

1 Review: Jordan decomposition

Let \mathbb{F} be an algebraically closed field, not necessarily with $\text{char}(\mathbb{F}) = 0$.

Let V be a finite-dimensional \mathbb{F} -vector space.

A linear map $X \in \mathfrak{gl}(V)$ is *nilpotent* if $X^n = 0$ for some $n \gg 0$.

A linear map $X \in \mathfrak{gl}(V)$ is *semisimple* if it is *diagonalizable*.

Linear combinations of commuting semisimple operators are semisimple.

The restriction of a semisimple operator to any subspace that it preserves is also semisimple.

For each $X \in \mathfrak{gl}(V)$, there are unique elements $X_{\text{ss}}, X_{\text{nil}} \in \mathfrak{gl}(V)$ such that

$$X_{\text{ss}} \text{ is semisimple, } X_{\text{nil}} \text{ is nilpotent, } X_{\text{ss}}X_{\text{nil}} = X_{\text{nil}}X_{\text{ss}}, \text{ and } \boxed{X = X_{\text{ss}} + X_{\text{nil}}}.$$

The boxed formula is called the *Jordan decomposition* of X .

In fact, both X_{ss} and X_{nil} are elements of $\mathbb{F}\text{-span}\{X, X^2, X^3, \dots\}$.

If $X \in \mathfrak{gl}(V)$ is semisimple then $X = X_{\text{ss}}$ and if $X \in \mathfrak{gl}(V)$ is nilpotent then $X = X_{\text{nil}}$.

If $X \in \mathfrak{gl}(V)$ has Jordan decomposition $X = X_{\text{ss}} + X_{\text{nil}}$ then $(\text{ad}_X)_{\text{ss}} = \text{ad}_{X_{\text{ss}}}$ and $(\text{ad}_X)_{\text{nil}} = \text{ad}_{X_{\text{nil}}}$.

Hence if $X \in \mathfrak{gl}(V)$ is semisimple (respectively, nilpotent) then so is $\text{ad}_X \in \mathfrak{gl}(\mathfrak{gl}(V))$.

2 Cartan's criterion for solvability

We now assume (more strongly than above) that \mathbb{F} is an algebraically closed field with $\text{char}(\mathbb{F}) = 0$.

Let V be an \mathbb{F} -vector space with $\dim(V) < \infty$

Our first goal today is to prove a simple condition that implies that a Lie subalgebra of $\mathfrak{gl}(V)$ is solvable.

Lemma. Let $A \subseteq B$ be two subspaces of $\mathfrak{gl}(V)$. Define

$$M = \{Y \in \mathfrak{gl}(V) : [Y, B] \subseteq A\}$$

and suppose $X \in M$ has $\text{trace}(XY) = 0$ for all $Y \in M$. Then X is nilpotent.

Proof. One way to prove the lemma is by the following clever argument.

Write the Jordan decomposition of X as $X = X_{\text{ss}} + X_{\text{nil}}$.

Let v_1, v_2, \dots, v_n be a basis for V in which the matrix of X is in Jordan canonical form.

Then the matrices of X_{ss} and X_{nil} in this basis are respectively diagonal and strictly upper-triangular.

In particular we can write $X_{\text{ss}}v_i = a_i v_i$ for some eigenvalues $a_i \in \mathbb{F}$.

Because $\text{char}(\mathbb{F}) = 0$, we can define $E = \mathbb{Q}\text{-span}\{a_1, a_2, \dots, a_n\} \subseteq \mathbb{F}$.

We want to show that $X_{\text{ss}} = 0$ as then $X = X_{\text{nil}}$ is nilpotent.

This holds if and only if $a_1 = a_2 = \dots = a_n = 0$, meaning that $E = 0$.

Let E^* be the \mathbb{Q} -vector space of \mathbb{Q} -linear maps $E \rightarrow \mathbb{Q}$.

Since $\dim_{\mathbb{Q}}(E) \leq n < \infty$ it holds that $\dim_{\mathbb{Q}}(E^*) = \dim_{\mathbb{Q}}(E)$ and it suffices to show that $E^* = 0$.

Suppose $f \in E^*$. To prove that $E^* = 0$ we will show that $f = 0$.

Let $Y \in \mathfrak{gl}(V)$ be the linear map with $Yv_i = f(a_i)v_i$ for all i .

Let $e_{ij} \in \mathfrak{gl}(V)$ be the linear map that sends $v_k \mapsto \delta_{jk}v_i$ where $\delta_{jk} = |\{j\} \cap \{k\}|$.

As in the last lecture, one can check that $\text{ad}_{X_{\text{ss}}} e_{ij} = (a_i - a_j)e_{ij}$ and $\text{ad}_Y e_{ij} = (f(a_i) - f(a_j))e_{ij}$.

It is a standard result in polynomial interpolation that some $r(x) \in \mathbb{Q}[x]$ exists with

$$r(a_i - a_j) = f(a_i) - f(a_j) = f(a_i - a_j) \quad \text{for all } 1 \leq i, j \leq n.$$

(Look up *Lagrange polynomials* to see an explicit construction.)

Since $r(0) = r(a_i - a_i) = f(a_i - a_i) = f(0) = 0$ we have $r(x) \in x\mathbb{Q}[x]$.

We have $\text{ad}_Y = r(\text{ad}_{X_{\text{ss}}})$ since both sides give the same result when applied to each e_{ij} .

Since $\text{ad}_{X_{\text{ss}}} = (\text{ad}_X)_s$ we also have $\text{ad}_{X_{\text{ss}}} = p(\text{ad}_X)$ for some polynomial $p(x) \in x\mathbb{F}[x]$.

Since we assume $X \in M$ it follows that $\text{ad}_X(B) \subseteq A$ so

$$[Y, B] = \text{ad}_Y(B) = r(\text{ad}_{X_{\text{ss}}})(B) = r(p(\text{ad}_X))(B) \subseteq A.$$

This implies that $Y \in M$. Therefore our hypotheses assert that $\text{trace}(XY) = 0$.

But the matrices of X_{ss} and Y are diagonal in the basis v_1, v_2, \dots, v_n while X_{nil} is strictly upper-triangular.

Hence the matrix of $X_{\text{nil}}Y$ is also strictly upper triangular so

$$0 = \text{trace}(XY) = \text{trace}(X_{\text{ss}}Y) + \text{trace}(X_{\text{nil}}Y) = \text{trace}(X_{\text{ss}}Y) = \sum_{i=1}^n a_i f(a_i) \in E.$$

Thus $0 = f(0) = f(\text{trace}(XY)) = \sum_{i=1}^n f(a_i)^2 \in \mathbb{Q}$ which can only hold if $f = 0$, as needed. \square

The next proposition is much easier to prove.

Proposition. If $X, Y, Z \in \mathfrak{gl}(V)$ then $\text{trace}([X, Y]Z) = \text{trace}(X[Y, Z])$.

Proof. The two traces expand to $\text{trace}(XYZ) - \text{trace}(YXZ)$ and $\text{trace}(XYZ) - \text{trace}(XZY)$.

The general identity $\text{trace}(AB) = \text{trace}(BA)$ implies that $\text{trace}(YXZ) = \text{trace}(XZY)$. \square

The previous results lead to the following theorem.

Theorem (Cartan's criterion). Let $L \subseteq \mathfrak{gl}(V)$ be a Lie algebra where $\dim(V) < \infty$.

Suppose $\text{trace}(XY) = 0$ for all $X \in [L, L]$ and $Y \in L$. Then L is solvable.

Proof. To show that L is solvable it suffices to check that $[L, L]$ is nilpotent.

For this, will show that every $X \in [L, L]$ is a nilpotent element of $\mathfrak{gl}(V)$.

This will imply that every element of $[L, L]$ is ad -nilpotent.

Then Engel's theorem tells us that $[L, L]$ is nilpotent.

Let $M = \{Y \in \mathfrak{gl}(V) : [Y, L] \subseteq [L, L]\}$.

We have $[L, L] \subseteq L \subseteq M$ but M might be strictly larger than L .

If $X_1, X_2 \in L$ and $Y \in \mathfrak{gl}(V)$ are any elements then by the previous proposition

$$\text{trace}([X_1, X_2]Y) = \text{trace}(X_1[X_2, Y]) = \text{trace}([X_2, Y]X_1) = -\text{trace}([Y, X_2]X_1).$$

By definition, if $Y \in M$ then $[Y, X_2] \in [L, L]$ and then by hypothesis $\text{trace}([Y, X_2]X_1) = 0$.

Hence if $X_1, X_2 \in L$ and $Y \in M$ then $\text{trace}([X_1, X_2]Y) = 0$.

But if $X \in [L, L]$, then X is a linear combination of brackets $[X_1, X_2]$ so $\text{trace}(XY) = 0$ for all $Y \in M$.

We conclude by the lemma (with $A = [L, L]$ and $B = L$) that every $X \in [L, L]$ is nilpotent, as needed. \square

3 Killing form

Let L be a finite-dimensional Lie algebra.

Definition. The *Killing form* of L is the bilinear form $\mathcal{K} : L \times L \rightarrow L$ defined by

$$\mathcal{K}(X, Y) = \text{trace}(\text{ad}_X \text{ad}_Y) \quad \text{for } X, Y \in L.$$

To compute $\mathcal{K}(X, Y)$, pick a basis for L and then write down the matrices of ad_X and ad_Y in this basis.

Then multiply the matrices of ad_X and ad_Y and sum the diagonal entries in the product

We mention two easy properties of the Killing form:

Proposition. The Killing form is *symmetric* in the sense that $\mathcal{K}(X, Y) = \mathcal{K}(Y, X)$ for all $X, Y \in L$.

The Killing form is also *associative* in the sense that $\mathcal{K}([X, Y], Z) = \mathcal{K}(X, [Y, Z])$ for all $X, Y, Z \in L$.

The second property is equivalent to a result proved earlier today.

Example. Let us compute the Killing form when $L = \mathfrak{sl}_2(\mathbb{F}) = \mathbb{F}\text{-span}\{E, H, F\}$ for

$$E = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \text{and} \quad F = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

Check that $[E, E] = [H, H] = [F, F] = 0$ and $[E, H] = -2E$ and $[F, H] = 2F$ and $[E, F] = H$.

Relative to the ordered basis E, H, F , we therefore have

$$\text{ad}_E = \begin{bmatrix} 0 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{ad}_H = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{bmatrix}, \quad \text{and} \quad \text{ad}_F = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}.$$

This lets us compute

$$\begin{bmatrix} \mathcal{K}(E, E) & \mathcal{K}(E, H) & \mathcal{K}(E, F) \\ \mathcal{K}(H, E) & \mathcal{K}(H, H) & \mathcal{K}(H, F) \\ \mathcal{K}(F, E) & \mathcal{K}(F, H) & \mathcal{K}(F, F) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 4 \\ 0 & 8 & 0 \\ 4 & 0 & 0 \end{bmatrix}.$$

The *radical* of $\mathcal{K} : L \times L \rightarrow L$ (or more generally of any symmetric bilinear form) is the subspace

$$\text{Rad}(\mathcal{K}) = \{X \in L : \mathcal{K}(X, Y) = 0 \text{ for all } Y \in L\} = \{Y \in L : \mathcal{K}(X, Y) = 0 \text{ for all } X \in L\}.$$

The form \mathcal{K} is *non-degenerate* if $\text{Rad}(\mathcal{K}) = 0$.

We have $\text{Rad}(\mathcal{K}) = 0$ precisely when the map $\mathcal{K}(X, \cdot) : L \rightarrow L$ is zero if and only if $X = 0$.

Less obviously, if X_1, X_2, \dots, X_n is any basis for L then:

Proposition. We have $\text{Rad}(\mathcal{K}) = 0$ if and only if the $n \times n$ matrix $[\mathcal{K}(X_i, X_j)]_{1 \leq i, j \leq n}$ is invertible.

Proof. If M denotes this matrix and $Y = \sum_{i=1}^n a_i X_i$ and $Z = \sum_{i=1}^n b_i X_i$ for some $a_i, b_i \in \mathbb{F}$, then

$$\mathcal{K}(Y, Z) = a^\top M b \quad \text{for the vectors } a = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \text{ and } b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

If M is invertible and $b \neq 0$ then $Mb \neq 0$ so $\mathcal{K}(Y, Z) \neq 0$ when we take $a = Mb$.

Thus if M is invertible then $\mathcal{K}(Y, Z)$ for all $Y \in L$ only when $Z = 0$, so $\text{Rad}(\mathcal{K}) = 0$.

Conversely, if M is not invertible then some nonzero b has $Mb = 0$.

In this case the corresponding nonzero $Z \in L$ belongs to $\text{Rad}(\mathcal{K})$. □

We see from this proposition that the Killing form for $\mathfrak{sl}_2(\mathbb{F})$ is non-degenerate if and only if $\text{char}(\mathbb{F}) \neq 2$.

Proposition. Let $I \subseteq L$ be an ideal.

Then the Killing form \mathcal{K}_I of I is the restriction of the Killing form $\mathcal{K} = \mathcal{K}_L$ of L .

Proof. If $\phi : V \rightarrow W \subseteq V$ is a linear map where W and V are finite-dimensional vector spaces, then

$$\text{trace}(\phi) = \text{trace}(\phi|_W)$$

since if w_1, w_2, \dots, w_k is a basis for W and $w_{k+1}, w_{k+1}, \dots, w_n$ extends this to a basis of V then the corresponding matrix of ϕ has the block diagonal form

$$\left[\begin{array}{c|c} A & * \\ \hline 0 & 0 \end{array} \right]$$

where A is the matrix of $\phi|_W$ in the basis w_1, w_2, \dots, w_k .

Now apply this observation with $V = L$ and $W = I$ and $\phi = \text{ad}_X \text{ad}_Y$. □

Recall that L is *semisimple* if it has no nonzero solvable ideals, or equivalently if $\text{Rad}(L) = 0$.

Theorem. A finite-dimensional Lie algebra is semisimple if and only if its Killing form is non-degenerate. Equivalently, when $\dim(L) < \infty$ we have $\text{Rad}(L) = 0$ if and only if $\text{Rad}(\mathcal{K}) = 0$.

Proof. Let $S = \text{Rad}(\mathcal{K})$. The associativity of the Killing form implies that S is an ideal of L .

In fact, Cartan's criterion implies that $\text{ad}(S)$ is a solvable ideal of $\mathfrak{gl}(L)$, since

$$\text{trace}(\text{ad}_X \text{ad}_Y) = \mathcal{K}(X, Y) = 0 \quad \text{for all } X \in S \supseteq [S, S] \text{ and all } Y \in L \supseteq S.$$

The center $Z(L)$ is abelian and hence solvable, and contained in S , so $\text{ad}(S) \cong S/Z(L)$ is also solvable.

Thus if the largest solvable ideal $\text{Rad}(L) = 0$ is zero then we also have $S = 0$.

Now suppose conversely that $S = 0$. We want to show that $\text{Rad}(L) = 0$.

Assume $I \subseteq L$ is an abelian ideal. It suffices to check that $I \subseteq S$ (which means that $I = 0$ when $S = 0$).

This is because if $\text{Rad}(L)$ is nonzero then $\text{Rad}(L)^{(n)}$ is a nonzero abelian ideal for some $n \geq 1$.

Let $X \in I$ and $Y \in L$. Then $\text{ad}_X \text{ad}_Y$ is a map $L \rightarrow I$ and $(\text{ad}_X \text{ad}_Y)^2$ is a map $L \rightarrow [I, I] = 0$.

Thus $\text{ad}_X \text{ad}_Y$ is nilpotent so its eigenvalues are all 0, so its trace (the sum of the eigenvalues) is also 0.

This shows that $\mathcal{K}(X, Y) = 0$ for all $X \in I$ and $Y \in L$, which means that $I \subseteq S$ as needed. \square