MATH 5143 — Introduction to Lie algebras (Spring 2026) Lecture 6

1 Review: Cartan’s criterion and the Killing form

Define all vector spaces and Lie algebras over an algebraically closed field F with char(F) = 0.

Let V be a finite-dimensional F-vector space and suppose L C gl(V) is a Lie algebra.
Theorem (Cartan’s criterion). Suppose trace(XY) =0forall X € [L,L] and Y € L. Then L is solvable.

The radical Rad(L) of a finite-dimensional Lie algebra L is its maximal solvable ideal.
The Killing form of a finite-dimensional Lie algebra L is the bilinear form K : L x L — L defined by
K(X,Y) = trace(adxady) for X,Y € L.

This symmetric bilinear form has the associativity property K([X,Y], Z) = K(X, [Y, Z]).

The radical of Kis Rad(K) ={X e L : K(X,Y)=0ifYe L} ={Y e L: K(X,Y)=0if X € L}.
The form K is non-degenerate if Rad(K) = 0.

Theorem. A finite-dimensional Lie algebra is semisimple if and only if its Killing form is non-degenerate.

Equivalently, when dim(L) < co we have Rad(L) = 0 if and only if Rad(K) = 0.

2 Simple ideals

A Lie algebra L is a direct sum of ideals Iy, 15, ..., I, if L=1; & I & --- & I,, as vector spaces.

This means that each X € L has a unique expression as
X=X1+Xo+ -+ X,

with X; € I;. The uniqueness in such expressions means that I; NI = 0 for all j # k.

Since each I; is an ideal we must also have [I;, Ix] = 0 for all j # k as [I;, ] C I; N .

Recall that a Lie algebra is simple if it is non-abelian with no nonzero proper ideals.
Continue to assume F is algebraically closed with char(F) = 0.

Let L be a finite-dimensional Lie algebra defined over F.

Theorem. Suppose L is semisimple. Then there exist simple ideals Ly, Ls, ..., L, C L such that
() L=Li®Ly®---® Ly, and

(2) any simple ideal of L is equal to some L;.

Proof. Notice that L is non-abelian since Rad(L) = 0.
Let I be a nonzero proper ideal of L.

Write K for the Killing form of L. We showed last time that the Killing form of I is the restriction of K.

Define It ={X € L: K(X,Y)=0forall Y € I}.
We claim that (a) I+ is an ideal and (b) L =1 & I+.
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If we can prove these claims then (1) will follow by induction on dim(L), since if L has no nonzero proper
ideals then L is simple and since any simple ideal of I or I+ is also a simple ideal of L since [I,I+] = 0.

To check (a),let X € L, Y € [+, and Z € I.
Then K([X, Y], Z) = —K([Y, X], Z) = —K(Y, [X, Z]) = 0 since [X, Z] € I. Hence [X,Y] € I*.

To check (b), note that Z(L) = 0 since L is semisimple, so ad : L — gl(L) is injective.

Cartan’s criterion applied to I NI+ =2 ad(I N I+) C gl(L) implies that I N I+ solvable, since
trace(adyady) = K(X,Y) =0 foral X e INIt, INIH)CLandY e INI+ C It

Hence I NI+ =0 as L is semisimple and I N I+ is a solvable ideal.

As the Killing form is non-degenerate, we have dim(L) = dim (/) + dim(I*) so L = I @ I+ as claimed.

This completes the proof of (1).
Next suppose [ is a simple ideal of L =L1 & Lo ® --- P L,,.

It remains to show (2) that the nonzero ideal I is equal to L; for some i.

To prove this, check that [I, L] is also an ideal of L using the Jacobi identity.
We cannot have [I, L] =0 as then I C Z(L) = 0. Therefore I = [I, L] as I is simple.
But then I = [I,L] = @;_, [, L;] is simple so we must have

I=[1,L;)=L; forsome:i and [I,L;]=0 wheni# j.

Our original definition of semisimple was the property having no nonzero solvable ideals.

Now we have a more intuitive characterization:

Corollary. The Lie algebra L is semisimple if and only if it is a direct sum of simple Lie algebras.

Proof. The previous theorem shows the “only if” direction.

Conversely, suppose L = L1 @ - -+ @ L,, where each L; is simple. If L has Killing form /C then
Rad(K) = @, Rad(K|L,xL;) since L = D, Lj-

The restricted form K|, 1, are the Killing form of L;.

As each simple L; is semisimple, we have Rad(K|z,xr;) = 0 so Rad(K) = 0 and L is semisimple. O

Corollary. If L is semisimple then so are all ideals and homomorphic images of L, and L = [L, L].

Proof. Assume L is semisimple and I C L is an ideal.
Then the argument in the proof of the theorem shows that I is a direct sum of simple ideals.
Therefore T is semisimple, and L/T is also a direct sum of simple ideals so is semsimple.

In particular, this implies that all homomorphic images of L are semisimple.

Since L is semsimple we can write L = @, L; where each L; is simple.

Then [Li; Lz] = Lz and [L“ LJ] =0 for all ¢ 7& j, SO [L, L] = @?:1 @?:l[Lth] = @?:1 Lz = L. ]
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3 Representations of Lie algebras: basic terminology

For this section, we fix an arbitrary field F and define all vector spaces and Lie algebras relative to F.

Suppose L is a Lie algebra.

An L-representation is a Lie algebra morphism ¢ : L — gl(V') for some vector space V.

Explicitly, this means a linear map ¢ with ¢([X,Y]) = [¢(X),p(Y)] for all X,Y € L.

An L-module is a vector space V with a bilinear operation

LxV — L
(X,v) —» X-v

such that [X,Y] - v=X- (Y -v)=Y - (X -v)forall X, Y € Landv e V.

L-representations and L-modules are equivalent notions, just using different syntax.

Any L-representation can be converted to an L-module:

Proposition. If ¢ : L — gl(V) is an L-representation then V' is an L-module for the action

X-vdéf¢(X)v for X e LandveV.

Proof. The module action is bilinear since ¢ is linear.

Let v € V. Since for any A, B € gl(V) we have A(Bv) = (AB)uv, it follows for X,Y € L that
X-(Y-0) =Y - (X 0) = (6(X)o(Y) = o(Y)o(X)) v = [6(X), o(Y)]v = ¢([X, Y])v = [X, Y] - v
as needed. O

Likewise, any L-module can be converted to an L-representation:

Proposition. If V' is an L-module then the map
¢:L—gl(V)

defined by ¢(X) : v+ X -v for X € L is an L-representation.

The proof is similar to the previous proposition.

The operations going between L-representations and L-modules are inverses of each other.

A submodule of an L-module V is a subspace U C V such that X -u € U for all X € L and u € U.

Any submodule is itself an L-module.

A morphism f:V — W of two L-modules is a linear map such that
f(X-v)=X.f(v) forallveV and X € L.

The kernel of such a morphism is the subspace

ker(f) ={veV: f(v) =0}
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This is a submodule since if f(v) =0 then f(X -v) =X - f(v) = X -0 =0 (as the - action is bilinear).

An L-module morphism V' — W is an isomorphism if it is a bijection.

An L-module V is irreducible if only submodules are 0 and V' # 0.

If V and W and L-modules then the vector space direct sum V & W is also an L-module for the action
X -v+w)=X-v+X - w.

An L-module V is completely reducible if there are irreducible L-submodules V; C V such that V = @, V;.

The L-module 0 is not considered irreducible because we want the direct sum decomposition of a com-
pletely reducible L-module to be unique (up to isomorphism and rearrangement of irreducible factors).

A scalar map V — V is a linear map of the form v +— Av for some fixed A € F.
An L-representation is irreducible if the associated L-module structure on V is an irreducible module.

We state the following fundamental result without proof.

Theorem (Schur’s lemma). Assume F is algebraically closed with char(F) = 0.
Suppose ¢ : L — gl(V) is an irreducible L-representation.
Then the only linear maps f: V — V with fo(X) = ¢(X)f for all X € L are the scalar maps V — V.

Continue to suppose V' is an L-module. Define V* to be the vector space of all linear maps V' — F.

Proposition. The vector space V* is an L-module for the action

X -f= (thelinearmapV%Fsending v —f(X-v) ) for X € Land f e V*.

Note the unexpected minus sign in this formula.

Proof. Checking that the L-action on V* is bilinear is straightforward.
Let X, Y € L and f € V*. Then for any v € V we have

(X (Y- ))(0) = ~(V - )(X-0) = J(V - (X -0)) and similarly (¥ - (X - £))(0) = F(X - (Y -0)).
On the other hand
(X, Y]- () = =f([(X,Y]-v) = = f(X - (Y-0) =YV - (X -0)) = f(V - (X -0)) = f(X- (Y -0)).
Comparing formulas shows that [X,Y]- f=Y - (X - f) =Y - (X - f) as needed. O

Suppose V and W are two L-modules, say with bases {v; };er and {w;};e.
The tensor product V @ W is the vector space spanned by all tensors v ®w with v € V and w € W where
w+v)w=v@w+v @w and v@(w+w)=v@w+v@w and (aw)@w=1v® (aw)

for v,v' € V and w,w’ € W and a € F.

Nontrivial fact: the vector space V' ® W has a basis given by {v; ® wj}(i’j)elxj.
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Proposition. The tensor product V ® W is an L-module for the bilinear action satisfying
X -wow)=(X-v)w+v® (X -w) for X e L,veV,and we W.
Proof. f XY € L, v € V, and w € W then we can expand
(X, Y] v@w)=X - Y - v)@u-Y - (X-v)Qu+vX -Y(w)—v@Y (X w)
while
XY -vew)-Y (X -wvew)=X- Y- vuw+vY w)-Y X - vQuw+v®X- w).

If we further expand the second expression and cancel some terms then we recover the first expression. [

We mention one final property today.

Proposition. Let V be a finite-dimensional vector space. Then the linear map ® : V* @V — gl(V') with

O(fRv) = (the linear map V — V sendingm) for feV*andveV

is an isomorphism of vector spaces.

Proof. As dim(gl(V)) = dim(V)? = dim(V*) dim(V) = dim(V*® V') we just need to show ® is surjective.
We may assume V = F" is the space of n-row column vectors.
Then we can think of V* as the space of 1 x n matrices and gl(V') as the space of all n x n matrices.

In this setup @ is just the out-of-order matrix multiplication map

b1 by
by bo

<I>:[a1 as ... an]® e : [al as ... an]eg[(V).
b b

By choosing a;,b; € {0,1} appropriately the right side can give any elementary matrix E;; € gl(V).

Hence by linearity every n x n matrix occurs in the image of ®, so ® is surjective. O

If V is a finite-dimensional L-module, then there is a unique L-module structure on gl(V') that makes ®
into a module isomorphism. Working through the definitions shows that this module has the formula

X -f= (thelinearmapV—)Vsending‘v»—)X-f(v)—f(X-v)‘) for X € L and f € gl(V).
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