CHAPTER 1

Abstract Vector Spaces

1.1 Vector Spaces

Let K be a *field*, i.e. a "number system" where you can add, subtract, multiply and divide. In this course we will take K to be \mathbb{R}, \mathbb{C} or \mathbb{Q} .

Definition 1.1. A vector space over K is a set V together with two operations: + (addition) and \cdot (scalar multiplication) subject to the following 10 rules for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in K$:

- (+1) Closure under addition: $\mathbf{u} \in V, \mathbf{v} \in V \Longrightarrow \mathbf{u} + \mathbf{v} \in V$.
- (+2) Addition is commutative: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- (+3) Addition is associative: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$.
- (+4) Zero exists: there exists $\mathbf{0} \in V$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- (+5) Inverse exists: for every $\mathbf{u} \in V$, there exists $\mathbf{u}' \in V$ such that $\mathbf{u} + \mathbf{u}' = \mathbf{0}$. We write $\mathbf{u}' := -\mathbf{u}$.
- (.1) Closure under multiplication: $c \in K$, $\mathbf{u} \in V \Longrightarrow c \cdot \mathbf{u} \in V$.
- (·2) Multiplication is associative: $(cd) \cdot \mathbf{u} = c \cdot (d \cdot \mathbf{u}).$
- (·3) Multiplication is distributive: $c \cdot (\mathbf{u} + \mathbf{v}) = c \cdot \mathbf{u} + c \cdot \mathbf{v}$.
- (·4) Multiplication is distributive: $(c+d) \cdot \mathbf{u} = c \cdot \mathbf{u} + d \cdot \mathbf{u}$.
- (.5) Unity: $1 \cdot \mathbf{u} = \mathbf{u}$.

The elements of a vector space V are called *vectors*.

Note. We will denote a vector with boldface **u** in this note, but you should use \vec{u} for handwriting. Sometimes we will omit the \cdot for scalar multiplication if it is clear from the context.

Note. Unless otherwise specified, all vector spaces in the examples below is over \mathbb{R} .

The following facts follow from the definitions

Properties 1.2. For any $u \in V$ and $c \in K$:

- The zero vector $\mathbf{0} \in V$ is unique.
- The negative vector $-\mathbf{u} \in V$ is unique.
- $0 \cdot \mathbf{u} = \mathbf{0}$.
- $c \cdot \mathbf{0} = \mathbf{0}$.
- $-\mathbf{u} = (-1) \cdot \mathbf{u}$.

Examples of vector spaces over \mathbb{R} :

Example 1.1. The space \mathbb{R}^n , $n \ge 1$ with the usual vector addition and scalar multiplication. **Example 1.2.** \mathbb{C} is a vector space over \mathbb{R} .

Example 1.3. The subset $\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x + y + z = 0 \right\} \subset \mathbb{R}^3$.

Example 1.4. Real-valued functions f(t) defined on \mathbb{R} .

Example 1.5. The set of real-valued differentiable functions satisfying the differential equations

$$f + \frac{d^2f}{dx^2} = 0.$$

Examples of vector spaces over a field K:

Example 1.6. The zero vector space $\{0\}$.

Example 1.7. Polynomials with coefficients in K:

$$p(t) = a_0 + a_1t + a_2t^2 + \dots + a_nt^n$$

with $a_i \in K$ for all i.

Example 1.8. The set $M_{m \times n}(K)$ of $m \times n$ matrices with entries in K.

Counter-Examples: these are not vector spaces:

Non-Example 1.9. \mathbb{R} is not a vector space over \mathbb{C} .

Non-Example 1.10. The first quadrant $\begin{pmatrix} x \\ y \end{pmatrix} : x \ge 0, y \ge 0 \} \subset \mathbb{R}^2$.

Non-Example 1.11. The set of all invertible 2×2 matrices.

Non-Example 1.12. Any straight line in \mathbb{R}^2 not passing through the origin.

Non-Example 1.13. The set of polynomials of degree exactly *n*.

Non-Example 1.14. The set of functions satisfying f(0) = 1.

1.2 Subspaces

To check whether a subset $H \subset V$ is a vector space, we only need to check zero and closures.

Definition 1.3. A subspace of a vector space V is a subset H of V such that

- (1) $0 \in H$.
- (2) Closure under addition: $\mathbf{u} \in H, \mathbf{v} \in H \Longrightarrow \mathbf{u} + \mathbf{v} \in H$.
- (3) Closure under multiplication: $\mathbf{u} \in H, c \in K \Longrightarrow c \cdot \mathbf{u} \in H$.

Example 1.15. Every vector space has a zero subspace $\{0\}$.

Example 1.16. A plane in \mathbb{R}^3 through the origin is a subspace of \mathbb{R}^3 .

Example 1.17. Polynomials of degree at most n with coefficients in K, written as $\mathbb{P}_n(K)$, is a subspace of the vector space of all polynomials with coefficients in K.

Example 1.18. Real-valued functions satisfying f(0) = 0 is a subspace of the vector space of all real-valued functions.

Non-Example 1.19. Any straight line in \mathbb{R}^2 not passing through the origin is not a vector space.

Non-Example 1.20. \mathbb{R}^2 is **not** a subspace of \mathbb{R}^3 . But $\left\{ \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} : x \in \mathbb{R}, y \in \mathbb{R} \right\} \subset \mathbb{R}^3$, which looks

exactly like \mathbb{R}^2 , is a subspace.

Definition 1.4. Let $S = {\mathbf{v}_1, ..., \mathbf{v}_p}$ be a set of vectors in V. A linear combination of S is a any sum of the form

$$c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p \in V, \qquad c_1, \dots, c_p \in K.$$

The set **spanned** by S is the set of all *linear combinations* of S, denoted by Span(S).

Remark. More generally, if S is an infinite set, we define

$$Span(S) = \left\{ \sum_{i=1}^{N} c_i \mathbf{v}_i : c_i \in K, \mathbf{v}_i \in S \right\}$$

i.e. the set of all linear combinations which are finite sum. It follows that Span(V) = V if V is a vector space.

Theorem 1.5. Span(S) is a subspace of V.

Theorem 1.6. H is a subspace of V if and only if H is non-empty and closed under linear combinations, i.e.

$$c_i \in K, \mathbf{v}_i \in H \Longrightarrow c_1 \mathbf{v}_1 + \ldots + c_p \mathbf{v}_p \in H.$$

Example 1.21. The set $H := \left\{ \begin{pmatrix} a - 3b \\ b - a \\ a \\ b \end{pmatrix} \in \mathbb{R}^4 : a, b \in \mathbb{R} \right\}$ is a subspace of \mathbb{R}^4 , since every element

of H can be written as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 :

$$a \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} -3 \\ 1 \\ 0 \\ 1 \end{pmatrix} = a\mathbf{v}_1 + b\mathbf{v}_2 \in \mathbb{R}^4.$$

Hence $H = Span(\mathbf{v}_1, \mathbf{v}_2)$ is a subspace by Theorem 1.6.

1.3 Linearly Independent Sets

Definition 1.7. A set of vectors $\{\mathbf{v}_1, ..., \mathbf{v}_p\} \subset V$ is **linearly dependent** if

$$c_1\mathbf{v}_1 + \ldots + c_p\mathbf{v}_p = \mathbf{0}$$

for some $c_i \in K$, not all of them zero.

Linearly independent set are those vectors that are not linearly dependent:

Definition 1.8. A set of vectors $\{\mathbf{v}_1, ..., \mathbf{v}_p\} \subset V$ is **linearly independent** if

 $c_1\mathbf{v}_1 + \ldots + c_p\mathbf{v}_p = \mathbf{0}$

implies $c_i = 0$ for all i.

Example 1.22. A set of one element $\{v\}$ is linearly independent iff $v \neq 0$.

Example 1.23. A set of two nonzero element $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent iff \mathbf{u} is not a multiple of \mathbf{v} .

Example 1.24. Any set containing **0** is linearly dependent.

Example 1.25. The set of vectors $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$ is linearly independent.

Example 1.26. The set of polynomials $\{t^2, t, 4t - t^2\}$ is linearly dependent.

Example 1.27. The set of functions $\{\sin t, \cos t\}$ is linearly independent. The set $\{\sin 2t, \sin t \cos t\}$ is linearly dependent.

1.4 Bases

Definition 1.9. Let *H* be a subspace of a vector space *V*. A set of vectors $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_m} \subset V$ is a **basis** for *H* iff

- (1) \mathcal{B} is a linearly independent set.
- (2) $H = Span(\mathcal{B}).$

Note. The plural of "basis" is "bases".

Example 1.28. The columns of the $n \times n$ identity matrix I_n :

$$\mathbf{e}_1 = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}, \mathbf{e}_2 = \begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix}, \dots, \mathbf{e}_n = \begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix}$$

form the standard basis for \mathbb{R}^n .

Example 1.29. In general, the columns of an invertible matrix $A \in M_{n \times n}(\mathbb{R})$ form a basis of \mathbb{R}^n , because $A\mathbf{x} = \mathbf{0}$ only has trivial solution.

Example 1.30. The polynomials $\{1, t, t^2, ..., t^n\}$ from the standard basis for $\mathbb{P}_n(\mathbb{R})$.

Theorem 1.10 (Spanning Set Theorem). Let $S = {\mathbf{v}_1, ..., \mathbf{v}_p}$ be a set in V and let H = Span(S).

- (1) If one of the vectors, say \mathbf{v}_k , is a linear combination of the remaining vectors in S, then $H = Span(S \setminus {\mathbf{v}_k})$.
- (2) If $H \neq \{0\}$, some subset of S is a basis of H.

Theorem 1.11 (Unique Representation Theorem). If $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n} \subset V$ is a basis for V, then for each $x \in V$, there exists **unique** scalars $c_1, ..., c_n \in K$ such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n.$$

 $c_1, ..., c_n$ are called the **coordinates** of **x** relative to the basis \mathcal{B} , and

$$[x]_{\mathcal{B}} := \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$$

is the **coordinate vector** of \mathbf{x} relative to \mathcal{B} .

Example 1.31. The coordinate vector of the polynomial $\mathbf{p} = t^3 + 2t^2 + 3t + 4 \in \mathbb{P}_3(\mathbb{R})$ relative to the basis $\mathcal{B} = \{1, t, t^2, t^3\}$ is

$$[\mathbf{p}]_{\mathcal{B}} = \begin{pmatrix} 4\\3\\2\\1 \end{pmatrix} \in \mathbb{R}^4.$$

We will study the change of basis later.

1.5 Dimensions

Theorem 1.12 (Replacement Theorem). If $V = Span(\mathbf{v}_1, ..., \mathbf{v}_n)$, and $\{\mathbf{u}_1, ..., \mathbf{u}_m\}$ is linearly independent set in V, then $m \leq n$.

Proof. (Idea) One can *replace* some \mathbf{v}_i by \mathbf{u}_1 so that $\{\mathbf{u}_1, \mathbf{v}_1, ..., \mathbf{v}_n\} \setminus \{\mathbf{v}_i\}$ also spans V. Assume on the contrary that m > n. Repeating the process we can replace all \mathbf{v} 's by \mathbf{u} 's, so that $\{\mathbf{u}_1, ..., \mathbf{u}_n\}$ spans V, hence $\{\mathbf{u}_1, ..., \mathbf{u}_m\}$ is linearly dependent.

Applying this statement to different bases \mathcal{B} and \mathcal{B}' , which are both spanning and linearly independent, we get

Theorem 1.13. If a vector space V has a basis of n vectors, then every basis of V must also consists of exactly n vectors.

By this Theorem, the following definition makes sense:

Definition 1.14. If V is spanned by a finite set, then V is said to be **finite dimensional**, $dim(V) < \infty$. The **dimension** of V is the number of vectors in any basis \mathcal{B} of V:

$$\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\} \Longrightarrow \dim V := |\mathcal{B}| = n.$$

If $V = \{\mathbf{0}\}$ is the zero vector space, dim V := 0..

If V is not spanned by a finite set, it is **infinite dimensional**, $dim(V) := \infty$.

Note. If the vector space is over the field K we will write $\dim_K V$. If it is over \mathbb{R} or if the field is not specified (as in the Definition above), we simply write dim V instead.

Example 1.32. dim $\mathbb{R}^n = n$.

Example 1.33. dim_K $\mathbb{P}_n(K) = n + 1$. The space of all polynomials is infinite dimensional.

Example 1.34. $\dim_K M_{m \times n}(K) = mn$.

Example 1.35. Let $V = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$. Then dim V = 2.

Example 1.36. The space of real-valued functions on \mathbb{R} is infinite dimensional.

Example 1.37. dim_{\mathbb{R}} $\mathbb{C} = 2$ but dim_{\mathbb{C}} $\mathbb{C} = 1$. dim_{\mathbb{R}} $\mathbb{R} = 1$ but dim_{\mathbb{O}} $\mathbb{R} = \infty$.

Theorem 1.15 (Basis Extension Theorem). Let H be a subspace of V with dim $V < \infty$. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite dimensional and

 $\dim H \leq \dim V.$

Example 1.38. Subspaces of \mathbb{R}^3 are classified as follows:

- 0-dimensional subspaces: only the zero space $\{0\}$.
- 1-dimensional subspaces: any line passing through origin.
- 2-dimensional subspaces: any plane passing through origin.
- 3-dimensional subspaces: only \mathbb{R}^3 itself.

If you know the dimension of V, the following Theorem gives a useful criterion to check whether a set is a basis:

Theorem 1.16 (The Basis Theorem). Let V be an n-dimensional vector space, $n \ge 1$, and $S \subset V$ a finite subset with exactly n elements. Then

- (1) If S is linearly independent, then S is a basis for V.
- (2) If S spans V, then S is a basis for V.

1.6 Intersections, Sums and Direct Sums

We discuss three important construction of vector spaces.

Definition 1.17. Let U, W be subspaces of V.

- $U \cap W$ is the **intersection** of U and W.
- $U + W = {\mathbf{u} + \mathbf{v} : \mathbf{u} \in U, \mathbf{v} \in W} \subset V$ is the sum of U and W.

Properties 1.18.

• $U \cap W$ and U + W are both vector subspaces of V.

Definition 1.19. Let U, W be subspaces of V. Then V is called the **direct sum** of U and W, written as $V = U \oplus W$ if

- (1) V = U + W.
- (2) $U \cap W = \{0\}.$

Example 1.39. $\mathbb{R}^3 = \{ \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} : x, y \in \mathbb{R} \} \oplus \{ \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix} : z \in \mathbb{R} \}.$

Example 1.40. {Space of functions} = $\begin{cases}
\text{Even functions} \\
f(-t) = f(t)
\end{cases} \oplus \begin{cases}
\text{Odd functions} \\
f(-t) = -f(t)
\end{cases}.$ Example 1.41. {Matrices} = $\begin{cases}
\text{Symmetric matrices} \\
\mathbf{A}^T = \mathbf{A}
\end{cases} \oplus \begin{cases}
\text{Anti-symmetric matrices} \\
\mathbf{A}^T = -\mathbf{A}
\end{cases}.$ Example 1.42. {Polynomials} = {Constants} \oplus \{\mathbf{p}(t) : \mathbf{p}(0) = 0\}.

Theorem 1.20. $V = U \oplus W$ iff every $\mathbf{v} \in V$ can be written **uniquely** as

```
\mathbf{v} = \mathbf{u} + \mathbf{w}
```

where $\mathbf{u} \in U$ and $\mathbf{w} \in W$.

Theorem 1.21 (Dimension formula).

 $\dim U + \dim W = \dim(U + W) + \dim(U \cap W).$

In particular

 $\dim U + \dim W = \dim(U \oplus W).$

Example 1.43. If U and W are two *different* planes passing through origin in \mathbb{R}^3 , then $U \cap W$ must be a line and $U + W = \mathbb{R}^3$. The dimension formula then gives 2 + 2 = 3 + 1.