
CHAPTER 1

Abstract Vector Spaces

1.1 Vector Spaces

Let K be a field, i.e. a “number system” where you can add, subtract, multiply and divide.
In this course we will take K to be R,C or Q.

Definition 1.1. A vector space over K is a set V together with two operations: + (addition)
and · (scalar multiplication) subject to the following 10 rules for all u,v,w ∈ V and c, d ∈ K:

(+1) Closure under addition: u ∈ V,v ∈ V =⇒ u + v ∈ V.

(+2) Addition is commutative: u + v = v + u.

(+3) Addition is associative: (u + v) + w = u + (v + w).

(+4) Zero exists: there exists 0 ∈ V such that u + 0 = u.

(+5) Inverse exists: for every u ∈ V , there exists u′ ∈ V such that u + u′ = 0. We write u′ := −u.

(·1) Closure under multiplication: c ∈ K,u ∈ V =⇒ c · u ∈ V.

(·2) Multiplication is associative: (cd) · u = c · (d · u).

(·3) Multiplication is distributive: c · (u + v) = c · u + c · v.

(·4) Multiplication is distributive: (c + d) · u = c · u + d · u.

(·5) Unity: 1 · u = u.

The elements of a vector space V are called vectors.
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Chapter 1. Abstract Vector Spaces 1.1. Vector Spaces

Note. We will denote a vector with boldface u in this note, but you should use −→u for handwriting.
Sometimes we will omit the · for scalar multiplication if it is clear from the context.

Note. Unless otherwise specified, all vector spaces in the examples below is over R.

The following facts follow from the definitions

Properties 1.2. For any u ∈ V and c ∈ K:

• The zero vector 0 ∈ V is unique.

• The negative vector −u ∈ V is unique.

• 0 · u = 0.

• c · 0 = 0.

• −u = (−1) · u.

Examples of vector spaces over R:

Example 1.1. The space Rn, n ≥ 1 with the usual vector addition and scalar multiplication.

Example 1.2. C is a vector space over R.

Example 1.3. The subset {

x
y
z

 : x + y + z = 0} ⊂ R3.

Example 1.4. Real-valued functions f(t) defined on R.

Example 1.5. The set of real-valued differentiable functions satisfying the differential equations

f +
d2f

dx2
= 0.

Examples of vector spaces over a field K:

Example 1.6. The zero vector space {0}.
Example 1.7. Polynomials with coefficients in K:

p(t) = a0 + a1t + a2t
2 + ... + ant

n

with ai ∈ K for all i.

Example 1.8. The set Mm×n(K) of m× n matrices with entries in K.
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Counter-Examples: these are not vector spaces:

Non-Example 1.9. R is not a vector space over C.

Non-Example 1.10. The first quadrant {
(
x
y

)
: x ≥ 0, y ≥ 0} ⊂ R2.

Non-Example 1.11. The set of all invertible 2× 2 matrices.

Non-Example 1.12. Any straight line in R2 not passing through the origin.

Non-Example 1.13. The set of polynomials of degree exactly n.

Non-Example 1.14. The set of functions satisfying f(0) = 1.

1.2 Subspaces

To check whether a subset H ⊂ V is a vector space, we only need to check zero and closures.

Definition 1.3. A subspace of a vector space V is a subset H of V such that

(1) 0 ∈ H.

(2) Closure under addition: u ∈ H,v ∈ H =⇒ u + v ∈ H.

(3) Closure under multiplication: u ∈ H, c ∈ K =⇒ c · u ∈ H.

Example 1.15. Every vector space has a zero subspace {0}.

Example 1.16. A plane in R3 through the origin is a subspace of R3.

Example 1.17. Polynomials of degree at most n with coefficients in K, written as Pn(K), is a
subspace of the vector space of all polynomials with coefficients in K.

Example 1.18. Real-valued functions satisfying f(0) = 0 is a subspace of the vector space of all
real-valued functions.

Non-Example 1.19. Any straight line in R2 not passing through the origin is not a vector space.

Non-Example 1.20. R2 is not a subspace of R3. But {

x
y
0

 : x ∈ R, y ∈ R} ⊂ R3, which looks

exactly like R2, is a subspace.
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Definition 1.4. Let S = {v1, ...,vp} be a set of vectors in V . A linear combination of S is a
any sum of the form

c1v1 + ... + cpvp ∈ V, c1, ..., cp ∈ K.

The set spanned by S is the set of all linear combinations of S, denoted by Span(S).

Remark. More generally, if S is an infinite set, we define

Span(S) =

{
N∑
i=1

civi : ci ∈ K,vi ∈ S

}
i.e. the set of all linear combinations which are finite sum. It follows that Span(V ) = V if V is a
vector space.

Theorem 1.5. Span(S) is a subspace of V .

Theorem 1.6. H is a subspace of V if and only if H is non-empty and closed under linear
combinations, i.e.

ci ∈ K,vi ∈ H =⇒ c1v1 + ... + cpvp ∈ H.

Example 1.21. The set H := {


a− 3b
b− a
a
b

 ∈ R4 : a, b ∈ R} is a subspace of R4, since every element

of H can be written as a linear combination of v1 and v2:

a


1
−1
1
0

+ b


−3
1
0
1

 = av1 + bv2 ∈ R4.

Hence H = Span(v1,v2) is a subspace by Theorem 1.6.

1.3 Linearly Independent Sets

Definition 1.7. A set of vectors {v1, ...,vp} ⊂ V is linearly dependent if

c1v1 + ... + cpvp = 0

for some ci ∈ K, not all of them zero.
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Linearly independent set are those vectors that are not linearly dependent:

Definition 1.8. A set of vectors {v1, ...,vp} ⊂ V is linearly independent if

c1v1 + ... + cpvp = 0

implies ci = 0 for all i.

Example 1.22. A set of one element {v} is linearly independent iff v 6= 0.

Example 1.23. A set of two nonzero element {u,v} is linearly independent iff u is not a multiple
of v.

Example 1.24. Any set containing 0 is linearly dependent.

Example 1.25. The set of vectors {

1
0
0

 ,

0
1
0

 ,

0
0
1

} is linearly independent.

Example 1.26. The set of polynomials {t2, t, 4t− t2} is linearly dependent.

Example 1.27. The set of functions {sin t, cos t} is linearly independent. The set {sin 2t, sin t cos t}
is linearly dependent.

1.4 Bases

Definition 1.9. Let H be a subspace of a vector space V . A set of vectors B = {b1, ...,bm} ⊂ V
is a basis for H iff

(1) B is a linearly independent set.

(2) H = Span(B).

Note. The plural of “basis” is “bases”.

Example 1.28. The columns of the n× n identity matrix In:

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , ..., en =


0
0
...
1


form the standard basis for Rn.
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Example 1.29. In general, the columns of an invertible matrix A ∈Mn×n(R) form a basis of Rn,
because Ax = 0 only has trivial solution.

Example 1.30. The polynomials {1, t, t2, ..., tn} from the standard basis for Pn(R).

Theorem 1.10 (Spanning Set Theorem). Let S = {v1, ...,vp} be a set in V and let H = Span(S).

(1) If one of the vectors, say vk, is a linear combination of the remaining vectors in S, then
H = Span(S \ {vk}).

(2) If H 6= {0}, some subset of S is a basis of H.

Theorem 1.11 (Unique Representation Theorem). If B = {b1, ...,bn} ⊂ V is a basis for V , then
for each x ∈ V , there exists unique scalars c1, ..., cn ∈ K such that

x = c1b1 + ... + cnbn.

c1, ..., cn are called the coordinates of x relative to the basis B, and

[x]B :=

c1
...
cn

 ∈ Rn

is the coordinate vector of x relative to B.

Example 1.31. The coordinate vector of the polynomial p = t3 + 2t2 + 3t+ 4 ∈ P3(R) relative to
the basis B = {1, t, t2, t3} is

[p]B =


4
3
2
1

 ∈ R4.

We will study the change of basis later.
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1.5 Dimensions

Theorem 1.12 (Replacement Theorem). If V = Span(v1, ...,vn), and {u1, ...,um} is linearly
independent set in V , then m ≤ n.

Proof. (Idea) One can replace some vi by u1 so that {u1,v1, ...,vn}\{vi} also spans V . Assume on
the contrary that m > n. Repeating the process we can replace all v’s by u’s, so that {u1, ...,un}
spans V , hence {u1, ...,um} is linearly dependent.

Applying this statement to different bases B and B′, which are both spanning and linearly inde-
pendent, we get

Theorem 1.13. If a vector space V has a basis of n vectors, then every basis of V must also
consists of exactly n vectors.

By this Theorem, the following definition makes sense:

Definition 1.14. If V is spanned by a finite set, then V is said to be finite dimensional,
dim(V ) <∞. The dimension of V is the number of vectors in any basis B of V :

B = {b1, ...,bn} =⇒ dimV := |B| = n.

If V = {0} is the zero vector space, dimV := 0..

If V is not spanned by a finite set, it is infinite dimensional, dim(V ) :=∞.

Note. If the vector space is over the field K we will write dimK V . If it is over R or if the field is
not specified (as in the Definition above), we simply write dimV instead.

Example 1.32. dimRn = n.

Example 1.33. dimK Pn(K) = n + 1. The space of all polynomials is infinite dimensional.

Example 1.34. dimK Mm×n(K) = mn.

Example 1.35. Let V = {(x, y, z) ∈ R3 : x + y + z = 0}. Then dimV = 2.

-7-



Chapter 1. Abstract Vector Spaces 1.5. Dimensions

Example 1.36. The space of real-valued functions on R is infinite dimensional.

Example 1.37. dimRC = 2 but dimCC = 1. dimRR = 1 but dimQR =∞.

Theorem 1.15 (Basis Extension Theorem). Let H be a subspace of V with dimV < ∞. Any
linearly independent set in H can be expanded, if necessary, to a basis for H.
Also, H is finite dimensional and

dimH ≤ dimV.

Example 1.38. Subspaces of R3 are classified as follows:

• 0-dimensional subspaces: only the zero space {0}.

• 1-dimensional subspaces: any line passing through origin.

• 2-dimensional subspaces: any plane passing through origin.

• 3-dimensional subspaces: only R3 itself.

Summarize: For dimV <∞ and H ⊂ V a subspace:

Linearly
Independent

Set

⊆ Basis ⊆ Spanning
Set

Basis
Extension
Theorem

Spanning
Set

Theorem

Replacement Theorem
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If you know the dimension of V , the following Theorem gives a useful criterion to check whether a
set is a basis:

Theorem 1.16 (The Basis Theorem). Let V be an n-dimensional vector space, n ≥ 1, and S ⊂ V
a finite subset with exactly n elements. Then

(1) If S is linearly independent, then S is a basis for V .

(2) If S spans V , then S is a basis for V .

1.6 Intersections, Sums and Direct Sums

We discuss three important construction of vector spaces.

Definition 1.17. Let U,W be subspaces of V .

• U ∩W is the intersection of U and W .

• U + W = {u + v : u ∈ U,v ∈W} ⊂ V is the sum of U and W .

Properties 1.18.

• U ∩W and U + W are both vector subspaces of V .

Definition 1.19. Let U,W be subspaces of V . Then V is called the direct sum of U and W ,
written as V = U ⊕W if

(1) V = U + W.

(2) U ∩W = {0}.
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Example 1.39. R3 = {

x
y
0

 : x, y ∈ R} ⊕ {

0
0
z

 : z ∈ R}.

Example 1.40. {Space of functions}=
{

Even functions
f(−t) = f(t)

}
⊕
{

Odd functions
f(−t) = −f(t)

}
.

Example 1.41. {Matrices} =

{
Symmetric matrices

AT = A

}
⊕
{

Anti-symmetric matrices

AT = −A

}
.

Example 1.42. {Polynomials} = {Constants}⊕{p(t) : p(0) = 0}.

Theorem 1.20. V = U ⊕W iff every v ∈ V can be written uniquely as

v = u + w

where u ∈ U and w ∈W .

Theorem 1.21 (Dimension formula).

dimU + dimW = dim(U + W ) + dim(U ∩W ).

In particular
dimU + dimW = dim(U ⊕W ).

Example 1.43. If U and W are two different planes passing through origin in R3, then U ∩W
must be a line and U + W = R3. The dimension formula then gives 2 + 2 = 3 + 1.
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