MATH 5143 — Introduction to Lie algebras (Spring 2026) Lecture 2

1 Lie algebras

Continuing from last time: suppose F is a field and L is an F-vector space with a map [,:] : L x L — L.
For X € L let adx = [X, ] be the map L — L defined by adx (Y) = [X,Y].
If f and g are objects we can multiply and subtract, and [f, g] is unspecified, then we define [f, g] = fg—gf.

Definition. The vector space L is a Lie algebra with respect to [-, -] if the following conditions hold:
(L1) the Lie bracket is bilinear,

(L2) the Lie bracket is alternating (meaning [X, X] = 0), and

(L3) the Lie bracket satisfies the Jacobi identity ad|x y] = adxady — adyadx = [adx,ady].

2 Algebras and derivations

Here are some more examples of Lie algebras.
Suppose A is an F-algebra, meaning an F-vector space with a bilinear multiplication map.

When the multiplication for A is associative, meaning that
a(be) = (ab)e for all a,b,c € A,
then the vector space gl(A) of all linear maps A — A is a Lie algebra for the Lie bracket
[X,Y]=XY -YX.
Checking the Jacobi identity requires associativity.

Let Der(A) C gl(A) be the subspace of linear maps ¢ : A — A such that
0(ab) = ad(b) + 6(a)b
for all a,b € A. The elements of Der(A) are called derivations.

Example. Suppose F = R and A = C*®(R) is the commutative algebra of infinitely differentiable
functions R — R. The product rule from calculus tells us that the usual derivative operator % € Der(A).

Example. The Lie bracket makes any Lie algebra L into a non-associative algebra.

The Jacobi identity is a substitute for associativity. It implies that adx € Der(L) for all X € L since

adx([Y, Z]) = adxady (Z) = ad[x,y|(Z) + adyadx(Z) = [adx (Y), Z] + [V, adx (Z)].

Proposition. The vector space Der(A) is a Lie subalgebra of gl(A).

The proof is left as an exercise.

3 Group theory and Lie theory

Many terms in group theory reappear in the study of Lie algebras with different (but parallel) meanings.
Suppose L is a Lie algebra and G is a group. Given X € L, and g € G, let

adx : Y — [X,Y] and Ad,:h+— ghg'.
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Then adx € gl(L) and Ad, € Aut(G) is a group automorphism. More strongly,

adx € Der(L) Cgl(L) and Ady € Inn(G) C Aut(G).

Normal subgroups versus ideals:

e A normal subgroup of G is a subgroup N C G with Ady(N) C N for all g € G.
e An ideal of L is a subspace I C L with adx () C I for all X € L.
Every ideal is automatically a Lie subalgebra.

Examples: 0 and L are always ideals of L. The Lie algebra of strictly upper-triangular matrices
n,(F) is an ideal in the Lie algebra of all upper-triangular matrices t, (F).

Centers:
e The center of a group G is the normal subgroup Z(G) = {h € G : Ady(h) = h for all g € G}.
e The center of a Lie algebra L is the ideal Z(L) = {A € L:adx(A) =0 for all X € L}.

Notice that Z(gl,(F)) is not the Lie algebra of diagonal matrices 0, (F) but is instead the 1-
dimensional Lie algebra of scalar matrices spanned by the identity matrix.

Quotients:

e The power set of a group G is a monoid with unit {1} and product S-T e {gh:g€ Sand h e T}.
This product is associative, but not every subset is invertible.
Every subgroup H C G is idempotent in this monoid in the sense that H - H = H.

For a normal subgroup N C G the set of left cosets G/N = {gN : g € G} is a submonoid of the
power set of G that actually forms a group, since for any g, h € G we have the product formula

(gN)(hN) = gh .w.N =gh-N-N = (gh)N.
=N
The unit of the quotient group G/N is the subgroup N itself.
e Given an ideal I C L the quotient space L/I = {X 4+ I : X € L} is the set of cosets of I in L.
This is a Lie algebra for the modified Lie bracket

X+ 1Y+ ¥ [X,Y]+T for X,Y € L.
This Lie bracket is well-defined (meaning its value depends only on the cosets X + T and Y + [
rather than the representatives X and Y') because I is an ideal.
Remark. Suppose I, J C L are both ideals of a Lie algebra.
(a) Then the vector space sum I + J is a Lie subalgebra, in which J is an ideal.
The quotients (I + J)/J = I/(I NJ) are isomorphic as Lie algebras.
(b) If I C J then J/I is an ideal of L/I and there is an isomorphism (L/I)/(J/I) = L/ J.

Kernels:
e The kernel of a group homomorphism ¢ : G — H is the subset ker(¢) = {g € G : ¢(g9) = 1}.
This subset is a normal subgroup, and if ¢ is surjective then G/ker(¢) = H.
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e The kernel of a Lie algebra homomorphism ¢ : L — K is the subspace ker(¢) = {X € L : ¢(X) = 0}.
This subspace is an ideal, and if ¢ is surjective then L/ker(¢) = K.

Derived subalgebras and subgroups:

e The derived subgroup of [G, G] is the subgroup generated by all commutators ghg~*h~! for g, h € G.
This means [G, G] is the intersection of all subgroups H C G containing all commutators ghg=th~!.
Instructive exercise: check that [G, G| is a normal subgroup.

e The derived Lie subalgebra [L, L] is the subspace of L spanned by all brackets [X,Y] for X,Y € L.
This subspace is an ideal as [X, a span of brackets] = another span of brackets.

Instructive exercise: check that [gl,,(F), gl,,(F)] = s, (F).

Abelian Lie algebras and groups:
e A group G is abelian if gh = hg for all g,h€e G & G=Z(G) < [G,G]=1.
e A Lie algebra L is abelian if [X,Y]=0forall XY e L < L=Z(L) & [L,L]=0.

Simple Lie algebras and groups:

e A group is simple if it is nontrivial with no nontrivial, proper normal subgroups.
All groups of prime order are simple, and these are all abelian.
e A Lie algebra is simple if it is non-abelian with no nonzero, proper ideals.
The analogy here is that abelian Lie algebras are like trivial groups (rather than abelian groups).
Notice that in an abelian Lie algebra every subspace is an ideal.
So the only abelian Lie algebras with no nonzero, proper ideals are 1-dimensional.

These are excluded from being simple to make some classification theorems easier to state.

4 Example: a simple Lie algebra

Recall that sly(F) = { [ Z _2 } ta,b,c€ ]F} is a Lie algebra with Lie bracket [X,Y] = XY - Y X.

One basis for this Lie algebra consists of the elements

0 1 0 0 1 0
p=lo o] F=[V 0] ma =]y ]

The Lie brackets in this basis are [E, E| = [F, F| = [H, H] = 0 along with
[E,F|=—|F,E]=H, [H,E) = —[E,H] =2E, and [H,F] = —[F,H] = —2F.

Notice that E, F', and H are eigenvectors for ady with respective eigenvalues 2, —2, and 0.

Thus ady is a diagonalizable linear map sly(F) — sly(F).

Lemma. Assume char(F) # 2 and I C sl5(F) is an ideal. If E€ T or F € I or H € I then I = sly(F).
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Proof. Suppose E € I. Then H = [—F, E] € I so also F = [-1F, H| € I since char(F) # 2.
It follow similarly that if F' € I then also H, F € I and if H € I then also E, F € I.
Hence if E € I or F € I or H € I then I = sl3(IF) since ideals are subspaces. O

Proposition. Assume char(F) # 2. Then sly(F) is simple.

Proof. Suppose I C sly(F) is a nonzero ideal.

Then there is an element 0 # g = aE + bF + cH € [ for some coefficients a, b, c € F. Observe that
[E,[E,g]] = [E,[bH —2cE]] = =2bE € I and [F,[F,g]] = [F,aH — 2cF] = —2aF € I.

If b # 0 then E € I as char(IF) # 2 so I = sly(F) by the lemma.

If a # 0 then F € I as char(F) # 2, so I = sl3(F) by the lemma.

If @ = b =0 then we must have ¢ # 0 but then H € I so again I = sly(F) by the lemma.

Thus any nonzero ideal I is equal to slo(F), so the non-abelian Lie algebra sls(FF) is simple. O

5 Normalizers and centralizers

Suppose L is a Lie algebra with a Lie subalgebra K.
Notice that if X,Y,Z € L then the Jacobi identity tells us that

ad[X7y] (Z) = aandy(Z) — adyadx(Z). (*)
The normalizer of K is the subspace Np(K) ={X € L :adx(K) C K}.
The centralizer of K is the subspace CL(K) ={X € L:adx(K) =0}.
Proposition. Both C(K) C N (K) are Lie subalgebras of L.

Proposition. The Lie subalgebras K and Cp,(K) are both ideals of Ny, (K).

Both propositions are consequences of (*). We leave checking the details as an exercise.
By definition, any subalgebra of L that contains K as an ideal is a subset of Ny, (K).
Thus Np,(K) is the largest Lie subalgebra of L that contains K as an ideal.

6 Representations of Lie algebras

Let L be a Lie algebra. A representation of L is a Lie algebra morphism
¢:L—gl(V)
for some vector space V' (defined over the same field as L). The vector space V can be infinite-dimensional.

The only abstract algebra we can do efficiently is matrix algebra, and knowing a representation of a Lie
algebra lets us convert calculations in the Lie algebra to matrix algebra.

This is one reason why studying representations of Lie algebras is fundamental.

The existence of at least one representation of L is implicit in the definition of a Lie algebra:
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Definition. The operation X +— adx is always a morphism L — gl(L) by the Jacobi identity.
This is called the adjoint representation of L.

We denote the adjoint representation by ad. This gives three ways of writing the same thing:

ad(X) = adx = [X,] € gl(L).

The image ad(L) of the adjoint representation is usually a proper Lie subalgebra of gl(L).
In fact, the Jacobi identity implies that ad(L) C Der(L).

The most useful representations ¢ : L — gl(V') are ones that are injective.

Such representations are sometimes called faithful. A faithful representation determines an isomorphism
from a Lie algebra to a subalgebra of a general linear Lie algebra.

Proposition. If Z(L) = 0 then ad is faithful so L is isomorphic to a Lie subalgebra of gl(L).
Proof. We have Z(L) = ker(ad) so L/Z(L) =2 ad(L). If Z(L) =0then L =2 L/Z(L) = ad(L) C gl(L). O

We always have Z(L) = 0 when L is simple, as Z(L) is an ideal and simple Lie algebras are not abelian.
Thus every finite-dimensional simple Lie algebra can be embedded in gl,,(F) for some n.
This previous result extends all finite-dimensional Lie algebras, but the proof in much more involved.

Theorem (Ado, 1935, for fields of characteristic zero; Iwasawa, 1948, for all fields). Every Lie algebra
L with dim(L) < oo is isomorphic to a Lie subalgebra of gl,,(F) for some positive integer n.
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