MATH 5143 — Introduction to Lie algebras (Spring 2026) Lecture 7

1 Review: representations and Schur’s lemma

Throughout, let L be a semisimple Lie algebra over an algebraically closed field F with char(F) = 0.
Assume dim(L) < oo.
Last time we covered some basic concepts in the representation theory of Lie algebras.

Goals for today: discuss the Casimir element as a tool for proving Weyl’s theorem, which states that all
finite-dimensional representations of L are completely reducible.

Assume V is an F-vector space with dim(V') < oo.

Recall that Schur’s Lemma says that if ¢ : L — gl(V) is an irreducible L-representation (meaning that the
corresponding L-module structure on V' is irreducible), then the only linear maps f : V — V satisfying

fog(x)=¢(x)of forallzelL

are the scalar maps f) : V — V sending v — Av for some fixed A € F.

2 Casimir elements

Assume ¢ : L — gl(V) is an L-representation. Define 8 : L x L — F by the formula
BIX,Y) = trace(#(X)o(Y)).

This is a bilinear form that is both symmetric and associative in the sense that

B(X,Y],Z) =B(X,[Y,Z]) forall X,Y,X € L.
The Killing form of L is the special case of 8 when ¢ is the adjoint representation ad : L — gl(L).

The radical of B is the ideal Rad(8) ={X € L: 8(X,Y) =0for all Y € L}.
We abbreviate by setting S = Rad(8). The form £ is non-degenerate if S = 0.

An L-representation ¢ : L — gl(V) is faithful if ker(¢) = 0, or equivalently if ¢ is injective.

Lemma. Assume ¢ is faithful. Then S is a solvable ideal of L.

Proof. In this case S = ¢(5) since ¢ is injective, and Cartan’s Criterion holds for ¢(S) as we have
trace(¢p(X)o(Y)) =B(X,Y) =0 forall X € [S,S]and Y € 5,

and so trace(AB) = 0 for all A € [¢(5), #(S)] and B € ¢(95). O

Proposition. Assume ¢ is faithful. Then £ is non-degenerate.

Proof. Since we assume that L is semisimple, L has no nonzero solvable ideals, so S = 0. O

Going forward, we assume ¢ is faithful.
Then 6 : L x L — L is a symmetric, associative, and non-degenerate bilinear form.

The next lemma depends only on these properties of 5.
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(1 ifizi
Let {X;}ier be a basis of L and let {Y;};er be the dual basis with 5(X;,Y;) = d;; def {0 le 7&‘7
if i # 3.

Here I is some arbitrary (finite) indexing set.

The dual basis {Y;};cs is uniquely determined by {X;};cr since 8 is non-degenerate.

Now define the Casimir element of ¢ to be ‘ Cop =D e O(Xi)o(Ys) [ € gl(V).

Later, we will see that this element does not depend on the choice of basis {X; }icr.

Remark. This definition does require ¢ to be faithful.

When L is semisimple but ¢ : L — gl(V') is an unfaithful representation, the Casimir element ¢y, is defined
to be the Casimir element of the associated (faithful) representation of the quotient L/ ker(y) — gl(V).

Recall that all quotients of semisimle Lie algebras are semisimle.

Lemma. Fix Z € L and write a;;,b;; € F for the coefficients with
(2, Xi] = Y jerai Xy and  [Z,Yi] =30, biY;
Then for all indices 7 and k it holds that a;; = —bg;.

Proof. Using the bilinearity and associativity of 8 we compute that

aik =D, B(X;, Yi)ai;
= B(1Z, X, Vi) = =B([Xi, Z), Vi) = =B(Xi, [Z, Y3]) = = 32, B(Xi, Y))brj = —by.

O

Proposition. We have [¢(Z),cs] =0 for all Z € L.

Thus the linear operator ¢4 : V' — L commutes with the action of L on V' determined by ¢.

Proof. Using the preceding lemma, we compute that

[6(2),¢4(B)] = Z[¢>(Z)7 P(X:)o(Yi)]
=Y [8(2), 6(X)|$(Yi) + D $(Xi)[6(2), 6(Yi)] = D (aij + bij)$(Xi)$(Y;) = 0.
i i ,J

O

Corollary. The following properties hold for the Casimir element of ¢:
(a) One always has trace(cy) = dim(L).

(b) If ¢ is irreducible then ¢, = 311:2((6)) -idy is a scalar map.

Proof. For part (a), notice that

trace(cy) = >, trace(d(X;)o(Y;)) = >, B(X;,Y;) = dim(L).
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If ¢ is irreducible then c4 acts as a scalar by Schur’s Lemma in view of the preceding proposition.

S:EE‘L,)) by part (a) since char(F) = 0. O

This scalar is

Part (b) of this corollary indicates that ¢, is independent of the basis {X;} at least when ¢ is irreducible.

b

Example. Let L =sl3(F) = { [z } ta,b,ce F} Remember that we assume char(F) = 0.

This (simple, hence also semisimple) Lie algebra has basis
0 1 1 0 0 0
N R T R )
Take V = F? and let ¢ =id : L — gl(V).
The basis dual to E, H, F with respect to the bilinear form 8(X,Y) = trace(XY) is F, $H, E. Therefore

|

This is a scalar matrix, as we expect since F? is an irreducible sly(F)-module.

3

co=FEF+1H>+FE = [(2)

Njw O

3 Weyl’s Theorem

We mention one miscellaneous lemma before getting to today’s main theorem.

Lemma. Let ¢ : L — gl(V') be a finite-dimensional (not necessarily faithful) representation of a finite-
dimensional semisimple Lie algebra L. Then ¢(L) C sl(V'). Hence if dim(V) = 1 then ¢(L) = 0.

Proof. L = [L, L] by semisimplicity so ¢(L) = ¢([L, L]) = [¢(L), #(L)] C [gl(V), gl(V)] = sl(V). O

The following result is called Weyl’s theorem. Combining this with our observation that c, acts as a scalar
in the irreducible case shows that all Casimir elements of a given finite-dimensional L-representation ¢
coincide when L is semisimple, that is, ¢, does not depend on the choice of basis {X,};er for L.

Theorem. Suppose ¢ : L — gl(V) is an L-representation, with L semisimple and dim(V') < co. Then ¢
is completely reducible, meaning there exist irreducible L-submodules V7, Vs, ..., V,, such that

V=VieVd -V,
Proof. By replacing L with L/ker(¢), we may assume that ¢ is faithful.
Suppose W C V is a proper L-submodule.
By induction on dimension we just need to find a complementary L-submodule U such that V =W @ U.

We can certainly find a complementary subspace U such that V=W @ U as vector spaces.

The hard part is to find such a subspace that is an L-module.

The argument to construct U has three steps. Here is the first one:
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Claim. Assume W is irreducible and dim(V) = dim(W) + 1 so that V=W @ F as vector spaces.
Then there exists a complementary L-submodule U such that V =W ¢ U.

Proof of the first claim. Let ¢ = c4 be the Casimir element of ¢.

Then v — cv is an L-module endormorphism of V.

Since W is an L-submodule and c is in the subalgebra of gl(V') generated by ¢(L), we have cW C W.
Additionally the subspace ker(c) = {v € V' : czv = 0} is an L-submodule.

By the lemma all 1-dimensional representations of semisimple Lie algebras are trivial.
Therefore L acts trivially on V/W =TF.
This means ¢(V/W) =0 so ¢V C W. Therefore dim(ker(c)) > 1.

But ¢ acts on W as a scalar by Schur’s lemma, and this scalar cannot be zero since
trace(c as a map W — W) = trace(c as amap V — V) = dim(L) # 0.

Hence ker(c) N W = 0.
As dim(ker(c)) + dim(W) > dim(V') we must have V =W @ ker(c).
Thus the desired complementary L-submodule is given by U = ker(c). |

Here is the next step:

Claim. Assume that dim(V') = dim(W)+1 so that V = W &F as vector spaces but W is not irreducible.
Then there exists a complementary L-submodule U such that V =W @ U.

Proof of the second claim. In this case there is a nonzero proper submodule W/ Cc W.

By induction on dimension V/W’ = W/W’' @ U for some L-submodule U C V/W".

Define V’ to be the preimage of U under the quotient map V — V/W’.

Then V' C V is a nonzero proper L-submodule containing W’ and we have U = V'/W’.

By induction on dimension V' = W' @ U for some L-module U.

Then U = V//W' 2 U so we have

dim(V) — dim(W’) = dim(V/W') = dim(W/W') + dim(U) = dim(W) — dim(W"’) 4+ dim(U)

and thus dim(V') = dim(W) 4+ dim(U).

Since V/W' = W/W' @ V' /W' we have WNU CWNV' CW'.
Thus WNU =WnU)NW =WwWnUnNW)=Wno=0.
We conclude that V =W ¢ U. |

Finally, we have the last step:
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Claim. Assume that W is an arbitrary L-submodule with dim(V) > dim(W) + 1.
Then there exists a complementary L-submodule U such that V =W ¢ U.

Proof of the third claim. Write X -v = ¢(X)v for X € Land v € V.
Let Hom(V, W) be the vector space of linear maps f: V — W.
This becomes an L-module if we define X - f for X € L to be the map sending v — X - f(v) — f(X - v).

Define A = {f € Hom(V,W) : f|w is a scalar map} and B = {f € Hom(V, W) : f|lw = 0}.
Then A D B are L-submodules and you can check that L - A C B.

Any linear projection V' — W is in A but not B, so dim(A) > dim(B).
On the other hand if f,g € A and g ¢ B then f € Ag+ B for some scalar A € F so dim(4/B) < 1.
We conclude that dim(A) = dim(B) + 1.

Now by our second claim, there exists a 1-dimensional L-submodule C C A with A =B & C.
Choose a nonzero element h € C. After rescaling we may assume that h|y = idy .

Then C = F-span{h} and ker(h) = {v € V : h(v) = 0} is a subspace with
V = image(h) @ ker(h) = W @ ker(h).
The subspace ker(h) is in fact an L-submodule, since if v € ker(h) and X € L then X - h € C so
MX -v)=X -h(v)— (X -h)(v)=X-0—-0=0,
which shows that X - v € ker(h). Thus the claim holds with U = ker(h). |

The third claim completes our proof of the theorem. O
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