MATH 5143 — Introduction to Lie algebras (Spring 2026) Lecture 8

1 Review: Weyl’s theorem

Let L be a finite-dimensional Lie algebra over an algebraically closed field F with char(F) = 0.
An L-representation is a Lie algebra morphism ¢ : L — gl(V) for some vector space V.

An L-module is a vector space V with a bilinear map L x V' — V| written (X,v) — X - v, that has

X, Y] v=X (Y -v)-Y - (X-v) forall X,;)Ye€LandveVW

Assume L is semisimple, meaning that L has no nonzero solvable ideals. Recall that this implies that
L=L1®L® - DLy

where each L; is a simple ideal (that is, each L; is non-abelian and contains no proper ideals).
Theorem (Weyl’s Theorem). Every finite-dimensional L-module is completely reducible.

Also proved last time: if ¢ : L — gl(V') is any L-representation, then ¢(L) C sl(V') C gl(V).
Consequently, if ¢ : L — gl(V) is an L-representation and dim(V') = 1, then ¢(L) = 0 since s[(V) = 0.

2 Abstract Jordan decomposition

Continue to assume L is finite-dimensional and semisimple.

As Z(L) ={X € L : adx = 0} is a solvable ideal, we have Z(L) = 0 so ad : L — gl(L) is faithful.

Recall that if V' is a vector space with dim(V') < oo then X € gl(V) has a unique Jordan decomposition
X = Xss + Xua

where X € gl(V) is semisimple, X,; € gl(V) is nilpotent, and [Xgs, Xpnu] = 0.

Define the abstract Jordan decomposition of X € L to be

X = Xajbs + Xabs

nil

where X2Ps, Xsﬁs € L are the unique elements such that

ad(XijS) = (adx)ss and ad(XﬁﬁS) = (adx )nil-

Here (adx)ss and (adx)ni are the semisimple and nilpotent parts of adx in gl(L).
This new notation turns out to be redundant:

Theorem. Suppose L C gl(V) for some finite-dimensional vector space V. Let X € L.
Then the components X and Xy; of the Jordan decomposition of X (as an element of gl(V')) are in L.

Hence X = X:;bs and X, = Xﬁﬁs are also the components of the abstract Jordan decomposition of X.
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Proof sketch. Given the properties of the Jordan decomposition, we just need to prove that Xgs, Xyuj € L.

This is nontrivial since although we know that X and X,; are polynomials in X, this does not imme-
diately imply that X, Xni € L since L is not necessarily an associative subalgebra of gl(V').

The vector space V' is an L-module since L C gl(V).
For each L-submodule W C V define Ly = {Y € gl(V): Y - W C W and tracew (Y') = 0}.
Since L = [L, L] as L is semisimple, we have L C Ly,. Define
L' = w Lw N Ny (L) C L
where Ngyvy(L) = {Y € gl(V) : [Y, L] € L} and the intersection is over all L-submodules W C V.

The Jordan components Xg and X,;; are polynomials in X without constant term.
We therefore have Xy, X151 € Ly all L-submodules W C V' since

tracey (Xgs) = tracew (X) and tracey (Xyi) = 0.

We showed in an earlier lecture that adyx,, = (adx)ss and adyx,,, = (adx)nir-

Thus ady_, and adx,, are also polynomials in adx without constant term.

nil

As adx (L) C L we conclude that X, Xuni € Ngyv)(L).

Thus X, Xni € L’ and it suffices to show that L = L'.

One can derive this as a consequence of Weyl’s theorem ~» see the textbook for the details. O

From this point on, we write X = Xg + Xy, for the abstract Jordan decomposition of X € L.

This notation is unambiguous (even when L C gl(V')) by the previous theorem.

Theorem. Suppose ¢ : L — gl(V) is a representation of a semisimple Lie algebra.
Assume dim(L) < oo and dim(V) < oo.

Then for any X € L with abstract Jordan decomposition X = X + X5, the expression
¢(X) = ¢(X:>:>) + ¢(Xni1)
is the Jordan decomposition of ¢(X) € gl(V).

Proof sketch. When ¢ = ad this claim is how we define the abstract Jordan decomposition.

The preceding theorem covers the base case when ¢ = id.

For general ¢, note that if Y € L is an eigenvector for adx_, then ¢(Y') is an eigenvector for adyx_) as

ady(x,.) (2(Y)) = [p(Xss), (V)] = o([Xss, Y]) = dladx.,. (V).

Therefore ¢(L) has a basis of eigenvectors for ady(x,,) since L does for adx_,.

Thus adyx.,.) is semisimple. One can check similarly that ady(x,,) is nilpotent, and we have

[¢(Xss)a ¢(Xni1)] = ¢([XSSaXrlil]) = (25(0) =0.

As ¢(L) is semisimple, our base case implies that ¢(Xss) = ¢(X)ss and ¢(Xni) = &(X)nir- O
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3 Representations of sl ()

Continue to let F be algebraically closed with char(F) = 0. Recall that

sly(F) = H‘C‘ _ba} :a7b7c€IE‘}

0 1 10 0 0
S R A

for which we have Lie bracket relations

has standard basis

[H,E)=2E, [H F]=-2F, and [E,F]=H.

Our second goal today is to classify the irreducible modules of this simple Lie algebra.

Let V be a finite-dimensional sly(F)-module. Since ady is semisimple, the theorems in the preceding
section imply that H acts on V as a semisimple operator, so we can decompose

V=@Vs where Vi={veV:Hv= v}
A€F

This property relies of F being algebraically closed, so that all eigenvalues for H are present.

We refer to the eigenvalues A for H as weights and the nonzero subspaces V) as weight spaces.

Lemma. If v € V) then Fv € V)45 and Fv € V) _,.

Proof. We have HEv = [H,EJv+ EHv = (2+ X\)Ev and HFv = [H,Flv+ FHv = (=24 \)Fv. O

Assume our sl3(F)-module V is irreducible with 0 < dim(V') < .
Then there must exist at least one A € F with V) # 0 = V) 4a.
For this A we have Ev = 0 for all v € V).

We call the nonzero elements of this weight space V) the mazimal weight vectors of V.

Lemma. Choose a maximal weight vector vg € V), and define v_; = 0 and v; = %Fivo for 4 > 0. Then:
(a) Hv; = (A — 20)v;.
(b) Fv; = viy1.
(¢) Bv;=i(A—i+ 1)v;_1.

Proof. Part (a) follows from the previous lemma.
Part (b) holds by definition.

Part (c) follows as an exercise from (a) and (b) by induction on i. O

The nonzero vectors v; are linearly independent since they are H-eigenvectors with distinct eigenvalues.

Since dim(V') < oo, there exists a smallest m such that v,, # 0 and v,,,41 = 0. Then we must have

V' = F-span{vg, v1,v2, ..., Um}
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since V is irreducible and the space on the right is an sls(F)-submodule by the previous lemma.

In the basis vg,v1,v9,...,v, for V the elements H, E, and F' respectively act as diagonal, strictly
upper-triangular, and strictly lower-triangular matrices.

Moreover, we have 0 = EQ = Evy, 41 = (m + 1)(A — m)v,, by the lemma.

Corollary. We have A\ = m € Z>o and so the weight of any highest weight vector in an irreducible,
finite-dimensional sly(IF)-module V' is a nonnegative integer.

We call this integer A the highest weight of the sly(F)-module V.

Theorem. Let V' be an irreducible sly(F)-module with dim(V) =m + 1 < co. Then:
@) V=V_p®Vopio® - D Vo ®V,, where V; = {v € V: Hv =iv} has dim(V;) =1 for all

ie{-m,—m+2,...,m—2m}.

(b) V has a unique highest weight space, and this weight space has weight m.

(c¢) For each m > 0 there is a unique irreducible sl (F)-module of dimension m + 1, up to isomorphism.

Proof. Parts (a) and (b) were derived in the discussion above.

To prove part (c), it suffices to check existence, namely, that the formulas for the action of F, F', and H
in the preceding lemma define an sy (IF)-module for all A € Z>(. For this, one needs to verify that

X, Y] v, =X - (Y ) - Y- (X -v)

for all X,Y € {E, F, H}, and this is a straightforward calculation. O

If dim(V) = m + 1 is odd then V looks like

Vo — = Voga —— - = Vg = Vg == Vo = - 5 Vg —— Vi
while if dim(V) =m + 1 is even the V looks like
Vi ——Vopgr —— oo v, Ly s sy v

Here each arrow is an isomorphism of 1-dimensional subspaces afforded by the action of the generator F.

Thus exactly one of V or V; is nonzero (and 1-dimensional) when V' is irreducible.

Since slo(F) is semisimple (as it is simple), these observations plus Weyl’s theorem imply the following:

Corollary. Let V be a finite-dimensional sl (IF)-module.
Then H € sly(FF) acts on V' as a semisimple operator whose eigenvalues are integers.

If X\ is one of these eigenvalues, then so is —A. Finally, if
W={veV:Hv=M\v}

then the number of summands in any irreducible decomposition of V' is dim (V) + dim(V;).
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