(3) and χ(1,1,1)χ(2,1) = χ(2,1).

But how does θ = (χ(2,1))
2 decompose? This map’s values on each conjugacy class are 4, 0, and 1 so(

χ(3), θ
)
= 4

6 + 0
2 + 1

3 = 1,
(
χ(2,1), θ

)
= 8

6 + 0
2 + −1

3 = 1, and
(
χ(1,1,1), θ

)
= 4

6 + 0
2 + 1

3 = 1.

Therefore (χ(2,1))
2 = θ = χ(3) + χ(2,1) + χ(1,1,1).

2 Representations of product groups

Recall that if A and B are algebras over the same field, then the vector space A⊗B is an algebra.

If V is an A-representation and W is a B-representation, then V ⊗W is an A⊗B-representation.

The tensor product V ⊗W is irreducible if and only if both V and W are irreducible.

Finally, every finite-dimensional irreducible representation of A⊗B arises as such a tensor product.

Definition. The direct product G×H of two groups G and H is the group

{(g, h) : g ∈ G and h ∈ H} and with product (g1, h1)(g2, h2) = (g1g2, h1h2).

Over any field K, there is an isomorphism K[G×H] ∼= K[G]⊗K[H] sending (g, h) ∈ G×H to g ⊗ h.

Via this map, we can view any K[G]⊗K[H]-representation as an algebra representation of K[G×H].

In turn, the tensor product of a G-representation with an H-representation is a representation of G×H.
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Proposition. Let G and H be finite groups. Suppose {Vi}i∈I and {Wj}j∈J represent the distinct
isomorphism classes of irreducible representations of G and H, respectively, over some field K. Then

{Vi ⊗Wj}(i,j)∈I×J

represents the distinct isomorphism classes of irreducible representations of G×H over K.

Proof. This is a special case of the statement for algebra because all irreducible representations of finite
groups are finite-dimensional, as the associated group algebras are finite-dimensional.

3 Restriction and induction

Suppose H is a subgroup of a group G. We consider representations here over an arbitrary field K.

There is a simple way to convert any G-representation into a representation of H:

Definition. The restriction of a G-representation (ρ, V ) is the H-representation

ResGH(ρ, V ) = (ρ|H , V )

where ρ|H is the restriction of the homomorphism ρ : G→ GL(V ) to H.

We write ResGH(ρ, V ) as ResGH(V ) when ρ is clear from context.

There is a less trivial way to turn an H-representation into a representation of G:

Definition. Given an H-representation (ρ, V ) define IndGH(V ) to be the vector space

IndGH(V ) =
{
f : G→ V : f(hx) = ρ(h)f(x) for all h ∈ H and x ∈ G

}
and let ρG be the map G→ GL(IndGH(V )) with

ρG(g)f =
(
the map sending x 7→ f(xg)

)
.

Finally, define the induced G-representation of (ρ, V ) to be the pair IndGH(ρ, V ) = (ρG, IndGH(V )).

We write IndGH(ρ, V ) as IndGH(V ) when ρ is clear from context.

For the rest of today we let (ρ, V ) denote some fixed H-representation.

Proposition. The pair IndGH(ρ, V ) is a G-representation.

Proof. Suppose f ∈ IndGH(V ) and g, x ∈ G and h ∈ H. Write g · f in place of ρG(g)f . Then

(g · f)(hx) = f(hxg) = f(h(xg)) = ρ(h)f(xg) = ρ(h)(g · f)(x)

so g · f ∈ IndGH(V ), and if g1, g2 ∈ G then g1 · (g2 · f) = (g1g2) · f since

(g1 · (g2 · f))(x) = f(xg1g2) = ((g1g2) · f)(x).
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A left coset of H in G is a set of the form gH = {gh : h ∈ H} for some g ∈ G.

A right coset of H in G is a set of the form Hg = {hg : h ∈ H} for some g ∈ G.

The group G is a disjoint union of the left cosets of H, and of the right cosets of H.

Let XL ⊆ G be a set of representatives for the distinct left cosets of H in G.

This means that each left coset has the form gH for exactly one g ∈ XL.

Set XR = {g−1 : g ∈ XL}. Then XR is a set of representatives for the distinct right cosets of H in G.

Define |G : H| = |XL| = |XR|. When G is finite we have |G : H| = |G|
|H| .

Example. Suppose G = Sn is the group of permutations of the set {1, 2, 3, . . . , n}.

If H ∼= Sn−1 is the subgroup of elements that fix n, then one possibility for XL is

{w ∈ Sn : w(1) < w(2) < · · · < w(n− 1)} which has size n = n!
(n−1)! =

|Sn|
|Sn−1| .

Proposition. Suppose |G : H| <∞ and dim(V ) <∞. Then dim(IndGH(V )) = |G : H|dim(V ).

Proof. Every map XR → V uniquely extends to an element of IndGH(V ).

In fact, the set of maps XR → V is isomorphic as a vector space to IndGH(V ).

But the dimension of the vector space of maps from any finite set S to V is |S|dim(V ).

It is convenient to switch to module notation when working with induced representations.

Thus, we identify IndGH(ρ, V ) with IndGH(V ) and write g ·f in place of ρG(g)f for g ∈ G and f ∈ IndGH(V ).

There is another way of constructing the G-module IndGH(V ) when G is finite.

This is convenient for some results, especially if one is comfortable with tensor products.

Specifically, by viewing K[G] as a (K[G],K[H])-bimodule and V as a left K[H]-module we can form

K[G]⊗K[H] V

and this tensor product has the structure of a left K[G]-module.

Concretely K[G]⊗K[H] V is the quotient of the tensor product K[G]⊗ V by the subspace spanned by

gh⊗ v − g ⊗ ρ(h)v for all g ∈ G, h ∈ H, and v ∈ V .

The way G acts on this vector space is by multiplication on the left. If B is a basis for V then

{g ⊗ b}(g,b)∈XL×B = {g−1 ⊗ b}(g,b)∈XR×B

is a basis for K[G]⊗K[H] V .

Proposition. Assume G is a finite group. Then IndGH(V ) ∼= K[G]⊗K[H] V as G-representations.
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Proof. The map ϕ : IndGH(V ) → K[G]⊗K[H] V defined by ϕ(f) =
∑
x∈G x⊗ f(x−1) is an isomorphism.

The finiteness of G is needed for the definition of this map to make sense.

To check that ϕ is a morphism of G-representations, we compute for g ∈ G and f ∈ IndGH(V ) that

g · ϕ(f) =
∑
x∈G gx⊗ f(x−1) =

∑
x∈G x⊗ f(x−1g) =

∑
x∈G x⊗ (g · f)(x−1) = ϕ(g · f).

To see that ϕ is bijective, observe that for any f ∈ IndGH(V ) we have

ϕ(f) =
∑
x∈G x⊗ f(x−1)

=
∑
g∈XL

∑
h∈H gh⊗ f(h−1g−1)

=
∑
g∈XL

∑
h∈H g ⊗ ρ(h)f(h−1g−1) =

∑
g∈XL

∑
h∈H g ⊗ f(g−1) = |H|

∑
g∈XR

g−1 ⊗ f(g).

Since f ∈ IndGH(V ) has f(g) = 0 for all g ∈ XR only if f = 0, the map ϕ is injective.

Since any map XR → V extends to an element f ∈ IndGH(V ), it follows that ϕ is also surjective.

For our last result today, assume |G| <∞ and dim(V ) <∞.

Then the representation (ρ, V ) has a character, which we denote by χ : G→ K.

As IndGH(V ) is also finite-dimensional in this case, it too has a character.

Proposition. Let IndGH(χ) be the character of IndGH(V ) = IndGH(ρ, V ). Then for each z ∈ G we have

IndGH(χ)(z) =
∑
g∈XR

gzg−1∈H

χ(gzg−1) =
1

|H|
∑
g∈G

gzg−1∈H

χ(gzg−1),

where the second equality only holds when char(K) does not divide |H|.

Proof. Let B be a (finite) basis for V .

Consider G acting on K[G]⊗K[H] V which has basis {g−1 ⊗ v}(g,v)∈XR×B .

We want to calculate the coefficient ag,v ∈ K of g−1 ⊗ v in z(g−1 ⊗ v) = zg−1 ⊗ v for (g, v) ∈ XR ×B.

If gzg−1 /∈ H then zg−1 /∈ g−1H so ag,v = 0.

If gzg−1 ∈ H then zg−1⊗v = g−1(gzg−1)⊗v = g⊗ρ(gzg−1)v so ag,v is the coefficient of v in ρ(gzg−1)v.

Summing ag,v over v ∈ B gives 0 if gzg−1 /∈ H and χ(gzg−1) if gzg−1 ∈ H.

Summing this over g ∈ XR gives the first desired formula.

If char(K) does not divide |H|, then |H| is invertible in K and

χ(gzg−1) =
1

|H|
∑
h∈H

χ(hgzg−1h−1) =
1

|H|
∑
x∈Hg

χ(xzx−1)

whenever g ∈ XR has gzg−1 ∈ H. Summing this over g ∈ XR gives the second desired formula.
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