MATH 5143 — Introduction to Lie algebras (Spring 2026) Lecture 3

1 Solvable Lie algebras

Continue our setup from last time.

Let F be a field. When V' is an F-vector space let gl(V') be the vector space of linear maps V — V.
For any maps f,g € gl(V) let [f,g] = fg —gf.

Let L be a Lie algebra over F, meaning an F-vector space with an alternating, bilinear map

[, ]:LxL—1L
satisfying the Jacobi identity [[X,Y],Z] = [X, [V, Z]] - [V, [X, Z]] for all X, Y, Z € L.
Equivalently, this means that ad|x y] = [adx, ady] where we write adx = [X, ] € gl(L) for X € L.

For any subsets I, J C L let [I,J] =F-span{[X,Y]: X € T and Y € J}.
The derived subalgebra of L is [L, L]. This is a Lie subalgebra.

Some new notation: inductively define

LO=r W=, and L) =[LM LM] forn > 1.

Definition. A Lie algebra L is solvable if L™ =0 for some n > 0.

If L is solvable then so is every subalgebra L(").

Conversely, if any L™ is solvable then L is solvable.

Example. Recall that gl,,(F) is the Lie algebra nxn matrices over IF, with Lie bracket [X,Y] = XY -Y X.
Write t,,(F) C gl,,(F) for the Lie subalgebra of upper-triangular matrices. (Equality holds if n = 1.)
Also let n, (F) C t,(F) be the Lie subalgebra of strictly upper-triangular matrices. Then

[tn (F)v t, (F)} =y (IF)

Any product of at least n elements of n, (F) is zero: strictly upper-triangular matrices are nilpotent.

Therefore n,,(F) is solvable, since if L = n,(F) and m > 1 then the brackets spanning L(™ can be
expanded into linear combinations of terms which are each products of 2™ elements of n,,(F), which are
all zero is m is large enough. For example,

= ABCD — ABDC — DACD + BADC — CDAB + CDBA + DCAB — DCBA € L.

This implies that t,(F) is also solvable.
Recall that a Lie algebra morphism ¢ : L — K is a linear map with ¢([X,Y]) = [¢(X), ¢(Y)].

Proposition. If L is solvable, then all Lie subalgebras and all homomorphic images of L are solvable.

Proof. If K C L is a Lie subalgebra then K™ C L") so if L(™ =0 then K™ = 0.
If : L — K is a Lie algebra morphism then ¢(L)™ = ¢(L(™), so if L™ = 0 then ¢(L)(™ = 0. O
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Proposition. Suppose I C L is an ideal. Then L is solvable if and only if T and L/I are both solvable.

Proof. Assume L is solvable.

Then the Lie subalgebra I is solvable and L/I is a solvable as it is the image of the morphism L — L/I.

Assume instead that I and L/I are both solvable.
In this case L(™ C I for the value of n > 0 with (L/I)™ =0, and 1™ = 0 for some m > 0.
Then we have LM+ C [(m) = ( so L is solvable. O

Proposition. If I, J C L are both solvable ideals then the Lie subalgebra I + J is solvable.
Proof. In this case (I +J)/I = J/(IN.J) is solvable as the second quotient is a homomorphic image of J.
The result thus follows from the previous proposition, replacing L by I + J. O

Corollary. If dim(L) < oo then L has a unique maximal solvable ideal.

Proof. The zero ideal is solvable, so the set of solvable ideals in L is nonempty.
Since dim(L) < oo there must be at least one solvable ideal of L that is maximal under inclusion.
Suppose I and J are two such maximal solvable ideals.

Then I+ J is solvable and contains both I and J, so the maximality hypothesis implies I = I+J =J. [

For the rest of this section assume dim(L) < oo.
Let Rad(L) denote the unique maximal solvable ideal of L, to be called the radical of L.
Notice that L is solvable if and only if Rad(L) = L.

Definition. A finite-dimensional Lie algebra L is semisimple if Rad(L) = 0.

We have Rad(L) = 0 if and only if L has no nonzero solvable ideals.

A semisimple Lie algebra is in this sense as far away from solvable as possible.

The word “semisimple” usually is a synonym for “direct sum of simple objects.”
This will be the case for Lie algebras too.

We will prove later that L is semsimple if and only if L is a direct sum of simple Lie algebras.
Proposition. The quotient Lie algebra L/Rad(L) is always semisimple.

Proof. Each nonzero ideal in L/Rad(L) has the form I /Rad(L) for an ideal I C L which properly contains
Rad(L). Such an ideal is not solvable, so I/Rad(L) must not be solvable either (by earlier propsition). O

Proposition. If L is simple then L is semsimple and not solvable.
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Proof. Assume L is simple. Then L is not abelian so [L, L] # 0.
But [L, L] is an ideal of L, so we must have [L, L] = L.
Hence L(™) = L for all n so L is not solvable.

But this means that Rad(L) is a proper ideal, so we must have Rad(L) = 0. O

2 Nilpotent Lie algebras

Continue to let L be a Lie algebra. As a variant of our earlier notation, inductively define

L= =1 '=1W=[L L], and L"*'=[L,L"]=[L", L] for integers n > 1.

Definition. A Lie algebra L is nilpotent if L™ = 0 for some n > 0.

Notice that L™ C L™ for all n.
Therefore if L™ = 0 then L(™ = 0, so any nilpotent Lie algebra is solvable.

But not every solvable Lie algebra is nilpotent.

Example. If L = t,(F) is the Lie algebra of upper-triangular matrices then L™ = n,,(F) for all n > 1.
Thus t,(FF) is solvable but not nilpotent.

Proposition. If L is nilpotent, then all Lie subalgebras and homomorphic images of L are nilpotent.

Proof. If K C L is a Lie subalgebra then K™ C L", so if L™ = 0 then K" = 0.
If ¢ : L — K is a Lie algebra morphism then ¢(L)™ = ¢(L™, so if L™ = 0 then ¢(L)"™ = 0. O

Recall that the center of L is the ideal Z(L) = {X € L :adx = 0}.
Proposition. If L/Z(L) is nilpotent then L is nilpotent.

Proof. In this case we must have L™ C Z(L) for some n > 0 and then L"*! C [L, Z(L)] = 0. O

Proposition. If L is nilpotent and L # 0 then Z(L) # 0.

Proof. In this case if L™ # 0 but L™ =0 then 0 # L™ C Z(L). O

Proposition. A Lie algebra L is nilpotent if and only if for some sufficiently large n > 0 we have
ady,adx, ---adx, =0¢€ gl(L) forall X1, Xo,...,X, € L. (*)
Proof. Observe that L™ is spanned by elements of the form adx,adx, - --adx, (V). O

An element X € L is ad-nilpotent if adx is a nilpotent linear map, meaning (adx)™ = 0 for some n > 0.

Taking X1 = Xo = -+ = X,, in (*) implies that:

Corollary. If L is nilpotent then all of its elements are ad-nilpotent.
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It is not obvious that if all elements of L are ad-nilpotent then the stronger condition (*) holds, which
would imply that L is nilpotent. In the next section we will see that this does hold if dim(L) < oco.

3 Engel’s theorem

Let V' be any F-vector space.
Lemma. If X € gl(V) is nilpotent (meaning X™ = 0 for some n > 0) then ady € gl(gl(V)) is nilpotent.

Proof. This lemma holds even if V' is infinite-dimensional.

Given X € gl(V), define Ax and px to be the linear maps gl(V') — gl(V) with the formulas
Ax(Y)=XY and px(Y)=YX.

Because gl(V) is an associative algebra, Ax and px commute with each other.
When X is nilpotent, the maps Ax and px are both nilpotent.
But adx = A\, — px and any finite linear combination of nilpotent linear maps is nilpotent.

In particular, if n > 0 is large enough that (Ax)™ = (px)™ = 0 then

2n 2,
(adX)Qn _ ()\X _ pX)2n — Z ( )(_1)2n—k<)\x)k(px)2n—k = 0.

n
k=0

since either k > n or 2n — k > n. O

Now assume dim(V) < oo and L C gl(V) is a Lie subalgebra.

By Ado’s theorem, every finite-dimensional Lie algebra arises in this way.

Because we are explicitly embedding L inside gl(V'), we can multiply two elements of L, although the
product XY for X,Y € L is not guaranteed to belong to L (we only know that XY —Y X € L).

This means we can form X™ € gl(V) for any X € L and n > 0.
(This would not make sense for an abstract Lie algebra that only has a Lie bracket.)

We say that X € L is nilpotent if X™ = 0 for some n > 0.

Theorem. Suppose dim(V) < oo and L C gl(V) is a Lie subalgebra.
If every element of L is nilpotent, then there exists a vector 0 # v € V with Xv =0 for all X € L.

Proof. Any nilpotent linear map X € gl(V') has an eigenvector with eigenvalue zero.

If dim(L) < 1 then we can just take v € V' to be any 0-eigenvector of any 0 # X € L.

Assume dim(L) > 1 and let K C L be a maximal proper subalgebra. By induction on dimension
(replacing L and V' by ad(K) and L/K) some X € L has X ¢ K and [Y,X] € K forall Y € K.

This means that K C N (K) because X € Ni(K) but X ¢ K.
Then the maximality of K implies that L = N (K) so K is actually an ideal of L.
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Choose Z € L with Z ¢ K. Since K is an ideal, the direct sum K @FZ is a Lie subalgebra of L properly
containing K, so by maximality we must have L = K ® FZ and dim(L) = dim(K) + 1.

By induction on dim(L), the subspace W = {v € V:Yv =0 for all Y € K} is nonzero.
Every X € L restricts to a nilpotent linear map W — W since if w € W and Y € K then
YXw=XYw—[X,Y]w=0.
~
=0 €K
In particular, Z restricts to a nilpotent linear map W — W, so it has a 0-eigenvector 0 # v € W.

This vector has Yv =0 for all Y € K, so it also satisfies Xv =0 forall X e L=K ®FZ. O

Corollary. If L is nilpotent with dim(L) < oo and K C L is an ideal then Z(L) N K # 0.

Proof. Apply the previous theorem with V and L replaced by K and ad(L) to get an element 0 # X € K
with ady (X) = [V, X] =0 for all Y € L. This is a nonzero element of Z(L) N K. O

Theorem (Engel’s theorem). Suppose 0 < dimV < oo and L C gl(V) is a Lie subalgebra.

Then L is nilpotent if and only if every element X € L is ad-nilpotent.

Proof. We already know that if L is nilpotent then every element X € L is ad-nilpotent
Assume conversely that every element X € L is ad-nilpotent.

Then ad(L) C gl(L) satisfies the conditions of the previous theorem.

Hence there exists 0 # X € L with ady (X) =[Y,X]|=0forall Y € L.
This means that Z(L) # 0, so the quotient Lie algebra L/Z(L) has smaller dimension than L.
The elements of L/Z(L) are still all ad-nilpotent, so by induction L/Z (L) is nilpotent.

Hence by the propositions above it follows that L is nilpotent. O
Corollary. Suppose dimV =n < oo and L C gl(V) is a Lie subalgebra whose elements are all nilpotent.
Then there is a basis of V relative to which the matrices of all elements of L are strictly upper-triangular.

Proof. 1t suffices to show that there is an increasing chain of vector spaces
0=V CViCWh¢ - CV=V

such that XV; CV,_; for all  and X € L.

Then the desired basis is obtained by choosing an element v; € V; \ V;_; for each i =1,2,3,...,n.

We can construct such a chain by setting V; = Fv where 0 #2 v € V has Xv =0 for all X € L.
Then apply induction to the image of L in gl(V/V7). O

Corollary. If L is nilpotent with dim(L) = n < oo then ad(L) is isomorphic to a Lie subalgebra of n,, (F).

Proof. Apply the previous corollary with V and L replaced by L and ad(L). O
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