
CHAPTER 2

Linear Transformations and Matrices

2.1 Linear Transformations

Definition 2.1. A linear transformation T from a vector space V to a vector space W is a map

T : V −→W

such that for all vectors u,v ∈ V and scalar c ∈ K:

(1) T (u + v) = T (u) + T (v)

(2) T (c · u) = c · T (u)

V is called domain and W is called codomain of T .

The set of all such linear transformations T : V −→W is denoted by L(V,W ).

Fact. Any T ∈ L(V,W ) is uniquely determined by the image on any basis B of V .

Example 2.1. The identity map Id : V −→ V given by Id(v) = v.

Example 2.2. Differential operators on the space of real-valued differentiable functions.

Example 2.3. Tr : M3×3(R) −→ R on the space of 3× 3 matrices with real entries.

Example 2.4. Matrix multiplication: Rn −→ Rm.
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Theorem 2.2. Let V,W be finite dimensional vector spaces with dimV = n,dimW = m. Then
every linear transformation T ∈ L(V,W ) can be represented by an m× n matrix.

Let B ⊂ V,B′ ⊂W be their bases. If T (u) = w, then the matrix is given by

[T ]BB′ : Rn −→ Rm

[u]B 7→ [w]B′

It is called the matrix of T with respect to the bases B and B′.

Definition 2.3.

• The kernel or null space of T is:

Ker(T ) := {u ∈ V : T (u) = 0}

• The image or range of T is:

Im(T ) := {w ∈W : w = T (u) for some u ∈ V }

Theorem 2.4. Let T ∈ L(V,W ). Then

• The kernel of T is a subspace of V .

• The image of T is a subspace of W .

Example 2.5. If T : Rn −→ Rm is represented by a matrix A, then

• The kernel of A is the null space NulA. It is the set of all solutions to Ax = 0 of m
homogeneous linear equations in n unknown. It is a subspace of Rn.

• The image of A is the column space ColA. It is the set of all linear combinations of the
columns of A. It is a subspace of Rm.

Rule. For a matrix A, the row operations do not affect linear dependence of the columns.
Use the reduced echelon form to find the basis of NulA and ColA.

Example 2.6. The kernel of d
dx on the space of differentiable functions is the set of all constant

functions.
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2.2 Injection, Surjection and Isomorphism

Definition 2.5. A linear transformation T : V −→W is called

• one-to-one or injective if T (u) = T (v) implies u = v

• onto or surjective if for every w ∈W , there exists u ∈ V such that T (u) = w

• isomorphism if T is one-to-one and onto.

Definition 2.6. If there exists an isomorphism T ∈ L(V,W ), we say V is isomorphic to W ,
written as V 'W .

Properties 2.7. Let T ∈ L(V,W ).

• If T is injective, then N (T ) = {0}, i.e. T (u) = 0 =⇒ u = 0.

• If T is injective, it maps linearly independent set to linearly independent set.

• If T is injective, and H ⊂ V is a subspace, then dimT (H) = dimH.

• If T is surjective, then R(T ) = W .

• If T is isomorphism, then dimV = dimW .

Theorem 2.8. If B = {b1, ...,bn} is a basis for a vector space V , then the coordinate mapping

x 7→ [x]B

is an isomorphism V ' Kn.

Example 2.7. {

x
y
0

 : x, y ∈ R} 6= R2 but {

x
y
0

 : x, y ∈ R} ' R2

Example 2.8. Pn(K) ' Kn+1

Example 2.9. Mm×n(K) ' Kmn

Example 2.10. C ' R2 as vector spaces over R.
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2.3 Rank

Definition 2.9.

• The rank of T is the dimension of the image of T .

• The nullity of T is the dimension of the kernel of T .

Below we have the Fundamental Theorem of Linear Algebra, which consists of the Rank-
Nullity Theorem and the Theorem of Column Rank = Row Rank :

Theorem 2.10 (Rank–Nullity Theorem). Let T ∈ L(V,W ). Then

dim Im(T ) + dim Ker(T ) = dimV

Let T be represented by a m × n matrix A (i.e. V = Rn,W = Rm). Then rank of A is the
dimension of ColA. The row space is the space spanned by the rows of A. It is a subspace of Rn.
The row rank is the dimension of the row space.

The row space of A is the column space of AT , hence the row rank of A equals the rank of AT .

Theorem 2.11 (Column Rank = Row Rank). Rank of A = Rank of AT .

Theorem 2.12 (Invertible Matrix Theorem). Let A be an n× n matrix. Then A is invertible iff
any one of the statements hold:

(1) Columns of A form a basis of Rn

(2) ColA = Rn

(3) Rank of A = n

(4) NulA = {0}

(5) Nullity of A = 0.
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2.4 Change of Basis

Recall that for x ∈ V and B = {b1, ...,bn} a basis of V ,

[x]B =

c1
...
cn

 ∈ Rn

is the B-coordinate vector of x if
x = c1b1 + ... + cnbn.

If B′ = {b′1, ...,b′n} is another basis of V , then

[x]B′ =

c′1
...
c′n

 ∈ Rn

is the B′-coordinate vector of x if
x = c′1b

′
1 + ... + c′nb′n.

The relationship between the vectors [x]B and [x]B′ is given by

Theorem 2.13 (Change of Basis formula). There exists an n× n matrix PBB′ such that

[x]B′ = PBB′ · [x]B

where column-wise it is given by

PBB′ =
(
[b1]B′ [b2]B′ · · · [bn]B′

)
PBB′ is called the change-of-coordinate matrix from B to B′.

In other words, it is the matrix of the identity map Id with respect to the basis B and B′ (see
Theorem 2.2).

Properties 2.14. The n× n matrix PBB′ is invertible. We have

[x]B =
(
PBB′
)−1 · [x]B′

Hence
PB

′
B =

(
PBB′
)−1
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Example 2.11. If B is a basis of Rn and E is the standard basis of Rn, then

[bi]E = bi.

Hence we simply have
PBE =

(
b1 b2 · · · bn

)
PB := PBE is called the change-of-coordinate matrix from B to the standard basis of Rn.

Properties 2.15. We have

• PB
′
B′′ · PBB′ = PBB′′

• PBB′ = (PB
′
)−1 · PB

Example 2.12. Let E = {
(

1
0

)
,

(
0
1

)
} be the standard basis of R2. Let

B = {b1 =

(
1
1

)
,b2 =

(
1
−1

)
},

B′ = {b′1 =

(
1
0

)
,b′2 =

(
1
1

)
}

be two other bases of R2. Then

PB =

(
1 1
1 −1

)
PB

′
=

(
1 1
0 1

)
PBB′ = (PB

′
)−1 · PB

=

(
1 1
0 1

)−1
·
(

1 1
1 −1

)
=

(
0 2
1 −1

)
One can check that this obeys the formula from Theorem 2.13.

b1 = 0 · b′1 + 1 · b′2
b2 = 2 · b′1 + (−1) · b′2.
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