MATH 5143 — Introduction to Lie algebras (Spring 2026) Lecture 4

1 Engel’s theorem

We briefly review the main items from the last lecture.

Let L be a Lie algebra over a field F.

If I,J C L then define [I,J] = F-span{[X,Y]: X € T and Y € J}.

Some definitions from last time:
e L is solvable if L(™ = 0 for some n > 0 where L(®) = [ and L1 = [L(™) L),
e L is nilpotent if L™ = 0 for some n > 0 where L® = L and L"*! = [L, L"] = [L", L].
e L is semisimple if its unique maximal solvable ideal Rad(L) is zero.

We will only discuss semisimple Lie algebras that are finite-dimensional.

Our proof of the existence of the unique maximal solvable ideal Rad(L) required dim(L) < oo.

A linear map f : V — V is nilpotent if f™ = 0 for some n > 0.
An element X € L is ad-nilpotent if the linear map ady = [X, ] : L — L is nilpotent.
Easy-to-prove fact: if L is a nilpotent Lie algebra then every X € L is ad-nilpotent.

Harder-to-prove converse:
Theorem (Engel’s theorem). If dim(L) < oo and every X € L is ad-nilpotent then L is nilpotent.

One more result from last time, proved on the way to Engel’s theorem.
Suppose V is a finite-dimensional F-vector space and L C gl(V) is a Lie subalgebra.

Recall that if vy, vs,...,v, is a basis for V and X € gl(V) then the corresponding matrix of X is the
square array [X;;li<i j<n where X;; € F is such that Xv; = Z?zl Xijvs.

Theorem. If all elements of L are nilpotent linear maps V' — V then there exists a basis of V relative
to which the matrices of all elements of L are strictly upper-triangular.
2 Lie’s theorem

We now assume F is an algebraically closed field of characteristic zero (like the complex numbers C).

We also assume that L is a Lie algebra over I of finite dimension.

Theorem. Assume L is a solvable Lie subalgebra of gl(V') for some vector space V with 0 < dim(V') < oo.

Then there exists a nonzero vector 0 # v € V that is an eigenvector for every X € L, meaning that
Xv=XX)v forall X €L

for some linear map A : X — F.

Proof. One can prove this result by the following steps, similar to the proof of the previous theorem:
(0) Since F is algebraically closed, any given X € L has an eigenvector in V.

Hence the theorem holds if dim(L) < 1. Assume dim(L) > 1.
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(1) Find an ideal K C L with dim(L) = dim(K) + 1.
This can be done by letting K be the preimage in L of any codimension one subspace of L/[L, L].
This works since L/[L, L] is nonzero (as L is solvable) and abelian (by the definition of [L, L]).
(2) By induction K has at least one common eigenvector in V', say with eigenvalue function A : K — F.
(3) Let W={veV:Yv=AY)v for all Y € K} be the common A-eigenspace for K in V.
Then we can check that L stabilizes this nonzero subspace. This is the hard part of the argument.
(4) Finally choose any Z € L with Z ¢ K. Step (3) shows that Z restricts to a linear map W — W.
Since F is algebraically closed, Z has an eigenvector v € W.
Since dim(L) = dim(K) + 1 we have L = K @ FZ and v is a common eigenvector for all of L.

The eigenvalue map L — F is the linear extension of A : K — F sending Z to its eigenvalue for v.

Apart from some from minor details (see Humphrey’s textbook) only step (3) requires more explanation.

This is where we use the char(IF) = 0 hypothesis.

We need to show that if X € L and w € W then Xw € W, meaning that Y Xw = A(Y)Xw for all Y € K.
By the Jacobi identity we know that

YXw=XYw—[X,Y]w=ANY)Xw-A[X,Y])w.
So it is enough to check that A([X,Y]) =0forall Y € K.
Proof of this claim. Let n > 0 be minimal such that w, Xw, X?w, ..., X™w are linearly dependent.

Define W; = F-span{w, Xw, X?w, ..., X" "'w}. Then Wy = 0 and dim(W;) = min{i,n}.

We argue that Y X'w € A\(Y)X'w + W; for all Y € K. This is clear if i = 0 and if i > 0 then
VX =YXX" o =XYX"w) - [X,Y]X" .
This expression is in A(Y)X%w + W; when Y € K, since then [X,Y] € K so by induction

YXTlw e \ V)X T w4+ W,_y and  [X, Y] X" lw e M([X,Y]) X w + W1 C W,

Thus, relative to the basis w, Xw, X?w, ..., X" 'w each Y € K operates on W,, as an upper-/A matrix
AY) *
0 AY)

Therefore if Y € K then trace(Y|w, ) = nA(Y) and also trace([X,Y]|w,) = nA([X,Y]) as [X,Y] € K.

The notation f|w, here means the linear map W,, — W,, obtained by restricting f.

But X and Y € K both preserve W, so trace([X,Y]|w, ) = trace(X|w, Y|w, ) — trace(Y |w, X|w, ) = 0.
Thus nA([X,Y]) = 0 so since char(F) = 0 we conclude that A([X,Y]) = 0. |

Having checked this claim, we conclude that step (3) and the rest of the argument work as expected. [
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Theorem (Lie’s theorem). Suppose L C gl(V) is a solvable Lie subalgebra where dim(V) = n < oo.
Then there is some basis of V relative to which the matrices of all elements of L are upper-triangular.

Proof. Choose 0 # vy € V with Xv; = A(X)v; for all X € L for some linear map A\ : L — TF.
Set Vi = Fu; and consider the quotient space V/V;.
Apply the theorem inductively to obtain a basis vo + V1, v3+ V1, ..., v, + Vi for V/V; where each v; € V.

Then the desired basis for V is then vy, vs,v3, ..., Uy. O

Corollary. Suppose L is a solvable Lie algebra with dim(L) = n < oco.
Then there exists a chain of ideals 0 = Lo C Ly C Ly C --- C L, = L with dim(L;) = 1.

Proof. The Lie algebra ad(L) C gl(L) is a homomorphic image of L so is solvable.
Apply Lie’s theorem to this Lie algebra with V = L.
This gives a basis vy, ve,...,v, € L such that adx (v;) € F-span{vy,ve,...,v;} for all X € L.

The subspaces L; = F-span{vy, vs, ..., v;} are therefore ideals, and they form the desired chain. O

We can now generalize the fact that t,(FF) is solvable and n, (F) = [t,(F), t,,(IF)] is nilpotent.

Corollary. Suppose L is a solvable Lie algebra of finite dimension. Then [L, L] is nilpotent.

Proof. Choose a basis of L such that the matrices of adx € gl(L) are all upper-triangular.

Then the matrix of ad|x y] = [adx, ady] is always strictly upper-triangular.
Hence ady is nilpotent for all Z € [L, L], so Engel’s theorem implies that [L, L] is nilpotent. O
3 Remarks

Under the hypotheses that
e [ is an algebraically closed field with char(FF) = 0, and
o L C gl(V) for an F-vector space V with dim(V) =n < oo,
we have shown the following properties:
(1) If L is solvable that there exists a basis of V' that makes all elements of L upper-triangular.
Equivalently, if L is solvable then there is an injective morphism ¢ : L — t,,(FF).
(2) If L is nilpotent, then L is also solvable.
But in this case L does not have to be strictly upper-triangular in the basis from (1).
In other words, we might have «(L) € n,(FF).
Example: take V' = F" and let L =0,,(F) be the abelian Lie algebra of diagonal matrices.

(3) The vector space V must have a basis that makes all elements of L strictly upper-triangular (meaning
that there is an injective morphism L — n,(FF)) when all elements L are nilpotent.

However, L can be a nilpotent Lie algebra without having this property.

Example: again let V =F" and L =0, (F).
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4 Jordan decomposition

In this section we do not require char(IF) = 0 but still assume F is algebraically closed.
Let V be a finite-dimensional F-vector space.

We say that X € gl(V) is semisimple if X is diagonalizable, meaning V' has a basis of eigenvectors for X.

Some standard properties from linear algebra (which you may check as exercises):
(a) If X, Y € gl(V) are semisimple with XY = Y X then aX + bY is semisimple for all a,b € F.
(b) If X € gl(V) is semisimple and X preserves a subspace W C V then X|y € gl(WW) is semisimple.

We now quote some less obvious, but still standard results linear algebra.
We assume these facts as background and will not prove them ourselves.

Recall that X € gl(V) is nilpotent if X™ = 0 for some n > 0.

Proposition. For each X € gl(V'), there are unique elements X, Xpi € gl(V) such that

X is semisimple, Xy is nilpotent, X Xn1 = XunXss, and ‘X = X + Xail ‘

The boxed formula is called the Jordan decomposition (or Jordan—Chevalley decomposition) of X.

Proof idea: if V = F"™ and the Jordan canonical form of the matrix of X has blocks

Al 0
Al
A

1

0 A

then the Jordan canonical forms of X5 and X5 are respectively obtained by replacing these blocks by

A0 0 0 1 0
A0 0 1
A and 0

0 1

0 A 0 0

Proposition. Let X € gl(V). There are polynomials p(z), q(z) € aF[z] with p(0) = ¢(0) = 0 such that
X = p(X) and Xni = ¢(X).

Consequently, the operators Xgs and Xy,; commute with any Y € gl(V') that has XY =Y X.
Corollary. If A C B CV are subspaces and X € gl(V) has XB C A then X B C Aand X, B C A.

We now state some Lie theoretic results.

Continue to let V be a finite-dimensional F-vector space.

Proposition. If X € gl(V) is nilpotent then so is adx € gl(gl(V)).
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Proof. If X™ =0 then (adx)?" = 0 since (adx)**(Y) € F-span{ XY X?"~*: 0 <i < 2n}. O

Proposition. If X € gl(V) is semisimple then so is adx € gl(gl(V)).

Proof. Suppose v1,vs,...,v, is a basis of V and aq,as,...,a, € F are such that Xv; = a;v;.
i ifj=k
Let e;; € gl(V) be the linear map with e;;(vx) = v 1 J
0 ifj#k.

Then {e;; : 1 <i,j <n} is a basis for gl(V') and adxe;; = (a; — a;)e;; since

(adxeij)vk = [X, eij]vk = Xeijvk —einvk = aieijvk — akeijvk = (ai — aj)eijv;g
~~
€Fv;

where the last equality uses the fact that aje;jvr = ape;;jvi since both sides are zero if j # k.

Thus the basis {e;;} for gl(V') consists of eigenvectors for adx which is therefore diagonalizable. O

Proposition. Suppose X € gl(V) has Jordan decomposition X = X + Xy
Then the Jordan decomposition of adx € gl(gl(V)) is adx = adx_ + adx

nil *

In other words, we have (adx)ss = adx,, and (adx)nn = adx

nil *

Proof. We have already seen that adx_, is semisimple and adx,,, is nilpotent.

nil

The adjoint representation is linear so adx,_ +adx,, =adx_tx,, = adx.

Finally, since Xgs and Xp; commute we have [Xg, Xpin] = 0.

Therefore adx,, and ady,; also commute since [adx, ,adx, ] = ad[x_, x,,] = 0 by the Jacobi identity.

Thus adx = adx,, + adx,, has the defining properties of the unique Jordan decomposition of ady. O
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