
MATH 5143 — Introduction to Lie algebras (Spring 2026) Lecture 7

1 Review: representations and Schur’s lemma

Throughout, let L be a semisimple Lie algebra over an algebraically closed field F with char(F) = 0.

Assume dim(L) <∞.

Last time we covered some basic concepts in the representation theory of Lie algebras.

Goals for today: discuss the Casimir element as a tool for proving Weyl’s theorem, which states that all
finite-dimensional representations of L are completely reducible.

Assume V is an F-vector space with dim(V ) <∞.

Recall that Schur’s Lemma says that if ϕ : L→ gl(V ) is an irreducible L-representation (meaning that the
corresponding L-module structure on V is irreducible), then the only linear maps f : V → V satisfying

f ◦ ϕ(x) = ϕ(x) ◦ f for all x ∈ L

are the scalar maps fλ : V → V sending v 7→ λv for some fixed λ ∈ F.

2 Casimir elements

Assume ϕ : L→ gl(V ) is an L-representation. Define β : L× L→ F by the formula

β(X,Y ) = trace(ϕ(X)ϕ(Y )).

This is a bilinear form that is both symmetric and associative in the sense that

β([X,Y ], Z) = β(X, [Y, Z]) for all X,Y,X ∈ L.

The Killing form of L is the special case of β when ϕ is the adjoint representation ad : L→ gl(L).

The radical of β is the ideal Rad(β) = {X ∈ L : β(X,Y ) = 0 for all Y ∈ L}.

We abbreviate by setting S = Rad(β). The form β is non-degenerate if S = 0.

An L-representation ϕ : L→ gl(V ) is faithful if ker(ϕ) = 0, or equivalently if ϕ is injective.

Lemma. Assume ϕ is faithful. Then S is a solvable ideal of L.

Proof. In this case S ∼= ϕ(S) since ϕ is injective, and Cartan’s Criterion holds for ϕ(S) as we have

trace(ϕ(X)ϕ(Y )) = β(X,Y ) = 0 for all X ∈ [S, S] and Y ∈ S,

and so trace(AB) = 0 for all A ∈ [ϕ(S), ϕ(S)] and B ∈ ϕ(S).

Proposition. Assume ϕ is faithful. Then β is non-degenerate.

Proof. Since we assume that L is semisimple, L has no nonzero solvable ideals, so S = 0.

Going forward, we assume ϕ is faithful.

Then β : L× L→ L is a symmetric, associative, and non-degenerate bilinear form.

The next lemma depends only on these properties of β.
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Let {Xi}i∈I be a basis of L and let {Yi}i∈I be the dual basis with β(Xi, Yj) = δij
def
=

{
1 if i = j

0 if i ̸= j.

Here I is some arbitrary (finite) indexing set.

The dual basis {Yi}i∈I is uniquely determined by {Xi}i∈I since β is non-degenerate.

Now define the Casimir element of ϕ to be cϕ =
∑
i∈I ϕ(Xi)ϕ(Yi) ∈ gl(V ).

Later, we will see that this element does not depend on the choice of basis {Xi}i∈I .

Remark. This definition does require ϕ to be faithful.

When L is semisimple but ψ : L→ gl(V ) is an unfaithful representation, the Casimir element cψ is defined
to be the Casimir element of the associated (faithful) representation of the quotient L/ ker(ψ) → gl(V ).

Recall that all quotients of semisimle Lie algebras are semisimle.

Lemma. Fix Z ∈ L and write aij , bij ∈ F for the coefficients with

[Z,Xi] =
∑
j∈I aijXj and [Z, Yi] =

∑
j∈I bijYj .

Then for all indices i and k it holds that aik = −bki.

Proof. Using the bilinearity and associativity of β we compute that

aik =
∑
j β(Xj , Yk)aij

= β([Z,Xi], Yk) = −β([Xi, Z], Yk) = −β(Xi, [Z, Yk]) = −
∑
j β(Xi, Yj)bkj = −bki.

Proposition. We have [ϕ(Z), cϕ] = 0 for all Z ∈ L.

Thus the linear operator cϕ : V → L commutes with the action of L on V determined by ϕ.

Proof. Using the preceding lemma, we compute that

[ϕ(Z), cϕ(β)] =
∑
i

[ϕ(Z), ϕ(Xi)ϕ(Yi)]

=
∑
i

[ϕ(Z), ϕ(Xi)]ϕ(Yi) +
∑
i

ϕ(Xi)[ϕ(Z), ϕ(Yi)] =
∑
i,j

(aij + bij)ϕ(Xi)ϕ(Yj) = 0.

Corollary. The following properties hold for the Casimir element of ϕ:

(a) One always has trace(cϕ) = dim(L).

(b) If ϕ is irreducible then cϕ = dim(L)
dim(V ) · idV is a scalar map.

Proof. For part (a), notice that

trace(cϕ) =
∑
i trace(ϕ(Xi)ϕ(Yi)) =

∑
i β(Xi, Yi)︸ ︷︷ ︸

=1

= dim(L).
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If ϕ is irreducible then cϕ acts as a scalar by Schur’s Lemma in view of the preceding proposition.

This scalar is dim(L)
dim(V ) by part (a) since char(F) = 0.

Part (b) of this corollary indicates that cϕ is independent of the basis {Xi} at least when ϕ is irreducible.

Example. Let L = sl2(F) =
{[
a b
c −a

]
: a, b, c ∈ F

}
. Remember that we assume char(F) = 0.

This (simple, hence also semisimple) Lie algebra has basis

E =

[
0 1
0 0

]
, H =

[
1 0
0 −1

]
, and F =

[
0 0
1 0

]
.

Take V = F2 and let ϕ = id : L→ gl(V ).

The basis dual to E, H, F with respect to the bilinear form β(X,Y ) = trace(XY ) is F , 1
2H, E. Therefore

cϕ = EF + 1
2H

2 + FE =

[
3
2 0
0 3

2

]
.

This is a scalar matrix, as we expect since F2 is an irreducible sl2(F)-module.

3 Weyl’s Theorem

We mention one miscellaneous lemma before getting to today’s main theorem.

Lemma. Let ϕ : L → gl(V ) be a finite-dimensional (not necessarily faithful) representation of a finite-
dimensional semisimple Lie algebra L. Then ϕ(L) ⊆ sl(V ). Hence if dim(V ) = 1 then ϕ(L) = 0.

Proof. L = [L,L] by semisimplicity so ϕ(L) = ϕ([L,L]) = [ϕ(L), ϕ(L)] ⊆ [gl(V ), gl(V )] = sl(V ).

The following result is calledWeyl’s theorem. Combining this with our observation that cϕ acts as a scalar
in the irreducible case shows that all Casimir elements of a given finite-dimensional L-representation ϕ
coincide when L is semisimple, that is, cϕ does not depend on the choice of basis {Xi}i∈I for L.

Theorem. Suppose ϕ : L→ gl(V ) is an L-representation, with L semisimple and dim(V ) <∞. Then ϕ
is completely reducible, meaning there exist irreducible L-submodules V1, V2, . . . , Vn such that

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn.

Proof. By replacing L with L/ ker(ϕ), we may assume that ϕ is faithful.

Suppose W ⊆ V is a proper L-submodule.

By induction on dimension we just need to find a complementary L-submodule U such that V =W ⊕U .

We can certainly find a complementary subspace U such that V =W ⊕ U as vector spaces.

The hard part is to find such a subspace that is an L-module.

The argument to construct U has three steps. Here is the first one:
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Claim. Assume W is irreducible and dim(V ) = dim(W ) + 1 so that V =W ⊕ F as vector spaces.

Then there exists a complementary L-submodule U such that V =W ⊕ U .

Proof of the first claim. Let c = cϕ be the Casimir element of ϕ.

Then v 7→ cv is an L-module endormorphism of V .

Since W is an L-submodule and c is in the subalgebra of gl(V ) generated by ϕ(L), we have cW ⊆W .

Additionally the subspace ker(c) = {v ∈ V : czv = 0} is an L-submodule.

By the lemma all 1-dimensional representations of semisimple Lie algebras are trivial.

Therefore L acts trivially on V/W = F.

This means c(V/W ) = 0 so cV ⊆W . Therefore dim(ker(c)) ≥ 1.

But c acts on W as a scalar by Schur’s lemma, and this scalar cannot be zero since

trace(c as a map W →W ) = trace(c as a map V → V ) = dim(L) ̸= 0.

Hence ker(c) ∩W = 0.

As dim(ker(c)) + dim(W ) ≥ dim(V ) we must have V =W ⊕ ker(c).

Thus the desired complementary L-submodule is given by U = ker(c). ■

Here is the next step:

Claim. Assume that dim(V ) = dim(W )+1 so that V =W ⊕F as vector spaces butW is not irreducible.

Then there exists a complementary L-submodule U such that V =W ⊕ U .

Proof of the second claim. In this case there is a nonzero proper submodule W ′ ⊂W .

By induction on dimension V/W ′ =W/W ′ ⊕ Ũ for some L-submodule Ũ ⊂ V/W ′.

Define V ′ to be the preimage of Ũ under the quotient map V → V/W ′.

Then V ′ ⊂ V is a nonzero proper L-submodule containing W ′ and we have Ũ = V ′/W ′.

By induction on dimension V ′ =W ′ ⊕ U for some L-module U .

Then Ũ = V ′/W ′ ∼= U so we have

dim(V )− dim(W ′) = dim(V/W ′) = dim(W/W ′) + dim(Ũ) = dim(W )− dim(W ′) + dim(U)

and thus dim(V ) = dim(W ) + dim(U).

Since V/W ′ =W/W ′ ⊕ V ′/W ′ we have W ∩ U ⊆W ∩ V ′ ⊆W ′.

Thus W ∩ U = (W ∩ U) ∩W ′ =W ∩ (U ∩W ′) =W ∩ 0 = 0.

We conclude that V =W ⊕ U . ■

Finally, we have the last step:
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Claim. Assume that W is an arbitrary L-submodule with dim(V ) ≥ dim(W ) + 1.

Then there exists a complementary L-submodule U such that V =W ⊕ U .

Proof of the third claim. Write X · v = ϕ(X)v for X ∈ L and v ∈ V .

Let Hom(V,W ) be the vector space of linear maps f : V →W .

This becomes an L-module if we define X · f for X ∈ L to be the map sending v 7→ X · f(v)− f(X · v).

Define A = {f ∈ Hom(V,W ) : f |W is a scalar map} and B = {f ∈ Hom(V,W ) : f |W = 0}.

Then A ⊇ B are L-submodules and you can check that L ·A ⊆ B.

Any linear projection V →W is in A but not B, so dim(A) > dim(B).

On the other hand if f, g ∈ A and g /∈ B then f ∈ λg +B for some scalar λ ∈ F so dim(A/B) ≤ 1.

We conclude that dim(A) = dim(B) + 1.

Now by our second claim, there exists a 1-dimensional L-submodule C ⊆ A with A = B ⊕ C.

Choose a nonzero element h ∈ C. After rescaling we may assume that h|W = idW .

Then C = F-span{h} and ker(h) = {v ∈ V : h(v) = 0} is a subspace with

V = image(h)⊕ ker(h) =W ⊕ ker(h).

The subspace ker(h) is in fact an L-submodule, since if v ∈ ker(h) and X ∈ L then X · h ∈ C so

h(X · v) = X · h(v)− (X · h)(v) = X · 0− 0 = 0,

which shows that X · v ∈ ker(h). Thus the claim holds with U = ker(h). ■

The third claim completes our proof of the theorem. □
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