
The Mysterious Dilogarithm

Ivan Ip

Department of Mathematics
Yale University

December 12, 2008



Dilogarithm

Introduction

De�nition

De�nition

The Taylor series of the logarithm around 1 is given by

� log(1� x) =
1X
n=1

xn

n
for 0 < x < 1;

By analogy, we have:

De�nition (Leibnitz 1696; Euler 1768)

The polylogarithm is de�ned by the power series

Lim(x) =
1X
n=1

xn

nm
for 0 < x < 1:

Li2(x) is called the dilogarithm function.
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From the de�nition, it is clear that:

d

dx
Lim(x) =

1

x
Lim�1(x) m � 2

Hence we can give an analytic continuation of the dilogarithm
by:

De�nition

Li2(z) = �
Z z

0
log(1� u)

du

u
for z 2 C n [1;1)
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Functional Equation

Basics

Re
ection properties

Proposition

Li2(
1

z
) + Li2(z) = ��

2

6
� 1

2
log2(�z)

Li2(1� z) + Li2(z) =
�2

6
� log(z) log(1� z)

Proof: Di�erentiating both sides.
Applying these formula, we see that the 6 functions:

Li2(z);Li2(
1

1� z
);Li2(

z � 1

z
);�Li2(1

z
);�Li2(1� z);�Li2( z

z � 1
)

are equal modulo elementary functions.
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Functional Equation

Basics

Duplication formula

Proposition (Duplication formula)

Li2(z
2) = 2(Li2(z) + Li2(�z))

and more generally the "distribution property":

Li2(x) = n
X
zn=x

Li2(z) (n = 1; 2; 3:::)
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Special Values

Proposition

There are exactly 8 values of z for which z and Li2(z) can both be given
in closed form:

Li2(0) = 0

Li2(1) =
�2

6

Li2(�1) = ��
2

12

Li2(
1

2
) =

�2

12
� 1

2
log2(2)

Li2(�) =
�2

10
� log2(��1)

Li2(��) = ��
2

15
� 1

2
log2(��1)

Li2(�
�1) =

�2

15
� log2(��1)

Li2(���1) = ��
2

10
� 1

2
log2(��1)

where � =
p
5�1
2 is the golden ratio.
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Five-Term Relation

Five-Term Relation

Let's consider the recurrence relation

1� zn = zn�1zn+1

If we let the initial values to be z0 = x; z1 = 1� xy (so z2 = y), then we
have:

z3 =
1� z2
z1

=
1� y

1� xy

z4 =
1� z3
z2

=
1� x

1� xy

z5 =
1� z4
z3

= x

z6 =
1� z5
z4

= 1� xy

:::

so this recurrence relation actually has period 5!
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Five-Term Relation

Five-Term Relation

The most important functional equation is the following:

Theorem (Spence(1809), Abel(1827), Hill(1828),
Kummer(1840),Schae�er(1846)...)

Li2(x) + Li2(1� xy) + Li2(y) + Li2(
1� y

1� xy
) + Li2(

1� x

1� xy
)

=
�2

6
� log(x) log(1�x)� log(y)(1�y)+log(

1� x

1� xy
) log(

1� y

1� xy
)

The right hand side is a junk | they can be removed by giving
an equivalent but modi�ed de�nition of the dilogarithm
function.
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Bloch-Wigner Dilogarithm D(z)

De�nition

Bloch-Wigner function D(z)

Li2(z) has a jump by 2�i log jzj across the cut.

Therefore Li2(z) + i arg(1� z) log jzj is continuous.

De�nition

The Bloch-Wigner function D(z) is de�ned by

=(Li2(z)) + arg(1� z) log jzj
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Bloch-Wigner Dilogarithm D(z)

De�nition

Bloch-Wigner function D(z)

D(z) is real analytic on C except at 0 and 1.

(Kummer)

D(z) =
1

2

�
D(

z

�z
) +D(

1� 1=z

1� 1=�z
) +D(

1=(1� z)

1=(1� �z)
)

�
i.e. D(z) only depends on its value on the unit circle:

D(ei�) = =[Li2(ei�)] =
1X
n=1

sinn�

n2
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Bloch-Wigner Dilogarithm D(z)

De�nition

Bloch-Wigner function D(z)

All functional equations for Li2(z) lose the elementary terms. In
particular:

(6-fold symmetry)

D(z) = D(
1

1� z
) = D(

z � 1

z
)

= �D(
1

z
) = �D(1� z) = �D(

z

z � 1
)

(5-term relation)

D(x) +D(1� xy) +D(y) +D(
1� y

1� xy
) +D(

1� x

1� xy
) = 0
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De�nition

Bloch-Wigner function D(z)

The relation become even nicer if we write D in terms of
cross-ratio of 4 numbers:

eD(z0; z1; z2; z3) = D

�
z0 � z2
z0 � z3

z1 � z3
z1 � z2

�
(z0; z1; z2; z3 2 C)

Then:

"6-fold symmetry" says that eD is (anti)invariant under
(odd)even permutation of its 4 variabes,

"5-term relation" becomes

4X
i=0

(�1)i eD(z0; :::; ẑi; :::; z4) = 0 (z0; :::; z4 2 P1(C))
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De�nition

5 term relation

The 5 term relation plays an important role:

Theorem

D(z) is the unique measurable function on P1(C) (up to
constant) satisfying the 5 term relation.

Theorem (Wojtkowiak)

Every functional equation of the form
P

iD(xi(t)) = C is a
formal consequence of the 5 term relation.
Here xi(t) is a rational funciton in t, and C is a constant.

All applications onward will be related to THE 5-term relation.
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Ideal Tetrahedra

Let's realize the hyperbolic 3-space as H3 = C� R+ with
standard hyperbolic metric.

(i.e. geodesics = vertical lines/semicircles in vertical planes
with endpoints in C� f0g etc.)

De�nition

An ideal tetrahedron is a tetrahedron whose vertices are all in
@H3 = C [ f1g = P1(C)
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Hyperbolic Geometry

Ideal Tetrahedra

How does Ideal Tetrahedra look like?
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Ideal Tetrahedra

Theorem (Lobachevsky)

The hyperbolic volume of an ideal tetrahedron is �nite, and is
given by

V ol(�) = eD(z0; z1; z2; z3)

Then:

"6-fold symmetry" follows from the fact that renumbering
the vertices leaves � unchanged but may change the
orientation.

"5-term relation" follows from the fact that the �ve �'s
spanned by 4 at a time of z0; :::; z4 2 P1(C), with signs, add
up algebraically to a zero 3-cycle.
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Ideal Tetrahedra

Volume of Hyperbolic 3-manifold

It turns out that the group SL2(C) acts on H3 by isometries, and
it can always bring fz0; z1; z2; z3g into the form f1; 0; 1; zg.

Then the formula reduce to

V ol(�) = D(z):

Every complete oriented hyperbolic 3-manifold with �nite volume
can be triangulated into ideal tetrahedra.

V ol(M) =
nX

v=1

V ol(�v) =
nX

v=1

D(zv)

Theorem (J�rgensen and Thurston)

The "volume spectrum"

Vol=fVol(M)jM a hyperbolic 3-manifoldg� R+

is a countable and well-ordered subset of R+.
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Ideal Tetrahedra

Bloch Group

The parameters zv of the tetrahedra triangulation need to
satisfy

nX
v=1

zv ^ (1� zv) = 0

in the abelian group
V2

C�.

Here
V2

C� is the set of all formal linear combinations
x ^ y; x; y 2 C� subject to the relations

x ^ x = 0

and
(x1x2) ^ y = x1 ^ y + x2 ^ y:
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Ideal Tetrahedra

Bloch Group

Consider the abelian group of formal sums [z1] + :::+ [zn]
with zi 2 C� n f1g satisfying

Pn
v=1 zv ^ (1� zv) = 0.

Then it contains the elements:

[x] + [
1

x
]; [x] + [1� x];

[x] + [1� xy] + [y] + [
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] + [

1� x
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corresponding to the symmetries and 5-term relation for D(z).
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group with the subgroup generated by the elements (�)
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Ideal Tetrahedra

Bloch Group

It follows that D extends to a linear map

D : BC �! R

by
[z1] + :::+ [zn] 7! D(z1) + :::+D(zn)

Theorem (Bloch)

The set D(BC) coincides with D(B�Q).
In particular, Vol is countable.
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De�nition

Dedekind Zeta Function

De�nition

The Dedekind Zeta Function of a number �eld F is de�ned as

�F (s) =
Y

p�OF

�
1� 1

(Np)s

��1
=
X
a�OF

1

(Na)s

where OF is the number ring of F , and Na = jOF =aj is the
norm of a.

When F = Q, this is just the Riemann Zeta function:

�(s) =
Y
p

�
1� 1

ps

��1
=
X
n2Z

1

ns
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Examples

Examples

Let F = Q(
p�a) with a � 1 square free.

The discriminant of F is d = �a or �4a
(depending on a( mod 4))

Then
�F (s) = �(s)L(s)

where

L(s) =
X
n�1

�
d

n

�
n�s

is the L-series.

Here
�
d
n

�
is the Kronecker Symbol, taking values �1 or 0

and periodic with period jdj in n.
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For a = �7, we have:

�Q(
p�7)(s) =

 1X
n=1

n�s
! 1X

n=1

��7
n

�
n�s

!

��7
n

�
=

8<:
+1 n � 1; 2; 4( mod 7)
�1 n � 3; 5; 6( mod 7)
0 n � 0( mod 7)
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Examples

One of the questions of interest is the evaluation of the
Dedekind Zeta Function at integer arguments.

It is well known that �F (1) can be expressed using the
usual logarithm (through a term called regulator).

We expect that �F (2) can be expressed using dilogarithm
also.
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�F (2) = �(2)L(2) =
�2

6

X
n�1

�
d

n

�
n�2

Since
�
d
n

�
is periodic in n, we can write it as �nite linear

combinations of e2�ikn=jdj and obtain:

�F (2) =
�2

6
p
jdj

jdj�1X
k=1

�
d

k

�
D(e2�ik=jdj)

For example:

�Q(
p�7)(2) =

�2

3
p
7
(D(e2�i=7) +D(e4�i=7)�D(e6�i=7))

expressing �F (2) in closed form using D(z) at algebraic arguments
z.
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By considering � = SL2(OF ) as a discrete subgroup of SL2(C),
hence acts on H3:

Theorem (Humbert, Zagier)

V ol(H3=�) = jdj3=2�F (2)=4�2

and H3=� can be triangulated into ideal tetrahedra with vertices on
P1(F ) � P1(C).

Hence

�F (2) =
�2

3jdj3=2
X
v

nvD(zv)

where nv 2 Z and zv 2 F , a much smaller �eld than
Q(e2�in=jdj).
For example:

�Q(
p�7)(2) =

4�2

21
p
7

�
2D(

1 +
p�7
2

) +D(
�1 +p�7

4
)

�
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Algebraic K Theory

Algebraic K Theory

For general number �eld F with r1 real and r2 pairs of complex
embeddings, the relation between D(z) and �F (2) is given nicely
through the use of Algebraic K Theory by A. Borel.

Theorem (A. Borel)

The Bloch Group for F : BF is isomorphic to a some quotient
of K3(F ).
BF /ftorsiong' Zr2

The image of the map BF �! Br2C
D�! Rr2 after torsion, has

co-volume:

cjdj1=2�F (2)=�2r1+2r2 for some c 2 Q

Here the �rst map corresponds to the r2 di�erent complex
embeddings of F to C.
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Algebraic K Theory

Algebraic K Theory

Conjecture (Lichtenbaum)

The rational multiple c is related to

jK3(F )torsionj
jK2(OF )j

There exists e�cient algorithm to produce many elements
in BF , and jK3(F )torsionj is also easy (not for me...) to
determine.

So the mysterious dilogarithm gives, at least conjecturally,
an e�ective way of calculating the orders of certain groups
in algebraic K-theory!
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De�nition

Rogers dilogarithm L(z)

Another version of dilogarithm, taking real arguments, is more
common in physical literature:

De�nition

The Rogers dilogarithm is de�ned as

L(x) := Li2(x) +
1

2
log(x) log(1� x)

= �1

2

Z x

0

�
log(1� y)

y
+

log y

1� y

�
dy

and has an analytic continuation to C n ((�1; 0] [ [1;1)).
Furthermore, L(x) belongs to the class C1((0; 1)).
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De�nition

Rogers dilogarithm

The �ve-term relation is now simpli�ed to:

L(x) + L(1� xy) + L(y) + L(
1� y

1� xy
) + L(

1� x

1� xy
) =

�2

2

where 0 < x; y < 1.

Theorem

L(x) is the unique function in C3((0; 1)) that satis�es the
�ve-term relation.

De�nition

L(x) is extended to the rest of R by setting L(0) = 0; L(1) = �2

6 ,

L(x) =

�
2L(1)� L(1=x) if x > 1
�L(x=(x� 1)) if x < 0
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De�nition

Rogers dilogarithm

Modulo �2

2 , this function is "continuous" at 1, and the
�ve-term relation holds.

Every "nice" functional equations is again a consequence of
the �ve-term relation.
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Conformal Field Theory

Conformal Field Theory

The Rogers dilogarithm L(x) is well known in the physics
literature, especially in rational conformal �eld theory.

For example, consider the identity:

[k=2]X
i=1

L

 
sin2 �

k+2

sin2 (i+1)�
k+2

!
= L(1)

k � 1

k + 2

The right hand side is related to the e�ective central charge
of the SU(2) level k WZW model,

on the left hand side, the expression (Jones indices):
sin

(i+1)�
k+2

sin �
k+2

is the "quantum dimensions" of the primary �elds

of this WZW theory.
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Modular Function

Modular Function

a q Hypergeometric series is (roughly) a series of the formP1
n=0An(q) where

An(q)
An�1(q)

is rational function of q

One question of interest in q-hypergeometric series is that
when is it a modular function? (Here q = e2�iz)

Consider the r-fold q-hypergeometric series de�ned by:

fA;B;C(z) =
X

n2(Z�0)r

q
1
2
ntAn+Btn+C

(q)n1 :::(q)nr
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If we consider the r equations in r unknown:

1�Qi =
rY

j=1

Q
aij
j (i = 1; :::; r)

Let Q1; :::; Qr be the solution, and consider the element:

�Q = [Q1] + :::+ [Qr] 2 Z[F ]

(F = Q(Q1; :::; Qr))
Then this element is in the Bloch Group BF .

Conjecture (Nahm)

Given positive de�nite symmetric r � r matrix A, the following is
equivalent:

The element �Q is torsion in BF for every solution Q = (Qi)
There exists B 2 Qr; C 2 Q such that fA;B;C(z) is a modular
function.
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Torsion in BF means the value of L(x) is rational multiple
of �2.

L(x) also appears in the asymptotic analysis for fA;B;C :
L(1)� L(Q) is the leading coe�cient for the series when
q = e�� �! 1 as �& 0.

This conjecture is motivated from physics: all modular
functions fA;B;C obtained in this way should be characters
of rational conformal �eld theories.

In some special cases, the proof uses Quantum Dilogarithm.
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Quantum Dilogarithm

q Generalization of the Dilogarithm function (jqj < 1)

De�nition (Faddeev)

Sq(w) =
1Y
n=0

(1 + q2n+1w)

= 1 +
1X
k=0

(�1)kq k(k�1)2 wk

(q � q�1):::(qk � q�k)

= exp
1X
k=1

(�1)kwk

k(qk � q�k)

They are the same because they satisfy:
Sq(qw)

Sq(q�1w)
= 1

1+w and Sq(0) = 1.

The �rst expression says Sq(w) is like a Gamma function
The second expression says Sq(w) is like an Exponential function
The last expression says Sq(w) is like a Dilogarithm function!
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Quantum 5-term relation

Theorem

If uv = q2vu is a Weyl pair, then:

Sq(u)Sq(v) = Sq(u+ v)

Sq(v)Sq(u) = Sq(u)Sq(q
�1uv)Sq(v)

These are proven formally using the power series expansion.

The last relation reduced to the 5-term relation in a
suitable q �! 1 limit.
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Knot Invariant

The Quantum 5-term relation is used to prove braid
relation:

De�ne
�(w) = Sq(qw)Sq(q

�1w�1)

Then for the Weyl pair it satis�es the Braid Relation:

�(u)�(v)�(u) = �(v)�(u)�(v)

Using this fact, Hikami constructed a Knot Invariant
related to the complement of the hyperbolic volume of
links.
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Quantum Group

More importantly, the Quantum Dilogarithm is used to
construct the Universal R-matrix of SLq(2), the most
important component of Quantum Group Theory:

Theorem (Drinfeld)

For the quantum group SLq(2) = hK = qH ;K 0; e; fi, the
Universal R Matrix is given by:

R = q�
H
H0

2 Sq(�(q � q�1)2e
 f) 2 Uq 
 Uq
satisfying the Yang-Baxter Relation:

R12R13R23 = R23R13R12
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Many Other Applications...

Combinatorial formula for characteristic classes

(Gel'fand, MacPherson...)

Cohomology of GLn(C)

(A. Borel, Dupont, Quillen...)

Rogers-Ramanujan's type identities, asymptotic behavior of

partitions

(Ramanujan, Hardy, Littlewood...)

Representation Theory of in�nite dimensional Lie Algebra

(Lepowsky, Kac, Fuchs, E.Frenkel...)

Exactly Solvable Models

(Baxter, Kirillov, Reshetikhin...)

Feynman Integral of Ladder Diagrams

(Ussyukina, Davydvchev...)

and much more...



Dilogarithm

Conclusion

Conclusion

"The dilogarithm function is the only mathematical function
with a sense of humor."

{ Don Zagier
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