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Introduction Motivation

Motivation

Let g be a simple Lie algebra, and gc it’s compact form.
(e.g. for type An, g = SL(n + 1, C) and gc = SU(n + 1).)

Representation theory has nice properties:

Finite dimensional representations Vλ parametrized by
λ ∈ P+ ⊂ h∗R (positive weights),

Peter Weyl: C[G] '
⊕

λ

Vλ ⊗ V ∗
λ ,

Closed under tensor product: Vλ ⊗ Vµ '
⊕

ν

cν
λµVν .

These also hold for compact quantum groups Uq(gc).
Existence of universal R matrix =⇒ Braided Tensor Category.
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Introduction Motivation

Motivation

Considering the split real form gR
(e.g. for type An, g = SL(n + 1, C) and gR = SL(n + 1, R).)

The situation is not so nice...

Example:
(SL(2, R)): Pλ ⊗ Pµ '

⊕
Pν
⊕

(discrete series)...

L2(SL(2, R)) '
∫ ⊕

Pλ ⊗ P ∗
λdλ

⊕
(discrete series)...

Parametrization: we can restrict to principal series associated to Borel
subalgebra bR, parametrized by R+-span of P+.
(Minimal principal series)
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Introduction Motivation

Uq(sl(2, R))

Let us first recall the definition of Uq(sl(2, R)):

Definition (Drinfel’d-Jimbo)

Let q = eπib2 , |q| = 1, b2 ∈ (0, 1) \Q.
Uq(sl(2, R)) is the Hopf-* algebra generated by E,F, K such that

KE = q2EK, KF = q−2FK, [E,F ] =
K −K−1

q − q−1

K∗ = K, E∗ = E, F ∗ = F

Coproduct: ∆(K) = K ⊗K

∆(E) = E ⊗K + 1⊗ E, ∆(F ) = F ⊗ 1 + K−1 ⊗ F,

For higher rank, also EiFj = qaijFjEi, Serre relations etc.
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Introduction Motivation

Faddeev’s Modular Double

For |q| = 1, there is a canonical representation for the relation

uv = q2vu

where u, v are positive self adjoint operators:

u = e2πbx, v = e2πbp

unbounded operators on L2(R). (p = 1
2πi

d
dx)

(acting densely on the core W = span{e−αx2+βxP (x)}.)
Algebraically irreducible, but does not generate full B(L2(R)):
Define ũ := u

1
b2 , ṽ := v

1
b2 , q̃ = eπib−2

(replacing b by b−1).
Then

ũṽ = q̃2ṽũ

(u, v) commute (weakly) with (ũ, ṽ)
Together they form the Modular Double.
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Introduction Motivation

Ponsot-Teschner’s representation

Starting point: Ponsot-Teschner (2003) (Liouville Theory):
Special class of representation Pλ for Uq(sl(2, R)) (λ ∈ R+):

Theorem
The following gives a representations of Uq(sl(2, R)):

E =
(

i

q − q−1

)
(eπb(x−λ−2p) + eπb(−x+λ−2p))

F =
(

i

q − q−1

)
(eπb(x+λ+2p) + eπb(−x−λ+2p))

K = e−2πbx

(Note: i
q−q−1 = (2 sin πb2)−1 > 0.)

Pλ has NO classical limit as b −→ 0!
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Introduction Motivation

Ponsot-Teschner’s representation

(1) Pλ is parametrized by λ ∈ R+.

(2) Represented by positive (essentially) self-adjoint operators on
L2(R).

(3) Replacing b by b−1, gives Ẽ, F̃ , K̃ commuting with E,F, K, also a
representation of Uq̃(sl(2, R)).
Define

e =
(

i

q − q−1

)−1

E, f =
(

i

q − q−1

)−1

F,

we have
e

1
b2 = ẽ, f

1
b2 = f̃ , K

1
b2 = K̃,

called the ”transcendental relations”.
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(3) Replacing b by b−1, gives Ẽ, F̃ , K̃ commuting with E,F, K, also a

representation of Uq̃(sl(2, R)).
Define

e =
(

i

q − q−1

)−1

E, f =
(

i

q − q−1

)−1

F,

we have
e

1
b2 = ẽ, f
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Introduction Motivation

Properties

Existence of universal R matrix:

R = q
H⊗H

4 gb(e⊗ f)q
H⊗H

4

R is invariant under the change b←→ b−1.

Here gb(x) is called quantum dilogarithm.
gb(x) is the non-compact analogue of the q-exponential function
|gb(x)| = 1 when x ∈ R>0.
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Introduction Motivation

Properties

Closure under tensor product (in the continuous sense):

Theorem (Ponsot-Teschner (2000))

We have

Pα ⊗ Pβ '
∫ ⊕

R+

Pγdµ(γ)

where dµ(γ) is expressed in terms of (a variant of) quantum
dilogarithm.
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Introduction Motivation

Properties

Peter-Weyl type Theorem (proposed by Ponsot-Teschner):

Theorem (Ip (2011))

We have

L2(SL+
q (2, R)) '

∫ ⊕

R+

Pα ⊗ Pαdµ(α)

as a Uq,L ⊗ Uq,R representation.

Here L2(SL+
q (2, R)) is a Hilbert space constructed from the GNS

representation of a C∗-algebraic version of SL+
q (2, R).

The action of Uq(sl(2, R)) is obtained by dualizing the regular
corepresentation of SL+

q (2, R).
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Constructions Definitions

Definition

Can this class of representations be extended to arbitrary type gR?

Namely, we want to construct a class of representation for Uq(gR) for
|q| = 1 such that
(1) The class of representation is parametrized by R+-span of P+, or

equivalently, (R+)rank(g)

(2) The action of the generators Ei, Fi,Ki are represented by positive
(essentially) self adjoint operators.

(3) Transcendental relations X̃ = X
1
b2 exist, relating Uq(gR) to Uq̃(gR)

(Modular Double).
We call these ”positive principal series representations”, or
”positive representations” for short.
The answer is YES, and have been constructed for all types of gR.
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Constructions First Step

Construction

I will use Uq(sl(3, R)) as a toy model. The general idea is similar.

Theorem (Lusztig Data for total positivity)

Fix a longest element w0 = si1 ...sim ∈W in the Weyl group with
reduced expression. Then the totally positive upper unipotent subgroup
U+

>0 is parametrized by

Rm
>0 −→ U+

>0

(a1, ..., am) 7→ xi1(a1)...xim(am)

where (xi, χi, yi) is the root subgroup for each root i.

Example: choosing w0 = s2s1s2 we have

U+
>0 =

 1 0 0
0 1 a
0 0 1

 1 b 0
0 1 0
0 0 1

 1 0 0
0 1 c
0 0 1

 =

 1 b bc
0 1 a + c
0 0 1


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Constructions First Step

Construction

From this we can apply the regular representation

g · f(g+) = [f(g+g)]+χλ(g+g)

to get the action of E,F, H

Example: etE2 :

 1 b bc
0 1 a + c
0 0 1

 ·
 1 0 0

0 1 t
0 0 1


i.e. action on C[U+

>0] : f(a, b, c) 7→ f(a, b, c + t)

Action of E2 : ∂
∂c : f 7→ fc
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Constructions First Step

Construction

We have

E1 : f 7→ c

b
fa + fb −

c

b
fc

E2 : f 7→ fc

F1 : f 7→ −b2fb + bafa + 2λ1b

F2 : f 7→ −a2fa − 2cafa + bcfb − c2fc + 2λ2(a + c)
H1 : f 7→ afa − 2bfb + cfc + 2λ1

H2 : f 7→ −2afa + bb − 2cc + 2λ2

Acting on C[U+
>0].

Different from usual regular representation acting on C[U+].
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Constructions Mellin Transform

Crucial Step: Mellin Transform

Formally:

f(u) 7→ F (x) :=
∫

f(u)xudu

So that:

x : f(u) 7→ f(u− 1)
∂

∂x
: f(u) 7→ (u + 1)f(u + 1)

x
∂

∂x
: f(u) 7→ uf(u)

Differential operators becomes finite difference operators!
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Constructions Mellin Transform

Crucial Step: Mellin Transform

We have [(a,b,c)7→ (u,v,w) and simplifying notations...]

E1 : f 7→ (u + 1)f(u + 1, v + 1, w − 1) + (1 + v − w)f(v + 1)
E2 : f 7→ (w + 1)f(w + 1)
F1 : f 7→ (2λ1 + u− v + 1)f(v − 1)
F2 : f 7→ (2λ2 − u + 1)f(u− 1) + (2λ2 − 2u + v − w + 1)f(w − 1)
H1 : f 7→ (u− 2v + w + 2λ1)f
H2 : f 7→ (−2u + v − 2w + 2λ2)f

Acting on functions with dim(U+) variables.
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Constructions Quantization

Crucial Step 2: Quantization

Simply quantizing the weights!!

E1 : [u + 1]qf(u + 1, v + 1, w − 1) + [1 + v − w]qf(v + 1)
E2 : [w + 1]qf(w + 1)
F1 : [2λ1 + u− v + 1]qf(v − 1)
F2 : [2λ2 − u + 1]qf(u− 1) + [2λ2 − 2u + v − w + 1]qf(w − 1)

K1 = qH1 : qu−2v+w+2λ1

K2 = qH2 : q−2u+v−2w+2λ2

One can check this is a representation for Uq(g), without the real
structure yet.
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Constructions Positive Twist

Crucial Step 3: Positivity twist

To obtain positive representations, the trick is to induce a ”twist” in
the quantum weight.

[u + 1]q 7→
[

Q

2b
− i

u

b

]
q

, Q = b +
1
b
, [n] =

qn − q−n

q − q−1

(Recall that the original variables belongs to R>0. Now we use the
correct Mellin transform, where the variable includes a complex part)
However, no more classical limit as b −→ 0!

E2 : [w + 1]qf(w + 1) −→
[

Q

2b
− i

w

b

]
q

e−2πbpw

Recall that q = eπib2 , this can be rewritten as(
i

q − q−1

)
(eπb(w−2pw) + e−πb(w−2pw))

which is positive, and can also be shown to be (essentially) self adjoint
as required!
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To obtain positive representations, the trick is to induce a ”twist” in
the quantum weight.

[u + 1]q 7→
[

Q

2b
− i

u

b

]
q

, Q = b +
1
b
, [n] =

qn − q−n

q − q−1

(Recall that the original variables belongs to R>0. Now we use the
correct Mellin transform, where the variable includes a complex part)
However, no more classical limit as b −→ 0!
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Constructions Positive Twist

Construction

Let us denote simply

[u]e(−p) :=
[

Q

2b
− i

u

b

]
q

e−2πbp

It is understood that this is positive as long as [p, u] = 1
2πi .

Final result:

E1 : [u]e(−pu − pv + pw) + [v − w]e(−pv)
E2 : [w]e(−pw)
F1 : [2λ1 + u− v]e(pv)
F2 : [2λ2 − u]e(pu) + [2λ2 − 2u + v − w]e(pw)
K1 : eπb(u−2v+w−2λ1)

K2 : eπb(−2u+v−2w−2λ2)

Acting on L2(Rdim U+
).
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Constructions Canonical Transformations

Final Step

So far we have constructed the representation for a particular choice of
longest element w0.

However the representation is indeed canonical:

Theorem
The transformation of the operators of Uq(gR) corresponding to the
change of words ...sisjsi... = ...sjsisj ...

xi(u)xj(v)xi(w)←→ xj(u′)xi(v′)xj(w′)

is given by
X 7→ ΦXΦ−1,

where

Φ = T ◦ gb(eπb(2pw−2pu+u−v+w))g∗b (e
πb(2pw−2pu−u+v−w)),

is a unitary transform. Here T is a linear transformation of det=1.
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Constructions Canonical Transformations

Construction

The action of Fi is essentially the Feigin map, and can be obtained
directly from any reduced expression of w0.

Fi =
n∑

k=1

 n∑
l=k

 m∑
j

ul,m
j − 2ul

i

+ uk
i + 2λi

 e(pk
i )

To find action of Ei in general:

Fix any reduced expression of w0

Find the change of words so that the target index i is to the
rightmost.
The action is [u]e(−pu)
Carry out the (actually very easy) unitary transformation to
obtain the desired expression.

Positive representations of Uq(gR) of all simply-laced type can be
computed this way.
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Constructions Canonical Transformations

Results

Type An: (for the best choice of w0)

Theorem
The action of Ei, Fi,Ki is given by

Ei =
n−i+1∑
k=1

[uk
i+k−1 − uk

i+k]e

(
k∑

l=1

(pl−1
i+l−1 − pl

i+l−1)

)
,

Fi =
i∑

k=1

[
uk

i −
i∑

l=k

(2ul
i − ul

i−1 − ul+1
i+1)− 2λi

]
e(pk

i ),

Ki = eπb(
∑i

k=1(uk
i−1+uk

i+1−2uk
i )+2λi),
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Constructions Canonical Transformations

Results

Type Dn: (for the best choice of w0)

Theorem

For i = 0 or 1:

Ei =

n−1∑
k=1

[uk
k+i−1

− u2k−1
2 ]e

s1(k)∑
l0=1

(−1)l0pl0
i −

s2(k)∑
l1=1

(−1)l1pl1
1−i −

2k−2∑
l2=1

(−1)l2pl2
2


+

n−2∑
k=1

[u2k
2 − uk

k+i
]e

s1(k)∑
l0=1

(−1)l0pl0
i −

s2(k)∑
l1=1

(−1)l1pl1
1−i −

2k∑
l2=1

(−1)l2pl2
2


and for i ≥ 2,

Ei =

2n−2i−1∑
k=1

[(−1)k(uk
i+1 − uk

i )]e

s1(k)∑
l0=1

(−1)l0pl0
i −

s2(k)∑
l1=1

(−1)l1pl1
i+1

 ,

where k := k (mod 2) ∈ {0, 1}, and s1(k) := 2
⌈

k
2

⌉
− 1, s2(k) := 2

⌊
k
2

⌋
.
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Constructions Canonical Transformations

Number of terms for the action of Ei

An Dn E6 E7 E8

E0 2n− 3 9 15 27
E1 n 2n− 3 1 11 23
E2 n− 1 2n− 5 11 13 25
E3 n− 2 2n− 7 10 16 28

E4

... 2n− 9 7 17 29

E5

... 2n− 11 5 7 19

E6

...
... 1 23

E7

...
... 1

...
...

...
Ek n− k 2n− 2k − 1
...

...
...

En−1 2 1
En 1

Total : n(n+1)
2

n2 − 2 43 80 175

Table 1.Ivan Ip (Kavli IPMU) Positive Representations Aug 23, 2012 25 / 35



Constructions Canonical Transformations

Fun(?) Facts

Choice of reduced expression for w0 is important.

Example: For E8, the best choice
w0 = 4 34 034 230432 12340321 5432103243054321 654320345612345034230123456

765432103243546503423012345676543203456123450342301234567 (obtained by inclusions of
Lie algebra) gives at most 29 terms.

◦1 − ◦2 − ◦3 − ◦4 − ◦5 − ◦6 − ◦7
|
◦0

However, the choice for w0 = w′wAns0 gives over 1,000,000 terms for
the action of E3.

But from the previous remarks, they are unitary equivalent
representations!
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Constructions Canonical Transformations

Properties

Extending the Feigin map:

Theorem

Denote by C[T] = C[u±i , v±i ]ri=1 the Weyl algebra, where uivi = q2viui,
we have

Uq(gR) −→ C[T]

such that the image of the generators are polynomials, and only sums
appear (positivity).

We also have the existence of universal R-matrix, essentially replacing
expq by gb in the Reshetikhin model, and showing certain positivity
properties. (In preparation)
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Constructions Canonical Transformations

Properties

Transcendental Relations:

Theorem
Define

ei =
(

i

q − q−1

)−1

Ei, fi =
(

i

q − q−1

)−1

Fi,

we have
e

1
b2

i = ẽi, f
1
b2

i = f̃i, K
1
b2

i = K̃i,

where Ẽi, F̃i, K̃i generates Uq̃(gR). (replacing b←→ b−1)

Follows from the ”magic Lemma” by Yu. Volkov: For u, v > 0:

uv = q2vu =⇒ (u + v)
1
b2 = u

1
b2 + v

1
b2

However, (Ẽi, F̃i, K̃i) commute with (Ei, Fi,Ki) only up to a sign.
=⇒ Need a slight modification in order to define the modular double.
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where Ẽi, F̃i, K̃i generates Uq̃(gR). (replacing b←→ b−1)

Follows from the ”magic Lemma” by Yu. Volkov: For u, v > 0:

uv = q2vu =⇒ (u + v)
1
b2 = u

1
b2 + v

1
b2
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=⇒ Need a slight modification in order to define the modular double.
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Properties

After modifying the quantum group by some scaling of Ki’s, we then
have the following result for Uq(gR):

Theorem
The commutant of Uq(gR) is the Langlands dual of the modular double
counterpart,

(Uq(gR))′ = Uq̃(LgR)
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Constructions Canonical Transformations

Non-simply-laced case

Positive representations constructed using similar techniques.
(Different reduced expressions of w0 =⇒ transformations are more
complicated)

(However, related to simply-laced case by certain folding methods.)

Surprising discovery using transcendental relations.

Transcendental relations no longer exchange b←→ b−1.

Instead, it exchanges short roots and long roots!!
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i ,

then Ẽi, F̃i, K̃i generates Uq̃(LgR).
If Ei is the short root in Uq(gR), then Ẽi is the long root in Uq̃(LgR)
and vice versa.
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ẽi := e

1

b2
i

i , f̃i := f

1

b2
i

i , K̃i := K

1

b2
i

i ,
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Constructions Canonical Transformations

Non-simply-laced case

This provides for the first time a very direct analytic relation between
g and its Langlands dual.

Note that under this framework, there is still no classical limit.
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Constructions Canonical Transformations

Future Perspectives

Conjecture

The class of positive representations is closed under tensor product (in
the continuous sense), hence form a (certain kind of) Braided Tensor
Category.

Indeed using the magic Lemma, we have

∆(ei)
1
b2 = ∆ẽi, ∆(fi)

1
b2 = ∆f̃i

hence it is enough to show that the defining properties characterize this
class.
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Constructions Canonical Transformations

Future Perspectives

Braided tensor category structure =⇒ new class of TQFT?

Uqq̃(sl(2, R)) case: an alternative approach to a new class of TQFT
from quantum Teichmüller theory.
Geometrization and Categorification of Uqq̃(gR)?
(H. Nakajima) Gauge theory =⇒ geometric and categorical
constructions of fin. dim. reps for Uq(g).
(T. Dimofte,...) Geometric approach based on CSW model for GR
=⇒ relation with the N = 2 SUSY gauge theory on a 3-d sphere.
First step towards geometrization of the category of positive
representations of the modular double.
Positivity =⇒ new insight into canonical bases, cluster algebra,
tropicalization... (Fock-Goncharov, Fomin-Zelevinsky...)
Semi-group structure and non-existence of classical limit of
positive representations =⇒ causality and renormalization.
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Thank you!
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