

1 Engel's theorem

We briefly review the main items from the last lecture.

Let L be a Lie algebra over a field \mathbb{F} .

If $I, J \subseteq L$ then define $[I, J] = \mathbb{F}\text{-span}\{[X, Y] : X \in I \text{ and } Y \in J\}$.

Some definitions from last time:

- L is *solvable* if $L^{(n)} = 0$ for some $n \gg 0$ where $L^{(0)} = L$ and $L^{(n+1)} = [L^{(n)}, L^{(n)}]$.
- L is *nilpotent* if $L^n = 0$ for some $n \gg 0$ where $L^0 = L$ and $L^{n+1} = [L, L^n] = [L^n, L]$.
- L is *semisimple* if its unique maximal solvable ideal $\text{Rad}(L)$ is zero.

We will only discuss semisimple Lie algebras that are finite-dimensional.

Our proof of the existence of the unique maximal solvable ideal $\text{Rad}(L)$ required $\dim(L) < \infty$.

A linear map $f : V \rightarrow V$ is *nilpotent* if $f^n = 0$ for some $n \gg 0$.

An element $X \in L$ is *ad-nilpotent* if the linear map $\text{ad}_X = [X, \cdot] : L \rightarrow L$ is nilpotent.

Easy-to-prove fact: if L is a nilpotent Lie algebra then every $X \in L$ is *ad*-nilpotent.

Harder-to-prove converse:

Theorem (Engel's theorem). If $\dim(L) < \infty$ and every $X \in L$ is *ad*-nilpotent then L is nilpotent.

One more result from last time, proved on the way to Engel's theorem.

Suppose V is a finite-dimensional \mathbb{F} -vector space and $L \subseteq \mathfrak{gl}(V)$ is a Lie subalgebra.

Recall that if v_1, v_2, \dots, v_n is a basis for V and $X \in \mathfrak{gl}(V)$ then the corresponding matrix of X is the square array $[X_{ij}]_{1 \leq i, j \leq n}$ where $X_{ij} \in \mathbb{F}$ is such that $Xv_j = \sum_{i=1}^n X_{ij}v_i$.

Theorem. If all elements of L are nilpotent linear maps $V \rightarrow V$ then there exists a basis of V relative to which the matrices of all elements of L are strictly upper-triangular.

2 Lie's theorem

We now assume \mathbb{F} is an algebraically closed field of characteristic zero (like the complex numbers \mathbb{C}).

We also assume that L is a Lie algebra over \mathbb{F} of finite dimension.

Theorem. Assume L is a solvable Lie subalgebra of $\mathfrak{gl}(V)$ for some vector space V with $0 < \dim(V) < \infty$.

Then there exists a nonzero vector $0 \neq v \in V$ that is an eigenvector for every $X \in L$, meaning that

$$Xv = \lambda(X)v \quad \text{for all } X \in L$$

for some linear map $\lambda : X \rightarrow \mathbb{F}$.

Proof. One can prove this result by the following steps, similar to the proof of the previous theorem:

- (0) Since \mathbb{F} is algebraically closed, any given $X \in L$ has an eigenvector in V .

Hence the theorem holds if $\dim(L) \leq 1$. Assume $\dim(L) > 1$.

- (1) Find an ideal $K \subseteq L$ with $\dim(L) = \dim(K) + 1$.

This can be done by letting K be the preimage in L of any codimension one subspace of $L/[L, L]$.

This works since $L/[L, L]$ is nonzero (as L is solvable) and abelian (by the definition of $[L, L]$).

- (2) By induction K has at least one common eigenvector in V , say with eigenvalue function $\lambda : K \rightarrow \mathbb{F}$.

- (3) Let $W = \{v \in V : Yv = \lambda(Y)v \text{ for all } Y \in K\}$ be the common λ -eigenspace for K in V .

Then we can check that L stabilizes this nonzero subspace. This is the hard part of the argument.

- (4) Finally choose any $Z \in L$ with $Z \notin K$. Step (3) shows that Z restricts to a linear map $W \rightarrow W$.

Since \mathbb{F} is algebraically closed, Z has an eigenvector $v \in W$.

Since $\dim(L) = \dim(K) + 1$ we have $L = K \oplus \mathbb{F}Z$ and v is a common eigenvector for all of L .

The eigenvalue map $L \rightarrow \mathbb{F}$ is the linear extension of $\lambda : K \rightarrow \mathbb{F}$ sending Z to its eigenvalue for v .

Apart from some from minor details (see Humphrey's textbook) only step (3) requires more explanation. This is where we use the $\text{char}(\mathbb{F}) = 0$ hypothesis.

We need to show that if $X \in L$ and $w \in W$ then $Xw \in W$, meaning that $YXw = \lambda(Y)Xw$ for all $Y \in K$.

By the Jacobi identity we know that

$$YXw = XYw - [X, Y]w = \lambda(Y)Xw - \lambda([X, Y])w.$$

So it is enough to check that $\lambda([X, Y]) = 0$ for all $Y \in K$.

Proof of this claim. Let $n > 0$ be minimal such that $w, Xw, X^2w, \dots, X^n w$ are linearly dependent.

Define $W_i = \mathbb{F}\text{-span}\{w, Xw, X^2w, \dots, X^{i-1}w\}$. Then $W_0 = 0$ and $\dim(W_i) = \min\{i, n\}$.

We argue that $YX^i w \in \lambda(Y)X^i w + W_i$ for all $Y \in K$. This is clear if $i = 0$ and if $i > 0$ then

$$YX^i w = YXX^{i-1} w = X(YX^{i-1} w) - [X, Y]X^{i-1} w.$$

This expression is in $\lambda(Y)X^i w + W_i$ when $Y \in K$, since then $[X, Y] \in K$ so by induction

$$YX^{i-1} w \in \lambda(Y)X^{i-1} w + W_{i-1} \quad \text{and} \quad [X, Y]X^{i-1} w \in \lambda([X, Y])X^{i-1} w + W_{i-1} \subseteq W_i.$$

Thus, relative to the basis $w, Xw, X^2w, \dots, X^{n-1}w$ each $Y \in K$ operates on W_n as an upper- Δ matrix

$$\begin{bmatrix} \lambda(Y) & * & & \\ & \ddots & & \\ 0 & & \lambda(Y) & \end{bmatrix}.$$

Therefore if $Y \in K$ then $\text{trace}(Y|_{W_n}) = n\lambda(Y)$ and also $\text{trace}([X, Y]|_{W_n}) = n\lambda([X, Y])$ as $[X, Y] \in K$.

The notation $f|_{W_n}$ here means the linear map $W_n \rightarrow W_n$ obtained by restricting f .

But X and $Y \in K$ both preserve W_n so $\text{trace}([X, Y]|_{W_n}) = \text{trace}(X|_{W_n}Y|_{W_n}) - \text{trace}(Y|_{W_n}X|_{W_n}) = 0$.

Thus $n\lambda([X, Y]) = 0$ so since $\text{char}(\mathbb{F}) = 0$ we conclude that $\lambda([X, Y]) = 0$. ■

Having checked this claim, we conclude that step (3) and the rest of the argument work as expected. □

Theorem (Lie's theorem). Suppose $L \subseteq \mathfrak{gl}(V)$ is a solvable Lie subalgebra where $\dim(V) = n < \infty$. Then there is some basis of V relative to which the matrices of all elements of L are upper-triangular.

Proof. Choose $0 \neq v_1 \in V$ with $Xv_1 = \lambda(X)v_1$ for all $X \in L$ for some linear map $\lambda : L \rightarrow \mathbb{F}$.

Set $V_1 = \mathbb{F}v_1$ and consider the quotient space V/V_1 .

Apply the theorem inductively to obtain a basis $v_2 + V_1, v_3 + V_1, \dots, v_n + V_1$ for V/V_1 where each $v_i \in V$.

Then the desired basis for V is then $v_1, v_2, v_3, \dots, v_n$. \square

Corollary. Suppose L is a solvable Lie algebra with $\dim(L) = n < \infty$.

Then there exists a chain of ideals $0 = L_0 \subseteq L_1 \subseteq L_2 \subseteq \dots \subsetneq L_n = L$ with $\dim(L_i) = i$.

Proof. The Lie algebra $\text{ad}(L) \subseteq \mathfrak{gl}(L)$ is a homomorphic image of L so is solvable.

Apply Lie's theorem to this Lie algebra with $V = L$.

This gives a basis $v_1, v_2, \dots, v_n \in L$ such that $\text{ad}_X(v_i) \in \mathbb{F}\text{-span}\{v_1, v_2, \dots, v_i\}$ for all $X \in L$.

The subspaces $L_i = \mathbb{F}\text{-span}\{v_1, v_2, \dots, v_i\}$ are therefore ideals, and they form the desired chain. \square

We can now generalize the fact that $\mathfrak{t}_n(\mathbb{F})$ is solvable and $\mathfrak{n}_n(\mathbb{F}) = [\mathfrak{t}_n(\mathbb{F}), \mathfrak{t}_n(\mathbb{F})]$ is nilpotent.

Corollary. Suppose L is a solvable Lie algebra of finite dimension. Then $[L, L]$ is nilpotent.

Proof. Choose a basis of L such that the matrices of $\text{ad}_X \in \mathfrak{gl}(L)$ are all upper-triangular.

Then the matrix of $\text{ad}_{[X,Y]} = [\text{ad}_X, \text{ad}_Y]$ is always strictly upper-triangular.

Hence ad_Z is nilpotent for all $Z \in [L, L]$, so Engel's theorem implies that $[L, L]$ is nilpotent. \square

3 Remarks

Under the hypotheses that

- \mathbb{F} is an algebraically closed field with $\text{char}(\mathbb{F}) = 0$, and
- $L \subseteq \mathfrak{gl}(V)$ for an \mathbb{F} -vector space V with $\dim(V) = n < \infty$,

we have shown the following properties:

(1) If L is solvable that there exists a basis of V that makes all elements of L upper-triangular.

Equivalently, if L is solvable then there is an injective morphism $\iota : L \rightarrow \mathfrak{t}_n(\mathbb{F})$.

(2) If L is nilpotent, then L is also solvable.

But in this case L does not have to be strictly upper-triangular in the basis from (1).

In other words, we might have $\iota(L) \not\subseteq \mathfrak{n}_n(\mathbb{F})$.

Example: take $V = \mathbb{F}^n$ and let $L = \mathfrak{d}_n(\mathbb{F})$ be the abelian Lie algebra of diagonal matrices.

(3) The vector space V must have a basis that makes all elements of L strictly upper-triangular (meaning that there is an injective morphism $L \rightarrow \mathfrak{n}_n(\mathbb{F})$) when all elements of L are nilpotent.

However, L can be a nilpotent Lie algebra without having this property.

Example: again let $V = \mathbb{F}^n$ and $L = \mathfrak{d}_n(\mathbb{F})$.

4 Jordan decomposition

In this section we do not require $\text{char}(\mathbb{F}) = 0$ but still assume \mathbb{F} is algebraically closed.

Let V be a finite-dimensional \mathbb{F} -vector space.

We say that $X \in \mathfrak{gl}(V)$ is *semisimple* if X is *diagonalizable*, meaning V has a basis of eigenvectors for X .

Some standard properties from linear algebra (which you may check as exercises):

- (a) If $X, Y \in \mathfrak{gl}(V)$ are semisimple with $XY = YX$ then $aX + bY$ is semisimple for all $a, b \in \mathbb{F}$.
- (b) If $X \in \mathfrak{gl}(V)$ is semisimple and X preserves a subspace $W \subseteq V$ then $X|_W \in \mathfrak{gl}(W)$ is semisimple.

We now quote some less obvious, but still standard results linear algebra.

We assume these facts as background and will not prove them ourselves.

Recall that $X \in \mathfrak{gl}(V)$ is *nilpotent* if $X^n = 0$ for some $n \gg 0$.

Proposition. For each $X \in \mathfrak{gl}(V)$, there are unique elements $X_{\text{ss}}, X_{\text{nil}} \in \mathfrak{gl}(V)$ such that

$$X_{\text{ss}} \text{ is semisimple, } X_{\text{nil}} \text{ is nilpotent, } X_{\text{ss}}X_{\text{nil}} = X_{\text{nil}}X_{\text{ss}}, \text{ and } X = X_{\text{ss}} + X_{\text{nil}}.$$

The boxed formula is called the *Jordan decomposition* (or *Jordan–Chevalley decomposition*) of X .

Proof idea: if $V = \mathbb{F}^n$ and the Jordan canonical form of the matrix of X has blocks

$$\begin{bmatrix} \lambda & 1 & & 0 \\ & \lambda & 1 & \\ & & \ddots & \\ 0 & & \ddots & 1 \\ & & & \lambda \end{bmatrix}$$

then the Jordan canonical forms of X_{ss} and X_{nil} are respectively obtained by replacing these blocks by

$$\begin{bmatrix} \lambda & 0 & & 0 \\ & \lambda & 0 & \\ & & \ddots & \\ 0 & & \ddots & 0 \\ & & & \lambda \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0 & 1 & & 0 \\ 0 & 0 & 1 & \\ 0 & & \ddots & \\ 0 & & \ddots & 1 \\ & & & 0 \end{bmatrix}.$$

Proposition. Let $X \in \mathfrak{gl}(V)$. There are polynomials $p(x), q(x) \in x\mathbb{F}[x]$ with $p(0) = q(0) = 0$ such that

$$X_{\text{ss}} = p(X) \quad \text{and} \quad X_{\text{nil}} = q(X).$$

Consequently, the operators X_{ss} and X_{nil} commute with any $Y \in \mathfrak{gl}(V)$ that has $XY = YX$.

Corollary. If $A \subseteq B \subseteq V$ are subspaces and $X \in \mathfrak{gl}(V)$ has $XB \subseteq A$ then $X_{\text{ss}}B \subseteq A$ and $X_{\text{nil}}B \subseteq A$.

We now state some Lie theoretic results.

Continue to let V be a finite-dimensional \mathbb{F} -vector space.

Proposition. If $X \in \mathfrak{gl}(V)$ is nilpotent then so is $\text{ad}_X \in \mathfrak{gl}(\mathfrak{gl}(V))$.

Proof. If $X^n = 0$ then $(\text{ad}_X)^{2n} = 0$ since $(\text{ad}_X)^{2n}(Y) \in \mathbb{F}\text{-span}\{X^i Y X^{2n-i} : 0 \leq i \leq 2n\}$. \square

Proposition. If $X \in \mathfrak{gl}(V)$ is semisimple then so is $\text{ad}_X \in \mathfrak{gl}(\mathfrak{gl}(V))$.

Proof. Suppose v_1, v_2, \dots, v_n is a basis of V and $a_1, a_2, \dots, a_n \in \mathbb{F}$ are such that $Xv_i = a_i v_i$.

Let $e_{ij} \in \mathfrak{gl}(V)$ be the linear map with $e_{ij}(v_k) = \begin{cases} v_i & \text{if } j = k \\ 0 & \text{if } j \neq k. \end{cases}$

Then $\{e_{ij} : 1 \leq i, j \leq n\}$ is a basis for $\mathfrak{gl}(V)$ and $\text{ad}_X e_{ij} = (a_i - a_j)e_{ij}$ since

$$(\text{ad}_X e_{ij})v_k = [X, e_{ij}]v_k = X \underbrace{e_{ij}v_k}_{\in \mathbb{F}v_i} - e_{ij}Xv_k = a_i e_{ij}v_k - a_k e_{ij}v_k = (a_i - a_j)e_{ij}v_k$$

where the last equality uses the fact that $a_j e_{ij}v_k = a_k e_{ij}v_k$ since both sides are zero if $j \neq k$.

Thus the basis $\{e_{ij}\}$ for $\mathfrak{gl}(V)$ consists of eigenvectors for ad_X which is therefore diagonalizable. \square

Proposition. Suppose $X \in \mathfrak{gl}(V)$ has Jordan decomposition $X = X_{\text{ss}} + X_{\text{nil}}$.

Then the Jordan decomposition of $\text{ad}_X \in \mathfrak{gl}(\mathfrak{gl}(V))$ is $\text{ad}_X = \text{ad}_{X_{\text{ss}}} + \text{ad}_{X_{\text{nil}}}$.

In other words, we have $(\text{ad}_X)_{\text{ss}} = \text{ad}_{X_{\text{ss}}}$ and $(\text{ad}_X)_{\text{nil}} = \text{ad}_{X_{\text{nil}}}$.

Proof. We have already seen that $\text{ad}_{X_{\text{ss}}}$ is semisimple and $\text{ad}_{X_{\text{nil}}}$ is nilpotent.

The adjoint representation is linear so $\text{ad}_{X_{\text{ss}}} + \text{ad}_{X_{\text{nil}}} = \text{ad}_{X_{\text{ss}} + X_{\text{nil}}} = \text{ad}_X$.

Finally, since X_{ss} and X_{nil} commute we have $[X_{\text{ss}}, X_{\text{nil}}] = 0$.

Therefore $\text{ad}_{X_{\text{ss}}}$ and $\text{ad}_{X_{\text{nil}}}$ also commute since $[\text{ad}_{X_{\text{ss}}}, \text{ad}_{X_{\text{nil}}}] = \text{ad}_{[X_{\text{ss}}, X_{\text{nil}}]} = 0$ by the Jacobi identity.

Thus $\text{ad}_X = \text{ad}_{X_{\text{ss}}} + \text{ad}_{X_{\text{nil}}}$ has the defining properties of the unique Jordan decomposition of ad_X . \square