
MATH 5143 — Introduction to Lie algebras (Spring 2026) Lecture 1

1 Course details

We will cover most of Humphrey’s textbook Introduction to Lie algebras and representation theory.

Some other relevant textbooks are listed on the public course website:

https://www.math.hkust.edu.hk/~emarberg/teaching/2026/Math5143/

Grades will be based on (approximately) weekly homework assignments.

All homework assignments must be submitted in-person, in hand-written form.

But there will be no exams.

All lectures will be posted on the public course webpage in pdf format (without annotations).

The annotated slides presented in class, which contain the same content, will not be posted.

2 Motivation

This course is about Lie algebras and their representations.

Today will cover some basic definitions and important examples.

Very brief motivation: the most interesting groups in physics, geometry, etc., are Lie groups, which are
groups that are also manifolds in a way that is compatible with the group structure.

Let F be a field like R (real numbers), C (complex numbers), or Qp (p-adic numbers).

Fix a positive integer n.

Common examples of Lie groups:

• General linear groups: GLn(F) = invertible n× n matrices over F,

• Special linear groups: SLn(F) = invertible n× n matrices M over F with det(M) = 1.

• Orthogonal groups: On(F) = invertible n× n matrices M over F with

〈Mu,Mv〉 = 〈u, v〉 for all u, v ∈ Fn,

where 〈·, ·〉 is a symmetric non-degenerate bilinear form.

A typical choice of 〈·, ·〉 is the standard form with

〈u, v〉 = u>v

and in this case the form is preserved if and only if M−1 = M>.

• Symplectic groups: Spn(F) = invertible n× n matrices M over F with

〈Mu,Mv〉 = 〈u, v〉 for all u, v ∈ Fn,

where 〈·, ·〉 is a skew-symmetric non-degenerate bilinear form. Such forms exist only if n is even.

The most important features in the geometric and representation theory of Lie groups are controlled by
the tangent space at the identity element. This tangent space has more structure than just being a vector
space — namely, it is what we will call a Lie algebra.
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3 Constructive definition of a Lie algebra

What is a Lie algebra?

Let F be any field. Setting F = C is a convenient choice.

Let V be any vector space defined over F.

Write gl(V ) for the F-vector space of all linear maps V → V .

Remark. Suppose dimV = n <∞. Also define

gln(F) =
{
n× n matrices over F

}
.

Then gl(V ) and gln(F) are isomorphic as vector spaces, but not canonically.

We get an isomorphism for each choice of basis for V .

The isomorphism gl(V )
∼−→ gln(F) corresponding to a given basis v1, v2, . . . , vn is the map assigning

each linear operator X 7→

 a11 · · · a1n
...

. . .
...

an1 · · · ann

 (a square matrix)

where aij ∈ F are the coefficients with X(vj) =
∑n

i=1 aijvi.

When V = Fn is the space of n-row columns vectors, and v1, v2, . . . , vn is the standard basis, then the
isomorphism gl(Fn)

∼−→ gln(F) is the usual one that assigns to a linear map its standard matrix .

We consider gl(Fn) = gln(F) to be the same object, identified via this isomorphism.

Now given elements X,Y ∈ gl(V ) let [X,Y ] = XY − Y X.

Definition. A Lie algebra is subspace L ⊆ gl(V ) such that [X,Y ] ∈ L for all X,Y ∈ L.

The following are Lie algebras according to this definition in case when V = Fn.

• The general linear Lie algebra gln(F).

• dn(F)
def
= {diagonal matrices in gln(F)}.

• tn(F)
def
= {upper-triangular matrices in gln(F)}

• nn(F)
def
= {strictly upper-triangular matrices in gln(F)}.

We can multiply two elements of gl(V ) by composition.

Any subspace L ⊆ gl(V ) that is an algebra is also a Lie algebra.

An algebra means a subspace that contains the product of any two of its elements.

The examples above are all algebras, but not all Lie algebras have this property.
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4 Classical examples

Here some examples of Lie algebras L ⊆ gln(F) = gl(Fn) that are not algebras:

(A) sln(F)
def
= {: X ∈ gln(F) : trace(X) = 0}.

Recall that trace(X) = X11 +X22 + · · ·+Xnn and that trace(XY ) = trace(Y X). Hence

trace([X,Y ]) = trace(XY )− trace(Y X) = trace(XY ) = trace(XY ) = 0

so sln(F) is indeed a Lie algebra, though it is not an algebra.

We refer to sln(F) as the special linear Lie algebra.

(B) Suppose n = 2m+ 1 is odd. Let (·)> be the usual matrix transpose and set

on(F)
def
=


 0 A B
−A> M N
−B> P −M>

 : A,B ∈ Fm, M,N, P ∈ glm(F), N = −N>, P = −P>
 .

We call on(F) the odd orthogonal Lie algebra.

(C) Suppose n = 2m is even. Let

spn(F)
def
=

{[
M N
P −M>

]
: M,N,P ∈ glm(F), N = N>, P = P>

}
.

We call spn(F) the symplectic Lie algebra.

(D) Suppose n = 2m is even. Let

on(F)
def
=

{[
M N
P −M>

]
: M,N,P ∈ glm(F), N = −N>, P = −P>

}
.

We call spn(F) the even orthogonal Lie algebra.

These examples make up the classical Lie algebras of types A, B, C, and D.

It is a nontrivial exercise to check that there subspaces are in fact Lie algebras. At the end of this lecture,
we will see that each example is a special case of a general construction that takes care of this for us.

5 Properties of the Lie bracket

Let L ⊆ gl(V ) be a Lie algebra.

This is a subspace with [X,Y ] = XY − Y X ∈ L for all X,Y ∈ L.

The operation [·, ·] is called the Lie bracket .

Here are its key properties. Let a, b ∈ F and X,Y, Z ∈ L.

(1) The Lie bracket is bilinear in the sense that

[aX + bY, Z] = a[X,Z] + b[Y, Z] and [X, aY + bZ] = a[X,Y ] = b[X,Z].
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(2) The Lie bracket is alternating in the sense that

[X,X] = 0.

(3) The previous two properties imply that the Lie bracket is skew-symmetric in the sense

[X,Y ] = −[Y,X].

This follows since

0 = [X + Y,X + Y ] = [X,X + Y ] + [Y,X + Y ] = [X,X] + [X,Y ] + [Y,X] + [Y, Y ] = [X,Y ] + [Y,X].

(4) Let adX = [X, ·] be the linear map L→ L defined by adX(Y ) = [X,Y ]. Then the Jacobi identity

ad[X,Y ] = [adX , adY ]

holds when we set [adX , adY ] = adXadY − adY adX .

More generally, whenever f and g are objects that can be multiplied or composed in either order,
and [f, g] has not been given some other meaning, we define

[f, g] = fg − gf.

Proof of Jacobi identity. Both ad[X,Y ] and [adX , adY ] are maps L→ L.

To check that they are equal, we check that they have the same value at each Z ∈ L.

Specifically, we have

ad[X,Y ](Z) = [[X,Y ], Z] = [XY − Y X,Z] = XY Z − Y XZ − ZXY + ZY X.

On the other hand,

[adX , adY ](Z) = adXadY (Z)− adY adX(Z)

= adX(Y Z − ZY )− adY (XZ − ZX)

= XY Z −XZY − Y ZX + ZY X − Y XZ + Y ZX +XZY − ZXY.
= XY Z + ZY X − Y XZ − ZXY.

As desired, these two expressions are equal.

Since L ⊆ gl(V ) is a vector space, we can form another Lie algebra gl(L).

The Jacobi identity says that the operation ad : L→ gl(L) is a Lie algebra homomorphism.

However, for this claim to be meaningful we still need to define what a homomorphism is.

6 Abstract definition of a Lie algebra

Suppose L is any F-vector space with a map [·, ·] : L× L→ L, to be called the Lie bracket .

For each X ∈ L define adX ∈ gl(L) by adX(Y ) = [X,Y ].

For f, g ∈ gl(L) let [f, g] = fg − gf = f ◦ g − g ◦ f .

Remark. Notice that we are reusing the symbol [·, ·] to mean two different maps

L× L→ L and gl(L)× gl(L)→ gl(L).

This might be slightly confusing, but we can always use context to determine which definition applies.
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Definition. The vector space L is a Lie algebra with respect to [·, ·] if the following conditions hold:

(L1) the Lie bracket is bilinear,

(L2) the Lie bracket is alternating (meaning [X,X] = 0), and

(L3) the Lie bracket satisfies the Jacobi identity ad[X,Y ] = [adX , adY ].

Remark. The space L may be infinite-dimensional.

However, we will rarely consider this case, since the theory is much more involved.

Unless stated otherwise, all Lie algebras L in this course are assumed to have dimL <∞.

As in the previous section, axioms (L1) and (L2) imply that

[X,Y ] = −[Y,X]

for all X,Y ∈ L. This skew-symmetric property is equivalent to (L2) if and only if char(F) 6= 2.

The Jacbi identity (L3) can be restated in many ways. For example, it is equivalent to requiring

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X,Y, Z ∈ L.

Usually a given vector space has only one natural Lie algebra structure and so we reuse the symbol [·, ·]
to denote the Lie bracket for any Lie algebra. This is similar to how in group theory we write all group
products as concatenation rather than introducing different symbols for various binary operations

Definition. A Lie subalgebra of L is a subspace K ⊆ L with [X,Y ] ∈ K for all X,Y ∈ K.

Definition. A linear map φ : L→ K between Lie algebras (defined over the same field F) is a Lie algebra
morphism or Lie algebra homomorphism if

φ([X,Y ]) = [φ(X), φ(Y )] for all X,Y ∈ L.

A Lie algebra morphism is an isomorphism if it is a bijection.

7 Abstract examples

Let V be a finite-dimensional F-vector space.

Then the trace map trace : gl(V )→ F is well-defined and linear.

Given X ∈ gl(V ), the trace can be computed by choosing any basis v1, v2, . . . , vn for V .

If we define Xij ∈ F such that X(vj) =
∑n

i=1Xijvi then trace(X) = X11 +X22 + · · ·+Xnn.

This definition does not depend on the choice of basis for V .

Definition. The special linear Lie algebra of V is

sl(V ) = {X ∈ gl(V ) : trace(X) = 0}.

This subspace is a Lie subalgebra of gl(V ) by the same argument as in the gln(F) case earlier.

Now suppose B : V × V → V is a bilinear form.

If V = Fn then every such B has the formula B(x, y) = x>My for some n× n matrix M .
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Proposition. The subspace

LB
def
= {X ∈ gl(V ) : B(Xu, v) = −B(u,Xv) for all u, v ∈ V }

is a Lie subalgebra of gl(V ).

Proof. If X,Y ∈ LB then [X,Y ] ∈ LB since

B([X,Y ]u, v) = B(XY u, v)−B(Y Xuv, )

= −B(Y u,Xv) +B(Xu, Y v)

= B(u, Y Xv)−B(u,XY v) = −B(u, [X,Y ]v).

Assume V = Fn. Let In be the n × n identity matrix. Recall that we have a canonical way to identify
gl(Fn) = gln(F), namely, by representing each linear map Fn → Fn by its standard matrix.

Example. One can check that on(F) = LB if B is the bilinear form corresponding to the matrix

M =

 1 0 0
0 0 Im
0 Im 0

 when n = 2m+ 1 is odd or M =

[
0 Im

Im 0

]
when n = 2m is even.

Example. When n = 2m is even, we have spn(F) = LB if B is the bilinear form corresponding to

M =

[
0 Im

−Im 0

]
when n = 2m is even.
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