
MATH 5143 — Introduction to Lie algebras (Spring 2026) Lecture 6

1 Review: Cartan’s criterion and the Killing form

Define all vector spaces and Lie algebras over an algebraically closed field F with char(F) = 0.

Let V be a finite-dimensional F-vector space and suppose L ⊆ gl(V ) is a Lie algebra.

Theorem (Cartan’s criterion). Suppose trace(XY ) = 0 for all X ∈ [L,L] and Y ∈ L. Then L is solvable.

The radical Rad(L) of a finite-dimensional Lie algebra L is its maximal solvable ideal.

The Killing form of a finite-dimensional Lie algebra L is the bilinear form K : L× L → L defined by

K(X,Y ) = trace(adXadY ) for X,Y ∈ L.

This symmetric bilinear form has the associativity property K([X,Y ], Z) = K(X, [Y, Z]).

The radical of K is Rad(K) = {X ∈ L : K(X,Y ) = 0 if Y ∈ L} = {Y ∈ L : K(X,Y ) = 0 if X ∈ L}.

The form K is non-degenerate if Rad(K) = 0.

Theorem. A finite-dimensional Lie algebra is semisimple if and only if its Killing form is non-degenerate.

Equivalently, when dim(L) < ∞ we have Rad(L) = 0 if and only if Rad(K) = 0.

2 Simple ideals

A Lie algebra L is a direct sum of ideals I1, I2, . . . , In if L = I1 ⊕ I2 ⊕ · · · ⊕ In as vector spaces.

This means that each X ∈ L has a unique expression as

X = X1 +X2 + · · ·+Xn

with Xj ∈ Ij . The uniqueness in such expressions means that Ij ∩ Ik = 0 for all j ̸= k.

Since each Ij is an ideal we must also have [Ij , Ik] = 0 for all j ̸= k as [Ij , Ik] ⊆ Ij ∩ Ik.

Recall that a Lie algebra is simple if it is non-abelian with no nonzero proper ideals.

Continue to assume F is algebraically closed with char(F) = 0.

Let L be a finite-dimensional Lie algebra defined over F.

Theorem. Suppose L is semisimple. Then there exist simple ideals L1, L2, . . . , Ln ⊆ L such that

(1) L = L1 ⊕ L2 ⊕ · · · ⊕ Ln, and

(2) any simple ideal of L is equal to some Li.

Proof. Notice that L is non-abelian since Rad(L) = 0.

Let I be a nonzero proper ideal of L.

Write K for the Killing form of L. We showed last time that the Killing form of I is the restriction of K.

Define I⊥ = {X ∈ L : K(X,Y ) = 0 for all Y ∈ I}.

We claim that (a) I⊥ is an ideal and (b) L = I ⊕ I⊥.
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If we can prove these claims then (1) will follow by induction on dim(L), since if L has no nonzero proper
ideals then L is simple and since any simple ideal of I or I⊥ is also a simple ideal of L since [I, I⊥] = 0.

To check (a), let X ∈ L, Y ∈ I⊥, and Z ∈ I.

Then K([X,Y ], Z) = −K([Y,X], Z) = −K(Y, [X,Z]) = 0 since [X,Z] ∈ I. Hence [X,Y ] ∈ I⊥.

To check (b), note that Z(L) = 0 since L is semisimple, so ad : L → gl(L) is injective.

Cartan’s criterion applied to I ∩ I⊥ ∼= ad(I ∩ I⊥) ⊆ gl(L) implies that I ∩ I⊥ solvable, since

trace(adXadY ) = K(X,Y ) = 0 for all X ∈ [I ∩ I⊥, I ∩ I⊥] ⊆ L and Y ∈ I ∩ I⊥ ⊆ I⊥.

Hence I ∩ I⊥ = 0 as L is semisimple and I ∩ I⊥ is a solvable ideal.

As the Killing form is non-degenerate, we have dim(L) = dim(I) + dim(I⊥) so L = I ⊕ I⊥ as claimed.

This completes the proof of (1).

Next suppose I is a simple ideal of L = L1 ⊕ L2 ⊕ · · · ⊕ Ln.

It remains to show (2) that the nonzero ideal I is equal to Li for some i.

To prove this, check that [I, L] is also an ideal of L using the Jacobi identity.

We cannot have [I, L] = 0 as then I ⊆ Z(L) = 0. Therefore I = [I, L] as I is simple.

But then I = [I, L] =
⊕n

i=1[I, Li] is simple so we must have

I = [I, Li] = Li for some i and [I, Lj ] = 0 when i ̸= j.

Our original definition of semisimple was the property having no nonzero solvable ideals.

Now we have a more intuitive characterization:

Corollary. The Lie algebra L is semisimple if and only if it is a direct sum of simple Lie algebras.

Proof. The previous theorem shows the “only if” direction.

Conversely, suppose L = L1 ⊕ · · · ⊕ Ln where each Li is simple. If L has Killing form K then

Rad(K) =
⊕n

i=1 Rad(K|Li×Li
) since L⊥

i =
⊕

j ̸=i Lj .

The restricted form K|Li×Li
are the Killing form of Li.

As each simple Li is semisimple, we have Rad(K|Li×Li) = 0 so Rad(K) = 0 and L is semisimple.

Corollary. If L is semisimple then so are all ideals and homomorphic images of L, and L = [L,L].

Proof. Assume L is semisimple and I ⊆ L is an ideal.

Then the argument in the proof of the theorem shows that I is a direct sum of simple ideals.

Therefore I is semisimple, and L/I is also a direct sum of simple ideals so is semsimple.

In particular, this implies that all homomorphic images of L are semisimple.

Since L is semsimple we can write L =
⊕n

i=1 Li where each Li is simple.

Then [Li, Li] = Li and [Li, Lj ] = 0 for all i ̸= j, so [L,L] =
⊕n

i=1

⊕n
j=1[Li, Lj ] =

⊕n
i=1 Li = L.
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3 Representations of Lie algebras: basic terminology

For this section, we fix an arbitrary field F and define all vector spaces and Lie algebras relative to F.

Suppose L is a Lie algebra.

An L-representation is a Lie algebra morphism ϕ : L → gl(V ) for some vector space V .

Explicitly, this means a linear map ϕ with ϕ([X,Y ]) = [ϕ(X), ϕ(Y )] for all X,Y ∈ L.

An L-module is a vector space V with a bilinear operation

L× V → L
(X, v) 7→ X · v

such that [X,Y ] · v = X · (Y · v)− Y · (X · v) for all X,Y ∈ L and v ∈ V .

L-representations and L-modules are equivalent notions, just using different syntax.

Any L-representation can be converted to an L-module:

Proposition. If ϕ : L → gl(V ) is an L-representation then V is an L-module for the action

X · v def
= ϕ(X)v for X ∈ L and v ∈ V .

Proof. The module action is bilinear since ϕ is linear.

Let v ∈ V . Since for any A,B ∈ gl(V ) we have A(Bv) = (AB)v, it follows for X,Y ∈ L that

X · (Y · v)− Y · (X · v) = (ϕ(X)ϕ(Y )− ϕ(Y )ϕ(X)) v = [ϕ(X), ϕ(Y )]v = ϕ([X,Y ])v = [X,Y ] · v

as needed.

Likewise, any L-module can be converted to an L-representation:

Proposition. If V is an L-module then the map

ϕ : L → gl(V )

defined by ϕ(X) : v 7→ X · v for X ∈ L is an L-representation.

The proof is similar to the previous proposition.

The operations going between L-representations and L-modules are inverses of each other.

A submodule of an L-module V is a subspace U ⊆ V such that X · u ∈ U for all X ∈ L and u ∈ U .

Any submodule is itself an L-module.

A morphism f : V → W of two L-modules is a linear map such that

f(X · v) = X · f(v) for all v ∈ V and X ∈ L.

The kernel of such a morphism is the subspace

ker(f) = {v ∈ V : f(v) = 0}.
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This is a submodule since if f(v) = 0 then f(X · v) = X · f(v) = X · 0 = 0 (as the · action is bilinear).

An L-module morphism V → W is an isomorphism if it is a bijection.

An L-module V is irreducible if only submodules are 0 and V ̸= 0.

If V and W and L-modules then the vector space direct sum V ⊕W is also an L-module for the action

X · (v + w) = X · v +X · w.

An L-module V is completely reducible if there are irreducible L-submodules Vi ⊆ V such that V =
⊕

i Vi.

The L-module 0 is not considered irreducible because we want the direct sum decomposition of a com-
pletely reducible L-module to be unique (up to isomorphism and rearrangement of irreducible factors).

A scalar map V → V is a linear map of the form v 7→ λv for some fixed λ ∈ F.

An L-representation is irreducible if the associated L-module structure on V is an irreducible module.

We state the following fundamental result without proof.

Theorem (Schur’s lemma). Assume F is algebraically closed with char(F) = 0.

Suppose ϕ : L → gl(V ) is an irreducible L-representation.

Then the only linear maps f : V → V with fϕ(X) = ϕ(X)f for all X ∈ L are the scalar maps V → V .

Continue to suppose V is an L-module. Define V ∗ to be the vector space of all linear maps V → F.

Proposition. The vector space V ∗ is an L-module for the action

X · f =
(
the linear map V → F sending v 7→ −f(X · v)

)
for X ∈ L and f ∈ V ∗.

Note the unexpected minus sign in this formula.

Proof. Checking that the L-action on V ∗ is bilinear is straightforward.

Let X,Y ∈ L and f ∈ V ∗. Then for any v ∈ V we have

(X · (Y · f))(v) = −(Y · f)(X · v) = f(Y · (X · v)) and similarly (Y · (X · f))(v) = f(X · (Y · v)).

On the other hand

([X,Y ] · f)(v) = −f([X,Y ] · v) = −f(X · (Y · v)− Y · (X · v)) = f(Y · (X · v))− f(X · (Y · v)).

Comparing formulas shows that [X,Y ] · f = Y · (X · f)− Y · (X · f) as needed.

Suppose V and W are two L-modules, say with bases {vi}i∈I and {wj}j∈J .

The tensor product V ⊗W is the vector space spanned by all tensors v⊗w with v ∈ V and w ∈ W where

(v + v′)⊗ w = v ⊗ w + v′ ⊗ w and v ⊗ (w + w′) = v ⊗ w + v ⊗ w′ and (av)⊗ w = v ⊗ (aw)

for v, v′ ∈ V and w,w′ ∈ W and a ∈ F.

Nontrivial fact: the vector space V ⊗W has a basis given by {vi ⊗ wj}(i,j)∈I×J .
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Proposition. The tensor product V ⊗W is an L-module for the bilinear action satisfying

X · (v ⊗ w) = (X · v)⊗ w + v ⊗ (X · w) for X ∈ L, v ∈ V , and w ∈ W.

Proof. If X,Y ∈ L, v ∈ V , and w ∈ W then we can expand

[X,Y ] · (v ⊗ w) = X · (Y · v)⊗ w − Y · (X · v)⊗ w + v ⊗X · Y (·w)− v ⊗ Y · (X · w)

while

X · (Y · (v ⊗ w))− Y · (X · (v ⊗ w)) = X · (Y · v ⊗ w + v ⊗ Y · w)− Y · (X · v ⊗ w + v ⊗X · w).

If we further expand the second expression and cancel some terms then we recover the first expression.

We mention one final property today.

Proposition. Let V be a finite-dimensional vector space. Then the linear map Φ : V ∗⊗V → gl(V ) with

Φ(f ⊗ v) =
(
the linear map V → V sending x 7→ f(x)v

)
for f ∈ V ∗ and v ∈ V

is an isomorphism of vector spaces.

Proof. As dim(gl(V )) = dim(V )2 = dim(V ∗) dim(V ) = dim(V ∗⊗V ) we just need to show Φ is surjective.

We may assume V = Fn is the space of n-row column vectors.

Then we can think of V ∗ as the space of 1× n matrices and gl(V ) as the space of all n× n matrices.

In this setup Φ is just the out-of-order matrix multiplication map

Φ :
[
a1 a2 . . . an

]
⊗


b1
b2
...

bn

 7→


b1
b2
...

bn

 [
a1 a2 . . . an

]
∈ gl(V ).

By choosing ai, bj ∈ {0, 1} appropriately the right side can give any elementary matrix Eij ∈ gl(V ).

Hence by linearity every n× n matrix occurs in the image of Φ, so Φ is surjective.

If V is a finite-dimensional L-module, then there is a unique L-module structure on gl(V ) that makes Φ
into a module isomorphism. Working through the definitions shows that this module has the formula

X · f =
(
the linear map V → V sending v 7→ X · f(v)− f(X · v)

)
for X ∈ L and f ∈ gl(V ).
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