
MATH 5143 — Introduction to Lie algebras (Spring 2026) Lecture 5

1 Review: Jordan decomposition

Let F be an algebraically closed field, not necessarily with char(F) = 0.

Let V be a finite-dimensional F-vector space.

A linear map X ∈ gl(V ) is nilpotent if Xn = 0 for some n ≫ 0.

A linear map X ∈ gl(V ) is semisimple if it is diagonalizable.

Linear combinations of commuting semisimple operators are semisimple.

The restriction of a semisimple operator to any subspace that it preserves is also semisimple.

For each X ∈ gl(V ), there are unique elements Xss, Xnil ∈ gl(V ) such that

Xss is semisimple, Xnil is nilpotent, XssXnil = XnilXss, and X = Xss +Xnil .

The boxed formula is called the Jordan decomposition of X.

In fact, both Xss and Xnil are elements of F-span{X,X2, X3, . . . }.

If X ∈ gl(V ) is semisimple then X = Xss and if X ∈ gl(V ) is nilpotent then X = Xnil.

If X ∈ gl(V ) has Jordan decomposition X = Xss +Xnil then (adX)ss = adXss
and (adX)nil = adXnil

.

Hence if X ∈ gl(V ) is semisimple (respectively, nilpotent) then so is adX ∈ gl(gl(V )).

2 Cartan’s criterion for solvability

We now assume (more strongly than above) that F is an algebraically closed field with char(F) = 0.

Let V be an F-vector space with dim(V ) < ∞

Our first goal today is to prove a simple condition that implies that a Lie subalgebra of gl(V ) is solvable.

Lemma. Let A ⊆ B be two subspaces of gl(V ). Define

M = {Y ∈ gl(V ) : [Y,B] ⊆ A}

and suppose X ∈ M has trace(XY ) = 0 for all Y ∈ M . Then X is nilpotent.

Proof. One way to prove the lemma is by the following clever argument.

Write the Jordan decomposition of X as X = Xss +Xnil.

Let v1, v2, . . . , vn be a basis for V in which the matrix of X is in Jordan canonical form.

Then the matrices of Xss and Xnil in this basis are respectively diagonal and strictly upper-triangular.

In particular we can write Xssvi = aivi for some eigenvalues ai ∈ F.

Because char(F) = 0, we can define E = Q-span{a1, a2, . . . , an} ⊆ F.

We want to show that Xss = 0 as then X = Xnil is nilpotent.

This holds if and only if a1 = a2 = · · · = an = 0, meaning that E = 0.

Let E∗ be the Q-vector space of Q-linear maps E → Q.
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Since dimQ(E) ≤ n < ∞ it holds that dimQ(E
∗) = dimQ(E) and it suffices to show that E∗ = 0.

Suppose f ∈ E∗. To prove that E∗ = 0 we will show that f = 0.

Let Y ∈ gl(V ) be the linear map with Y vi = f(ai)vi for all i.

Let eij ∈ gl(V ) be the linear map that sends vk 7→ δjkvi where δjk = |{j} ∩ {k}|.

As in the last lecture, one can check that adXsseij = (ai − aj)eij and adY eij = (f(ai)− f(aj))eij .

It is a standard result in polynomial interpolation that some r(x) ∈ Q[x] exists with

r(ai − aj) = f(ai)− f(aj) = f(ai − aj) for all 1 ≤ i, j ≤ n.

(Look up Lagrange polynomials to see an explicit construction.)

Since r(0) = r(ai − ai) = f(ai − ai) = f(0) = 0 we have r(x) ∈ xQ[x].

We have adY = r(adXss) since both sides give the same result when applied to each eij .

Since adXss = (adX)s we also have adXss = p(adX) for some polynomial p(x) ∈ xF[x].

Since we assume X ∈ M it follows that adX(B) ⊆ A so

[Y,B] = adY (B) = r(adXss
)(B) = r(p(adX))(B) ⊆ A.

This implies that Y ∈ M . Therefore our hypotheses assert that trace(XY ) = 0.

But the matrices ofXss and Y are diagonal in the basis v1, v2, . . . , vn whileXnil is strictly upper-triangular.

Hence the matrix of XnilY is also strictly upper triangular so

0 = trace(XY ) = trace(XssY ) + trace(XnilY ) = trace(XssY ) =

n∑
i=1

aif(ai) ∈ E.

Thus 0 = f(0) = f(trace(XY )) =
∑n

i=1 f(ai)
2 ∈ Q which can only hold if f = 0, as needed.

The next proposition is much easier to prove.

Proposition. If X,Y, Z ∈ gl(V ) then trace([X,Y ]Z) = trace(X[Y,Z]).

Proof. The two traces expand to trace(XY Z)− trace(Y XZ) and trace(XY Z)− trace(XZY ).

The general identity trace(AB) = trace(BA) implies that trace(Y XZ) = trace(XZY ).

The previous results lead to the following theorem.

Theorem (Cartan’s criterion). Let L ⊆ gl(V ) be a Lie algebra where dim(V ) < ∞.

Suppose trace(XY ) = 0 for all X ∈ [L,L] and Y ∈ L. Then L is solvable.
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Proof. To show that L is solvable it suffices to check that [L,L] is nilpotent.

For this, will show that every X ∈ [L,L] is a nilpotent element of gl(V ).

This will imply that every element of [L,L] is ad-nilpotent.

Then Engel’s theorem tells us that [L,L] is nilpotent.

Let M = {Y ∈ gl(V ) : [Y,L] ⊆ [L,L]}.

We have [L,L] ⊆ L ⊆ M but M might be strictly larger than L.

If X1, X2 ∈ L and Y ∈ gl(V ) are any elements then by the previous proposition

trace([X1, X2]Y ) = trace(X1[X2, Y ]) = trace([X2, Y ]X1) = −trace([Y,X2]X1).

By definition, if Y ∈ M then [Y,X2] ∈ [L,L] and then by hypothesis trace([Y,X2]X1) = 0.

Hence if X1, X2 ∈ L and Y ∈ M then trace([X1, X2]Y ) = 0.

But if X ∈ [L,L], then X is a linear combination of brackets [X1, X2] so trace(XY ) = 0 for all Y ∈ M .

We conclude by the lemma (with A = [L,L] and B = L) that every X ∈ [L,L] is nilpotent, as needed.

3 Killing form

Let L be a finite-dimensional Lie algebra.

Definition. The Killing form of L is the bilinear form K : L× L → L defined by

K(X,Y ) = trace(adXadY ) for X,Y ∈ L.

To compute K(X,Y ), pick a basis for L and then write down the matrices of adX and adY in this basis.

Then multiply the matrices of adX and adY and sum the diagonal entries in the product

We mention two easy properties of the Killing form:

Proposition. The Killing form is symmetric in the sense that K(X,Y ) = K(Y,X) for all X,Y ∈ L.

The Killing form is also associative in the sense that K([X,Y ], Y ) = K(X, [Y, Z]) for all X,Y, Z ∈ L.

The second property is equivalent to a result proved earlier today.

Example. Let us compute the Killing form when L = sl2(F) = F-span{E,H,F} for

E =

[
0 1
0 0

]
, H =

[
1 0
0 −1

]
, and F =

[
0 0
1 0

]
.

Check that [E,E] = [H,H] = [F, F ] = 0 and [E,H] = −2E and [F,H] = 2F and [E,F ] = H.

Relative to the ordered basis E, H, F , we therefore have

adE =

 0 −2 0
0 0 1
0 0 0

 , adH =

 2 0 0
0 0 0
0 0 −2

 , and adF =

 0 0 0
−1 0 0
0 2 0

 .
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This lets us compute  K(E,E) K(E,H) K(E,F )
K(H,E) K(H,H) K(H,F )
K(F,E) K(F,H) K(F, F )

 =

 0 0 4
0 8 0
4 0 0

 .

The radical of K : L× L → L (or more generally of any symmetric bilinear form) is the subspace

Rad(K) = {X ∈ L : K(X,Y ) = 0 for all Y ∈ L} = {Y ∈ L : K(X,Y ) = 0 for all X ∈ L}.

The form K is non-degenerate if Rad(K) = 0.

We have Rad(K) = 0 precisely when the map K(X, ·) : L → L is zero if and only if X = 0.

Less obviously, if X1, X2, . . . , Xn is any basis for L then:

Proposition. We have Rad(K) = 0 if and only if the n× n matrix
[
K(Xi, Xj)

]
1≤i,j≤n

is invertible.

Proof. If M denotes this matrix and Y =
∑n

i=1 aiXi and Z =
∑n

i=1 biXi for some ai, bi ∈ F, then

K(Y,Z) = a⊤Mb for the vectors a =


a1
a2
...

an

 and b =


b1
b2
...

bn

 .

If M is invertible and b ̸= 0 then Mb ̸= 0 so K(Y,Z) ̸= 0 when we take a = Mb.

Thus if M is invertible then K(Y,Z) for all Y ∈ L only when Z = 0, so Rad(K) = 0.

Conversely, if M is not invertible then some nonzero b has Mb = 0.

In this case the corresponding nonzero Z ∈ L belongs to Rad(K).

We see from this proposition that the Killing form for sl2(F) is non-degenerate if and only if char(F) ̸= 2.

Proposition. Let I ⊆ L be an ideal.

Then the Killing form KI of I is the restriction of the Killing form K = KL of L.

Proof. If ϕ : V → W ⊆ V is a linear map where W and V are finite-dimensional vector spaces, then

trace(ϕ) = trace(ϕ|W )

since if w1, w2, . . . , wk is a basis for W and wk+1, wk+1 . . . , wn extends this to a basis of V then the
corresponding matrix of ϕ has the block diagonal form[

A ∗
0 0

]
where A is the matrix of ϕ|W in the basis w1, w2, . . . , wk.

Now apply this observation with V = L and W = I and ϕ = adXadY .

Recall that L is semisimple if it has no nonzero solvable ideals, or equivalently if Rad(L) = 0.
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Theorem. A finite-dimensional Lie algebra is semisimple if and only if its Killing form is non-degenerate.

Equivalently, when dim(L) < ∞ we have Rad(L) = 0 if and only if Rad(K) = 0.

Proof. Let S = Rad(K). The associativity of the Killing form implies that S is an ideal of L.

In fact, Cartan’s criterion implies that ad(S) is a solvable ideal of gl(L), since

trace(adXadY ) = K(X,Y ) = 0 for all X ∈ S ⊇ [S, S] and all Y ∈ L ⊇ S.

The center Z(L) is abelian and hence solvable, and contained in S, so ad(S) ∼= S/Z(L) is also solvable.

Thus if the largest solvable ideal Rad(L) = 0 is zero then we also have S = 0.

Now suppose conversely that S = 0. We want to show that Rad(L) = 0.

Assume I ⊆ L is an abelian ideal. It suffices to check that I ⊆ S (which means that I = 0 when S = 0).

This is because if Rad(L) is nonzero then Rad(L)(n) is a nonzero abelian ideal for some n ≥ 1.

Let X ∈ I and Y ∈ L. Then adXadY is a map L → I and (adXadY )
2 is a map L → [I, I] = 0.

Thus adXadY is nilpotent so its eigenvalues are all 0, so its trace (the sum of the eigenvalues) is also 0.

This shows that K(X,Y ) = 0 for all X ∈ I and Y ∈ L, which means that I ⊆ S as needed.
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