
MATH 5143 — Introduction to Lie algebras (Spring 2026) Lecture 3

1 Solvable Lie algebras

Continue our setup from last time.

Let F be a field. When V is an F-vector space let gl(V ) be the vector space of linear maps V → V .

For any maps f, g ∈ gl(V ) let [f, g] = fg − gf .

Let L be a Lie algebra over F, meaning an F-vector space with an alternating, bilinear map

[·, ·] : L× L→ L

satisfying the Jacobi identity [[X,Y ], Z] = [X, [Y, Z]]− [Y, [X,Z]] for all X,Y, Z ∈ L.

Equivalently, this means that ad[X,Y ] = [adX , adY ] where we write adX = [X, ·] ∈ gl(L) for X ∈ L.

For any subsets I, J ⊆ L let [I, J ] = F-span{[X,Y ] : X ∈ I and Y ∈ J}.

The derived subalgebra of L is [L,L]. This is a Lie subalgebra.

Some new notation: inductively define

L(0) = L, L(1) = [L,L], and L(n+1) = [L(n), L(n)] for n ≥ 1.

Definition. A Lie algebra L is solvable if L(n) = 0 for some n ≥ 0.

If L is solvable then so is every subalgebra L(n).

Conversely, if any L(n) is solvable then L is solvable.

Example. Recall that gln(F) is the Lie algebra n×nmatrices over F, with Lie bracket [X,Y ] = XY −Y X.

Write tn(F) ⊆ gln(F) for the Lie subalgebra of upper-triangular matrices. (Equality holds if n = 1.)

Also let nn(F) ( tn(F) be the Lie subalgebra of strictly upper-triangular matrices. Then

[tn(F), tn(F)] = nn(F).

Any product of at least n elements of nn(F) is zero: strictly upper-triangular matrices are nilpotent .

Therefore nn(F) is solvable, since if L = nn(F) and m ≥ 1 then the brackets spanning L(m) can be
expanded into linear combinations of terms which are each products of 2m elements of nn(F), which are
all zero is m is large enough. For example,

[[A,B], [C,D]] = [AB −BA,CD −DC]

= ABCD −ABDC −DACD +BADC − CDAB + CDBA+DCAB −DCBA ∈ L(2).

This implies that tn(F) is also solvable.

Recall that a Lie algebra morphism φ : L→ K is a linear map with φ([X,Y ]) = [φ(X), φ(Y )].

Proposition. If L is solvable, then all Lie subalgebras and all homomorphic images of L are solvable.

Proof. If K ⊆ L is a Lie subalgebra then K(n) ⊆ L(n), so if L(n) = 0 then K(n) = 0.

If φ : L→ K is a Lie algebra morphism then φ(L)(n) = φ(L(n)), so if L(n) = 0 then φ(L)(n) = 0.
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Proposition. Suppose I ⊆ L is an ideal. Then L is solvable if and only if I and L/I are both solvable.

Proof. Assume L is solvable.

Then the Lie subalgebra I is solvable and L/I is a solvable as it is the image of the morphism L→ L/I.

Assume instead that I and L/I are both solvable.

In this case L(n) ⊆ I for the value of n� 0 with (L/I)(n) = 0, and I(m) = 0 for some m� 0.

Then we have L(m+n) ⊆ I(m) = 0 so L is solvable.

Proposition. If I, J ⊆ L are both solvable ideals then the Lie subalgebra I + J is solvable.

Proof. In this case (I+J)/I ∼= J/(I ∩J) is solvable as the second quotient is a homomorphic image of J .

The result thus follows from the previous proposition, replacing L by I + J .

Corollary. If dim(L) <∞ then L has a unique maximal solvable ideal.

Proof. The zero ideal is solvable, so the set of solvable ideals in L is nonempty.

Since dim(L) <∞ there must be at least one solvable ideal of L that is maximal under inclusion.

Suppose I and J are two such maximal solvable ideals.

Then I+J is solvable and contains both I and J , so the maximality hypothesis implies I = I+J = J .

For the rest of this section assume dim(L) <∞.

Let Rad(L) denote the unique maximal solvable ideal of L, to be called the radical of L.

Notice that L is solvable if and only if Rad(L) = L.

Definition. A finite-dimensional Lie algebra L is semisimple if Rad(L) = 0.

We have Rad(L) = 0 if and only if L has no nonzero solvable ideals.

A semisimple Lie algebra is in this sense as far away from solvable as possible.

The word “semisimple” usually is a synonym for “direct sum of simple objects.”

This will be the case for Lie algebras too.

We will prove later that L is semsimple if and only if L is a direct sum of simple Lie algebras.

Proposition. The quotient Lie algebra L/Rad(L) is always semisimple.

Proof. Each nonzero ideal in L/Rad(L) has the form I/Rad(L) for an ideal I ⊆ L which properly contains
Rad(L). Such an ideal is not solvable, so I/Rad(L) must not be solvable either (by earlier propsition).

Proposition. If L is simple then L is semsimple and not solvable.
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Proof. Assume L is simple. Then L is not abelian so [L,L] 6= 0.

But [L,L] is an ideal of L, so we must have [L,L] = L.

Hence L(n) = L for all n so L is not solvable.

But this means that Rad(L) is a proper ideal, so we must have Rad(L) = 0.

2 Nilpotent Lie algebras

Continue to let L be a Lie algebra. As a variant of our earlier notation, inductively define

L0 = L(0) = L, L1 = L(1) = [L,L], and Ln+1 = [L,Ln] = [Ln, L] for integers n ≥ 1.

Definition. A Lie algebra L is nilpotent if Ln = 0 for some n ≥ 0.

Notice that L(n) ⊆ Ln for all n.

Therefore if Ln = 0 then L(n) = 0, so any nilpotent Lie algebra is solvable.

But not every solvable Lie algebra is nilpotent.

Example. If L = tn(F) is the Lie algebra of upper-triangular matrices then Ln = nn(F) for all n ≥ 1.

Thus tn(F) is solvable but not nilpotent.

Proposition. If L is nilpotent, then all Lie subalgebras and homomorphic images of L are nilpotent.

Proof. If K ⊆ L is a Lie subalgebra then Kn ⊆ Ln, so if Ln = 0 then Kn = 0.

If φ : L→ K is a Lie algebra morphism then φ(L)n = φ(Ln, so if Ln = 0 then φ(L)n = 0.

Recall that the center of L is the ideal Z(L) = {X ∈ L : adX = 0}.

Proposition. If L/Z(L) is nilpotent then L is nilpotent.

Proof. In this case we must have Ln ⊆ Z(L) for some n� 0 and then Ln+1 ⊆ [L,Z(L)] = 0.

Proposition. If L is nilpotent and L 6= 0 then Z(L) 6= 0.

Proof. In this case if Ln 6= 0 but Ln+1 = 0 then 0 6= Ln ⊆ Z(L).

Proposition. A Lie algebra L is nilpotent if and only if for some sufficiently large n� 0 we have

adX1
adX2

· · · adXn
= 0 ∈ gl(L) for all X1, X2, . . . , Xn ∈ L. (*)

Proof. Observe that Ln is spanned by elements of the form adX1adX2 · · · adXn(Y ).

An element X ∈ L is ad-nilpotent if adX is a nilpotent linear map, meaning (adX)n = 0 for some n ≥ 0.

Taking X1 = X2 = · · · = Xn in (*) implies that:

Corollary. If L is nilpotent then all of its elements are ad-nilpotent.
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It is not obvious that if all elements of L are ad-nilpotent then the stronger condition (*) holds, which
would imply that L is nilpotent. In the next section we will see that this does hold if dim(L) <∞.

3 Engel’s theorem

Let V be any F-vector space.

Lemma. If X ∈ gl(V ) is nilpotent (meaning Xn = 0 for some n� 0) then adX ∈ gl(gl(V )) is nilpotent.

Proof. This lemma holds even if V is infinite-dimensional.

Given X ∈ gl(V ), define λX and ρX to be the linear maps gl(V )→ gl(V ) with the formulas

λX(Y ) = XY and ρX(Y ) = Y X.

Because gl(V ) is an associative algebra, λX and ρX commute with each other.

When X is nilpotent, the maps λX and ρX are both nilpotent.

But adX = λx − ρX and any finite linear combination of nilpotent linear maps is nilpotent.

In particular, if n� 0 is large enough that (λX)n = (ρX)n = 0 then

(adX)2n = (λX − ρX)2n =

2n∑
k=0

(
2n

n

)
(−1)2n−k(λX)k(ρX)2n−k = 0.

since either k ≥ n or 2n− k ≥ n.

Now assume dim(V ) <∞ and L ⊆ gl(V ) is a Lie subalgebra.

By Ado’s theorem, every finite-dimensional Lie algebra arises in this way.

Because we are explicitly embedding L inside gl(V ), we can multiply two elements of L, although the
product XY for X,Y ∈ L is not guaranteed to belong to L (we only know that XY − Y X ∈ L).

This means we can form Xn ∈ gl(V ) for any X ∈ L and n ≥ 0.

(This would not make sense for an abstract Lie algebra that only has a Lie bracket.)

We say that X ∈ L is nilpotent if Xn = 0 for some n� 0.

Theorem. Suppose dim(V ) <∞ and L ⊆ gl(V ) is a Lie subalgebra.

If every element of L is nilpotent, then there exists a vector 0 6= v ∈ V with Xv = 0 for all X ∈ L.

Proof. Any nilpotent linear map X ∈ gl(V ) has an eigenvector with eigenvalue zero.

If dim(L) ≤ 1 then we can just take v ∈ V to be any 0-eigenvector of any 0 6= X ∈ L.

Assume dim(L) > 1 and let K ( L be a maximal proper subalgebra. By induction on dimension
(replacing L and V by ad(K) and L/K) some X ∈ L has X /∈ K and [Y,X] ∈ K for all Y ∈ K.

This means that K ( NL(K) because X ∈ NL(K) but X /∈ K.

Then the maximality of K implies that L = NL(K) so K is actually an ideal of L.
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Choose Z ∈ L with Z /∈ K. Since K is an ideal, the direct sum K ⊕FZ is a Lie subalgebra of L properly
containing K, so by maximality we must have L = K ⊕ FZ and dim(L) = dim(K) + 1.

By induction on dim(L), the subspace W = {v ∈ V : Y v = 0 for all Y ∈ K} is nonzero.

Every X ∈ L restricts to a nilpotent linear map W →W since if w ∈W and Y ∈ K then

Y Xw = X Y w︸︷︷︸
=0

− [X,Y ]︸ ︷︷ ︸
∈K

w = 0.

In particular, Z restricts to a nilpotent linear map W →W , so it has a 0-eigenvector 0 6= v ∈W .

This vector has Y v = 0 for all Y ∈ K, so it also satisfies Xv = 0 for all X ∈ L = K ⊕ FZ.

Corollary. If L is nilpotent with dim(L) <∞ and K ⊆ L is an ideal then Z(L) ∩K 6= 0.

Proof. Apply the previous theorem with V and L replaced by K and ad(L) to get an element 0 6= X ∈ K
with adY (X) = [Y,X] = 0 for all Y ∈ L. This is a nonzero element of Z(L) ∩K.

Theorem (Engel’s theorem). Suppose 0 < dimV <∞ and L ⊆ gl(V ) is a Lie subalgebra.

Then L is nilpotent if and only if every element X ∈ L is ad-nilpotent.

Proof. We already know that if L is nilpotent then every element X ∈ L is ad-nilpotent

Assume conversely that every element X ∈ L is ad-nilpotent.

Then ad(L) ⊆ gl(L) satisfies the conditions of the previous theorem.

Hence there exists 0 6= X ∈ L with adY (X) = [Y,X] = 0 for all Y ∈ L.

This means that Z(L) 6= 0, so the quotient Lie algebra L/Z(L) has smaller dimension than L.

The elements of L/Z(L) are still all ad-nilpotent, so by induction L/Z(L) is nilpotent.

Hence by the propositions above it follows that L is nilpotent.

Corollary. Suppose dimV = n <∞ and L ⊆ gl(V ) is a Lie subalgebra whose elements are all nilpotent.

Then there is a basis of V relative to which the matrices of all elements of L are strictly upper-triangular.

Proof. It suffices to show that there is an increasing chain of vector spaces

0 = V0 ( V1 ( V2 ( · · · ( Vn = V

such that XVi ⊆ Vi−1 for all i and X ∈ L.

Then the desired basis is obtained by choosing an element vi ∈ Vi \ Vi−1 for each i = 1, 2, 3, . . . , n.

We can construct such a chain by setting V1 = Fv where 0 6= v ∈ V has Xv = 0 for all X ∈ L.

Then apply induction to the image of L in gl(V/V1).

Corollary. If L is nilpotent with dim(L) = n <∞ then ad(L) is isomorphic to a Lie subalgebra of nn(F).

Proof. Apply the previous corollary with V and L replaced by L and ad(L).
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