
MATH 5143 — Introduction to Lie algebras (Spring 2026) Lecture 4

1 Engel’s theorem

We briefly review the main items from the last lecture.

Let L be a Lie algebra over a field F.

If I, J ⊆ L then define [I, J ] = F-span{[X,Y ] : X ∈ I and Y ∈ J}.

Some definitions from last time:

• L is solvable if L(n) = 0 for some n ≫ 0 where L(0) = L and L(n+1) = [L(n), L(n)].

• L is nilpotent if Ln = 0 for some n ≫ 0 where L0 = L and Ln+1 = [L,Ln] = [Ln, L].

• L is semisimple if its unique maximal solvable ideal Rad(L) is zero.

We will only discuss semisimple Lie algebras that are finite-dimensional.

Our proof of the existence of the unique maximal solvable ideal Rad(L) required dim(L) < ∞.

A linear map f : V → V is nilpotent if fn = 0 for some n ≫ 0.

An element X ∈ L is ad-nilpotent if the linear map adX = [X, ·] : L → L is nilpotent.

Easy-to-prove fact: if L is a nilpotent Lie algebra then every X ∈ L is ad-nilpotent.

Harder-to-prove converse:

Theorem (Engel’s theorem). If dim(L) < ∞ and every X ∈ L is ad-nilpotent then L is nilpotent.

One more result from last time, proved on the way to Engel’s theorem.

Suppose V is a finite-dimensional F-vector space and L ⊆ gl(V ) is a Lie subalgebra.

Recall that if v1, v2, . . . , vn is a basis for V and X ∈ gl(V ) then the corresponding matrix of X is the
square array [Xij ]1≤i,j≤n where Xij ∈ F is such that Xvj =

∑n
i=1 Xijvi.

Theorem. If all elements of L are nilpotent linear maps V → V then there exists a basis of V relative
to which the matrices of all elements of L are strictly upper-triangular.

2 Lie’s theorem

We now assume F is an algebraically closed field of characteristic zero (like the complex numbers C).

We also assume that L is a Lie algebra over F of finite dimension.

Theorem. Assume L is a solvable Lie subalgebra of gl(V ) for some vector space V with 0 < dim(V ) < ∞.

Then there exists a nonzero vector 0 ̸= v ∈ V that is an eigenvector for every X ∈ L, meaning that

Xv = λ(X)v for all X ∈ L

for some linear map λ : X → F.

Proof. One can prove this result by the following steps, similar to the proof of the previous theorem:

(0) Since F is algebraically closed, any given X ∈ L has an eigenvector in V .

Hence the theorem holds if dim(L) ≤ 1. Assume dim(L) > 1.
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(1) Find an ideal K ⊆ L with dim(L) = dim(K) + 1.

This can be done by letting K be the preimage in L of any codimension one subspace of L/[L,L].

This works since L/[L,L] is nonzero (as L is solvable) and abelian (by the definition of [L,L]).

(2) By induction K has at least one common eigenvector in V , say with eigenvalue function λ : K → F.

(3) Let W = {v ∈ V : Y v = λ(Y )v for all Y ∈ K} be the common λ-eigenspace for K in V .

Then we can check that L stabilizes this nonzero subspace. This is the hard part of the argument.

(4) Finally choose any Z ∈ L with Z /∈ K. Step (3) shows that Z restricts to a linear map W → W .

Since F is algebraically closed, Z has an eigenvector v ∈ W .

Since dim(L) = dim(K) + 1 we have L = K ⊕ FZ and v is a common eigenvector for all of L.

The eigenvalue map L → F is the linear extension of λ : K → F sending Z to its eigenvalue for v.

Apart from some from minor details (see Humphrey’s textbook) only step (3) requires more explanation.

This is where we use the char(F) = 0 hypothesis.

We need to show that if X ∈ L and w ∈ W then Xw ∈ W , meaning that Y Xw = λ(Y )Xw for all Y ∈ K.

By the Jacobi identity we know that

Y Xw = XY w − [X,Y ]w = λ(Y )Xw − λ([X,Y ])w.

So it is enough to check that λ([X,Y ]) = 0 for all Y ∈ K.

Proof of this claim. Let n > 0 be minimal such that w, Xw, X2w, . . . , Xnw are linearly dependent.

Define Wi = F-span{w, Xw, X2w, . . . , Xi−1w}. Then W0 = 0 and dim(Wi) = min{i, n}.

We argue that Y Xiw ∈ λ(Y )Xiw +Wi for all Y ∈ K. This is clear if i = 0 and if i > 0 then

Y Xiw = Y XXi−1w = X(Y Xi−1w)− [X,Y ]Xi−1w.

This expression is in λ(Y )Xiw +Wi when Y ∈ K, since then [X,Y ] ∈ K so by induction

Y Xi−1w ∈ λ(Y )Xi−1w +Wi−1 and [X,Y ]Xi−1w ∈ λ([X,Y ])Xi−1w +Wi−1 ⊆ Wi.

Thus, relative to the basis w, Xw, X2w, . . . , Xn−1w each Y ∈ K operates on Wn as an upper-△ matrix λ(Y ) ∗
. . .

0 λ(Y )

 .

Therefore if Y ∈ K then trace(Y |Wn
) = nλ(Y ) and also trace([X,Y ]|Wn

) = nλ([X,Y ]) as [X,Y ] ∈ K.

The notation f |Wn
here means the linear map Wn → Wn obtained by restricting f .

But X and Y ∈ K both preserve Wn so trace([X,Y ]|Wn
) = trace(X|Wn

Y |Wn
)− trace(Y |Wn

X|Wn
) = 0.

Thus nλ([X,Y ]) = 0 so since char(F) = 0 we conclude that λ([X,Y ]) = 0. ■

Having checked this claim, we conclude that step (3) and the rest of the argument work as expected.
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Theorem (Lie’s theorem). Suppose L ⊆ gl(V ) is a solvable Lie subalgebra where dim(V ) = n < ∞.
Then there is some basis of V relative to which the matrices of all elements of L are upper-triangular.

Proof. Choose 0 ̸= v1 ∈ V with Xv1 = λ(X)v1 for all X ∈ L for some linear map λ : L → F.

Set V1 = Fv1 and consider the quotient space V/V1.

Apply the theorem inductively to obtain a basis v2+V1, v3+V1, . . . , vn+V1 for V/V1 where each vi ∈ V .

Then the desired basis for V is then v1, v2, v3, . . . , vn.

Corollary. Suppose L is a solvable Lie algebra with dim(L) = n < ∞.

Then there exists a chain of ideals 0 = L0 ⊆ L1 ⊆ L2 ⊆ · · · ⊊ Ln = L with dim(Li) = i.

Proof. The Lie algebra ad(L) ⊆ gl(L) is a homomorphic image of L so is solvable.

Apply Lie’s theorem to this Lie algebra with V = L.

This gives a basis v1, v2, . . . , vn ∈ L such that adX(vi) ∈ F-span{v1, v2, . . . , vi} for all X ∈ L.

The subspaces Li = F-span{v1, v2, . . . , vi} are therefore ideals, and they form the desired chain.

We can now generalize the fact that tn(F) is solvable and nn(F) = [tn(F), tn(F)] is nilpotent.

Corollary. Suppose L is a solvable Lie algebra of finite dimension. Then [L,L] is nilpotent.

Proof. Choose a basis of L such that the matrices of adX ∈ gl(L) are all upper-triangular.

Then the matrix of ad[X,Y ] = [adX , adY ] is always strictly upper-triangular.

Hence adZ is nilpotent for all Z ∈ [L,L], so Engel’s theorem implies that [L,L] is nilpotent.

3 Remarks

Under the hypotheses that

• F is an algebraically closed field with char(F) = 0, and

• L ⊆ gl(V ) for an F-vector space V with dim(V ) = n < ∞,

we have shown the following properties:

(1) If L is solvable that there exists a basis of V that makes all elements of L upper-triangular.

Equivalently, if L is solvable then there is an injective morphism ι : L → tn(F).

(2) If L is nilpotent, then L is also solvable.

But in this case L does not have to be strictly upper-triangular in the basis from (1).

In other words, we might have ι(L) ̸⊆ nn(F).

Example: take V = Fn and let L = dn(F) be the abelian Lie algebra of diagonal matrices.

(3) The vector space V must have a basis that makes all elements of L strictly upper-triangular (meaning
that there is an injective morphism L → nn(F)) when all elements L are nilpotent.

However, L can be a nilpotent Lie algebra without having this property.

Example: again let V = Fn and L = dn(F).
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4 Jordan decomposition

In this section we do not require char(F) = 0 but still assume F is algebraically closed.

Let V be a finite-dimensional F-vector space.

We say that X ∈ gl(V ) is semisimple if X is diagonalizable, meaning V has a basis of eigenvectors for X.

Some standard properties from linear algebra (which you may check as exercises):

(a) If X,Y ∈ gl(V ) are semisimple with XY = Y X then aX + bY is semisimple for all a, b ∈ F.

(b) If X ∈ gl(V ) is semisimple and X preserves a subspace W ⊆ V then X|W ∈ gl(W ) is semisimple.

We now quote some less obvious, but still standard results linear algebra.

We assume these facts as background and will not prove them ourselves.

Recall that X ∈ gl(V ) is nilpotent if Xn = 0 for some n ≫ 0.

Proposition. For each X ∈ gl(V ), there are unique elements Xss, Xnil ∈ gl(V ) such that

Xss is semisimple, Xnil is nilpotent, XssXnil = XnilXss, and X = Xss +Xnil .

The boxed formula is called the Jordan decomposition (or Jordan–Chevalley decomposition) of X.

Proof idea: if V = Fn and the Jordan canonical form of the matrix of X has blocks

λ 1 0
λ 1

λ
. . .

. . . 1
0 λ


then the Jordan canonical forms of Xss and Xnil are respectively obtained by replacing these blocks by

λ 0 0
λ 0

λ
. . .

. . . 0
0 λ

 and



0 1 0
0 1

0
. . .

. . . 1
0 0

 .

Proposition. Let X ∈ gl(V ). There are polynomials p(x), q(x) ∈ xF[x] with p(0) = q(0) = 0 such that

Xss = p(X) and Xnil = q(X).

Consequently, the operators Xss and Xnil commute with any Y ∈ gl(V ) that has XY = Y X.

Corollary. If A ⊆ B ⊆ V are subspaces and X ∈ gl(V ) has XB ⊆ A then XssB ⊆ Aand XnilB ⊆ A.

We now state some Lie theoretic results.

Continue to let V be a finite-dimensional F-vector space.

Proposition. If X ∈ gl(V ) is nilpotent then so is adX ∈ gl(gl(V )).
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Proof. If Xn = 0 then (adX)2n = 0 since (adX)2n(Y ) ∈ F-span{XiY X2n−i : 0 ≤ i ≤ 2n}.

Proposition. If X ∈ gl(V ) is semisimple then so is adX ∈ gl(gl(V )).

Proof. Suppose v1, v2, . . . , vn is a basis of V and a1, a2, . . . , an ∈ F are such that Xvi = aivi.

Let eij ∈ gl(V ) be the linear map with eij(vk) =

{
vi if j = k

0 if j ̸= k.

Then {eij : 1 ≤ i, j ≤ n} is a basis for gl(V ) and adXeij = (ai − aj)eij since

(adXeij)vk = [X, eij ]vk = X eijvk︸ ︷︷ ︸
∈Fvi

−eijXvk = aieijvk − akeijvk = (ai − aj)eijvk

where the last equality uses the fact that ajeijvk = akeijvk since both sides are zero if j ̸= k.

Thus the basis {eij} for gl(V ) consists of eigenvectors for adX which is therefore diagonalizable.

Proposition. Suppose X ∈ gl(V ) has Jordan decomposition X = Xss +Xnil.

Then the Jordan decomposition of adX ∈ gl(gl(V )) is adX = adXss
+ adXnil

.

In other words, we have (adX)ss = adXss
and (adX)nil = adXnil

.

Proof. We have already seen that adXss
is semisimple and adXnil

is nilpotent.

The adjoint representation is linear so adXss
+ adXnil

= adXss+Xnil
= adX .

Finally, since Xss and Xnil commute we have [Xss, Xnil] = 0.

Therefore adXss and adXnil
also commute since [adXss , adXnil

] = ad[Xss,Xnil] = 0 by the Jacobi identity.

Thus adX = adXss + adXnil
has the defining properties of the unique Jordan decomposition of adX .
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