
MATH 5143 — Introduction to Lie algebras (Spring 2026) Lecture 8

1 Review: Weyl’s theorem

Let L be a finite-dimensional Lie algebra over an algebraically closed field F with char(F) = 0.

An L-representation is a Lie algebra morphism ϕ : L → gl(V ) for some vector space V .

An L-module is a vector space V with a bilinear map L× V → V , written (X, v) 7→ X · v, that has

[X,Y ] · v = X · (Y · v)− Y · (X · v) for all X,Y ∈ L and v ∈ V.

Assume L is semisimple, meaning that L has no nonzero solvable ideals. Recall that this implies that

L = L1 ⊕ L2 ⊕ · · · ⊕ Ln

where each Li is a simple ideal (that is, each Li is non-abelian and contains no proper ideals).

Theorem (Weyl’s Theorem). Every finite-dimensional L-module is completely reducible.

Also proved last time: if ϕ : L → gl(V ) is any L-representation, then ϕ(L) ⊆ sl(V ) ⊆ gl(V ).

Consequently, if ϕ : L → gl(V ) is an L-representation and dim(V ) = 1, then ϕ(L) = 0 since sl(V ) = 0.

2 Abstract Jordan decomposition

Continue to assume L is finite-dimensional and semisimple.

As Z(L) = {X ∈ L : adX = 0} is a solvable ideal, we have Z(L) = 0 so ad : L → gl(L) is faithful.

Recall that if V is a vector space with dim(V ) < ∞ then X ∈ gl(V ) has a unique Jordan decomposition

X = Xss +Xnil

where Xss ∈ gl(V ) is semisimple, Xnil ∈ gl(V ) is nilpotent, and [Xss, Xnil] = 0.

Define the abstract Jordan decomposition of X ∈ L to be

X = Xabs
ss +Xabs

nil

where Xabs
ss , Xabs

nil ∈ L are the unique elements such that

ad(Xabs
ss ) = (adX)ss and ad(Xabs

nil ) = (adX)nil.

Here (adX)ss and (adX)nil are the semisimple and nilpotent parts of adX in gl(L).

This new notation turns out to be redundant:

Theorem. Suppose L ⊆ gl(V ) for some finite-dimensional vector space V . Let X ∈ L.

Then the components Xss and Xnil of the Jordan decomposition of X (as an element of gl(V )) are in L.

Hence Xss = Xabs
ss and Xnil = Xabs

nil are also the components of the abstract Jordan decomposition of X.
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Proof sketch. Given the properties of the Jordan decomposition, we just need to prove that Xss, Xnil ∈ L.

This is nontrivial since although we know that Xss and Xnil are polynomials in X, this does not imme-
diately imply that Xss, Xnil ∈ L since L is not necessarily an associative subalgebra of gl(V ).

The vector space V is an L-module since L ⊆ gl(V ).

For each L-submodule W ⊆ V define LW = {Y ∈ gl(V ) : Y ·W ⊆ W and traceW (Y ) = 0}.

Since L = [L,L] as L is semisimple, we have L ⊆ LW . Define

L′ =
⋂

W LW ∩Ngl(V )(L) ⊆ L

where Ngl(V )(L) = {Y ∈ gl(V ) : [Y,L] ⊆ L} and the intersection is over all L-submodules W ⊆ V .

The Jordan components Xss and Xnil are polynomials in X without constant term.

We therefore have Xss, Xnil ∈ LW all L-submodules W ⊆ V since

traceW (Xss) = traceW (X) and traceW (Xnil) = 0.

We showed in an earlier lecture that adXss
= (adX)ss and adXnil

= (adX)nil.

Thus adXss
and adXnil

are also polynomials in adX without constant term.

As adX(L) ⊆ L we conclude that Xss, Xnil ∈ Ngl(V )(L).

Thus Xss, Xnil ∈ L′ and it suffices to show that L = L′.

One can derive this as a consequence of Weyl’s theorem ; see the textbook for the details.

From this point on, we write X = Xss +Xnil for the abstract Jordan decomposition of X ∈ L.

This notation is unambiguous (even when L ⊆ gl(V )) by the previous theorem.

Theorem. Suppose ϕ : L → gl(V ) is a representation of a semisimple Lie algebra.

Assume dim(L) < ∞ and dim(V ) < ∞.

Then for any X ∈ L with abstract Jordan decomposition X = Xss +Xnil, the expression

ϕ(X) = ϕ(Xss) + ϕ(Xnil)

is the Jordan decomposition of ϕ(X) ∈ gl(V ).

Proof sketch. When ϕ = ad this claim is how we define the abstract Jordan decomposition.

The preceding theorem covers the base case when ϕ = id.

For general ϕ, note that if Y ∈ L is an eigenvector for adXss
then ϕ(Y ) is an eigenvector for adϕ(Xss) as

adϕ(Xss)(ϕ(Y )) = [ϕ(Xss), ϕ(Y )] = ϕ([Xss, Y ]) = ϕ(adXss
(Y )).

Therefore ϕ(L) has a basis of eigenvectors for adϕ(Xss) since L does for adXss
.

Thus adϕ(Xss) is semisimple. One can check similarly that adϕ(Xnil) is nilpotent, and we have

[ϕ(Xss), ϕ(Xnil)] = ϕ([Xss, Xnil]) = ϕ(0) = 0.

As ϕ(L) is semisimple, our base case implies that ϕ(Xss) = ϕ(X)ss and ϕ(Xnil) = ϕ(X)nil.
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3 Representations of sl2(F)
Continue to let F be algebraically closed with char(F) = 0. Recall that

sl2(F) =
{[

a b
c −a

]
: a, b, c ∈ F

}
has standard basis

E =

[
0 1
0 0

]
, H =

[
1 0
0 −1

]
, F =

[
0 0
1 0

]
,

for which we have Lie bracket relations

[H,E] = 2E, [H,F ] = −2F, and [E,F ] = H.

Our second goal today is to classify the irreducible modules of this simple Lie algebra.

Let V be a finite-dimensional sl2(F)-module. Since adH is semisimple, the theorems in the preceding
section imply that H acts on V as a semisimple operator, so we can decompose

V =
⊕
λ∈F

Vλ where Vλ = {v ∈ V : Hv = λv}.

This property relies of F being algebraically closed, so that all eigenvalues for H are present.

We refer to the eigenvalues λ for H as weights and the nonzero subspaces Vλ as weight spaces.

Lemma. If v ∈ Vλ then Ev ∈ Vλ+2 and Fv ∈ Vλ−2.

Proof. We have HEv = [H,E]v + EHv = (2 + λ)Ev and HFv = [H,F ]v + FHv = (−2 + λ)Fv.

Assume our sl2(F)-module V is irreducible with 0 < dim(V ) < ∞.

Then there must exist at least one λ ∈ F with Vλ ̸= 0 = Vλ+2.

For this λ we have Ev = 0 for all v ∈ Vλ.

We call the nonzero elements of this weight space Vλ the maximal weight vectors of V .

Lemma. Choose a maximal weight vector v0 ∈ Vλ and define v−1 = 0 and vi =
1
i!F

iv0 for i ≥ 0. Then:

(a) Hvi = (λ− 2i)vi.

(b) Fvi = vi+1.

(c) Evi = i(λ− i+ 1)vi−1.

Proof. Part (a) follows from the previous lemma.

Part (b) holds by definition.

Part (c) follows as an exercise from (a) and (b) by induction on i.

The nonzero vectors vi are linearly independent since they are H-eigenvectors with distinct eigenvalues.

Since dim(V ) < ∞, there exists a smallest m such that vm ̸= 0 and vm+1 = 0. Then we must have

V = F-span{v0, v1, v2, . . . , vm}
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since V is irreducible and the space on the right is an sl2(F)-submodule by the previous lemma.

In the basis v0, v1, v2, . . . , vm for V the elements H, E, and F respectively act as diagonal, strictly
upper-triangular, and strictly lower-triangular matrices.

Moreover, we have 0 = E0 = Evm+1 = (m+ 1)(λ−m)vm by the lemma.

Corollary. We have λ = m ∈ Z≥0 and so the weight of any highest weight vector in an irreducible,
finite-dimensional sl2(F)-module V is a nonnegative integer.

We call this integer λ the highest weight of the sl2(F)-module V .

Theorem. Let V be an irreducible sl2(F)-module with dim(V ) = m+ 1 < ∞. Then:

(a) V = V−m ⊕ V−m+2 ⊕ · · · ⊕ Vm−2 ⊕ Vm where Vi = {v ∈ V : Hv = iv} has dim(Vi) = 1 for all

i ∈ {−m,−m+ 2, . . . ,m− 2,m}.

(b) V has a unique highest weight space, and this weight space has weight m.

(c) For each m ≥ 0 there is a unique irreducible sl2(F)-module of dimension m+1, up to isomorphism.

Proof. Parts (a) and (b) were derived in the discussion above.

To prove part (c), it suffices to check existence, namely, that the formulas for the action of E, F , and H
in the preceding lemma define an sl2(F)-module for all λ ∈ Z≥0. For this, one needs to verify that

[X,Y ] · vi = X · (Y · vi)− Y · (X · vi)

for all X,Y ∈ {E,F,H}, and this is a straightforward calculation.

If dim(V ) = m+ 1 is odd then V looks like

V−m
F−−−→ V−m+2

F−−−→ · · · F−−−→ V−2
F−−−→ V0

F−−−→ V2
F−−−→ · · · F−−−→ Vm−2

F−−−→ Vm

while if dim(V ) = m+ 1 is even the V looks like

V−m
F−−−→ V−m+2

F−−−→ · · · F−−−→ V−1
F−−−→ V1

F−−−→ · · · F−−−→ Vm−2
F−−−→ Vm.

Here each arrow is an isomorphism of 1-dimensional subspaces afforded by the action of the generator F .

Thus exactly one of V0 or V1 is nonzero (and 1-dimensional) when V is irreducible.

Since sl2(F) is semisimple (as it is simple), these observations plus Weyl’s theorem imply the following:

Corollary. Let V be a finite-dimensional sl2(F)-module.

Then H ∈ sl2(F) acts on V as a semisimple operator whose eigenvalues are integers.

If λ is one of these eigenvalues, then so is −λ. Finally, if

Vλ = {v ∈ V : Hv = λv}

then the number of summands in any irreducible decomposition of V is dim(V0) + dim(V1).

4


	Review: Weyl's theorem
	Abstract Jordan decomposition
	Representations of sl2(F)

