
CHAPTER 3

Euclidean Space

We define the geometric concepts of length, distance, angle and perpendicularity for Rn. This gives
Rn the structure of an Euclidean Space.

3.1 Inner Product

We write a point u ∈ Rn as a column vector, i.e. 1× n matrix.

Definition 3.1. The inner product of u,v ∈ Rn, i.e.

u =

u1...
un

 , v =

v1...
vn


is given by

u · v := uTv =
(
u1 · · · un

)v1...
vn

 =

n∑
i=1

uivi ∈ R

Note. To avoid confusion, I will omit the dot for scalar multiplication: I use cu instead of c · u.

Some easily checked properties:
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Chapter 3. Euclidean Space 3.1. Inner Product

Theorem 3.2. Let u,v,w ∈ Rn, c ∈ R

(1) u · v = v · u

(2) (u + v) ·w = u ·w + v ·w

(3) (cu) · v = c(u · v) = u · (cv)

(4) u · u ≥ 0 and u · u = 0 iff u = 0.

More generally:

Definition 3.3. Any vector space V over R equipped with an inner product V ×V −→ R satisfying
Theorem 3.2 is called an inner product space. When V = Rn it is called an Euclidean space.

Example 3.1 (Optional). An example of inner product space that is infinite dimensional : Let
C[a, b] be the vector space of real-valued continuous function defined on a closed interval [a, b] ⊂ R.
Then for f, g ∈ C[a, b],

f · g :=

∫ b

a
f(t)g(t)dt

gives an inner product on C[a, b].

Remark. All the Definitions and Theorems below applies to inner product spaces.

Remark. When K = C, the inner product involves the complex conjugate

u · v := u∗v :=
(
u1 · · · un

)v1...
vn

 =

n∑
i=1

uivi ∈ C

so that the last property (4) can hold. Also the third property have to be replaced by

(3*) (cu) · v = c(u · v) = u · (cv)

Properties 3.4. If A = (aij) is an m× n matrix, then the matrix entries are given by

aij = e′i ·Aej

where {ej} is the standard basis for Rn and {e′i} is the standard basis for Rm.
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Definition 3.5. The norm (or length) of v is the nonnegative scalar

‖v‖ :=
√

v · v =
√
v21 + · · ·+ v2n ∈ R≥0

For c ∈ R, we have ‖cv‖ = |c|‖v‖.

Definition 3.6. The vector u with unit length, i.e. ‖u‖ = 1 is called a unit vector.

Given v 6= 0, 1
‖v‖v has unit length and is called the normalization of v

Example 3.2. v =


1
−2
2
0

 ∈ R4 has norm ‖v‖ =
√

12 + (−2)2 + 22 + 02 =
√

9 = 3.

1

3
v =


1/3
−2/3
2/3
0


is a unit vector.

Definition 3.7. The distance between u,v ∈ Rn is defined by

dist(u,v) := ‖u− v‖

Theorem 3.8 (Law of cosine). The angle θ between u and v can be calculated by

u · v = ‖u‖‖v‖ cos θ

When θ = 90◦, we have
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Definition 3.9. Two vectors u,v ∈ Rn are orthogonal (or perpendicular) to each other if
u · v = 0.

Properties 3.10 (Pythagorean Theorem). If u · v = 0,

‖u + v‖2 = ‖u‖2 + ‖v‖2

Properties 3.11 (Cauchy-Schwarz Inequality). For all u,v ∈ Rn,

|u · v| ≤ ‖u‖‖v‖

Properties 3.12 (Triangle Inequality). For all u,v ∈ Rn,

‖u + v‖ ≤ ‖u‖+ ‖v‖

Example 3.3.

(
1
1

)
and

(
1
−1

)
are orthogonal to each other in R2.

Example 3.4. 0 is orthogonal to every vector in Rn.

3.2 Orthogonal Basis

Definition 3.13. Let S = {u1, ...,up} ∈ Rn.

• S is called an orthogonal set if ui · uj = 0 for all i 6= j.

• If in addition S is a basis of W ⊂ Rn, it is called an orthogonal basis for W .

• If in addition all vectors in S has unit norm, it is called an orthonormal basis for W .

Example 3.5. The standard basis {e1, e2, · · · en} for Rn is an orthonormal basis.

Example 3.6. The set

{(
1
1

)
,

(
1
−1

)}
is an orthogonal basis for R2.

Its rescaled version, the set

{(
1√
2
1√
2

)
,

(
1√
2

− 1√
2

)}
is an orthonormal basis for R2.
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Theorem 3.14. Let B = {u1, ...,up} be an orthogonal basis for a subspace W ⊂ Rn. Then for
x ∈W we can solve for the coordinates with respect to B explicitly as

[x]B =

c1...
cn


where

ci =
x · ui
ui · ui

, i = 1, ..., p

3.3 Orthogonal Projection

Definition 3.15. Let W ⊂ Rn be a subspace. The orthogonal complement of W is the set

W⊥ := {v ∈ Rn : v ·w = 0 for every w ∈W}

Properties 3.16. We have the following properties:

• W⊥ is a subspace of Rn.

• If L = W⊥, then W = L⊥.

• x ∈W⊥ iff x is orthogonal to every vector in a spanning set ot W .

Theorem 3.17. Let A ∈Mm×n(R). Then

(RowA)⊥ = NulA, (ColA)⊥ = NulAT

Definition 3.18. The orthogonal projection of b onto u is given by

Proju(b) := (b · e)e =
b · u
u · u

u

where e := u
‖u‖ is the normalization of u.
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Theorem 3.19 (Orthogonal Decomposition Theorem). Let W ⊂ Rn a subspace. Then each x ∈ Rn
can be written uniquely in the form

x = x̂ + z

where x̂ ∈W and z ∈W⊥. Therefore we have

Rn = W ⊕W⊥

We sometimes write ProjW (x) := x̂. Note that ProjW ∈ L(Rn,Rn) with

Im(ProjW ) = W, Ker(ProjW ) = W⊥

Proof. Explicitly, if {u1, ...,up} is an orthogonal basis of W , then

x̂ = Proju1
(x) + · · ·+ Projup

(x)

=
x · u1

u1 · u1
u1 + · · ·+ x · up

up · up
up

and z = x− x̂.

z x

ProjW (x)

Proju2
(x)

Proju1
(x)

u2

u1

W = Span(u1,u2)

W⊥

Figure 3.1: Orthogonal Projection

Remark. In particular, the uniqueness statement says that the orthogonal decomposition, i.e. the
formula for x̂, does not depend on the basis used for W in the proof.
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Properties 3.20. If x ∈W , then ProjW (x) = x.

By using orthonormal basis, we can represent ProjW as a matrix:

Theorem 3.21. If {u1, ...,up} is an orthonormal basis for W ⊂ Rn, then

ProjW (x) = (x · u1)u1 + · · · (x · up)up

Equivalently, if U =
(
u1 · · · up

)
is an n× p matrix, then

ProjW (x) = UUTx

The matrix P := UUT is an n× n matrix which is called an orthogonal projection matrix.

Definition 3.22. A projection matrix is an n× n matrix such that

P 2 = P

It is an orthogonal projection matrix if in addition

P T = P

Example 3.7. If W = Span(v1,v2) where v1 =

1
0
1

 ,v2 =

 1
1
−1

 then {v1,v2} is an orthogonal

basis for W : v1 · v2 = 0.

The normalization

v1

‖v1‖
=


1√
2

0
1√
2

 ,
v2

‖v2‖
=


1√
3
1√
3

− 1√
3


is then an orthonormal basis for W . We have

U =


1√
2

1√
3

0 1√
3

1√
2
− 1√

3


and therefore

ProjW = UUT =


1√
2

1√
3

0 1√
3

1√
2
− 1√

3

( 1√
2

0 1√
2

1√
3

1√
3
− 1√

3

)
=

5
6

1
3

1
6

1
3

1
3

1
3

1
6 −1

3
5
6


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Theorem 3.23 (Best Approximation Theorem). Let W be a subspace of Rn and x ∈ Rn. Then

‖x− ProjWx‖ ≤ ‖x− v‖, for any v ∈W

i.e. ProjWx ∈W is the closest point in W to x.

3.4 Orthogonal Matrix

Definition 3.24. A linear transformation T ∈ L(V,W ) between inner product spaces is called an
isometry if it preserves the inner product:

(Tu) · (Tv) = u · v

for any vector u,v ∈ V .

Theorem 3.25. If T ∈ L(Rn,Rm) is a linear isometry which is represented by an m × n matrix
U, then for x,y ∈ Rn:

• U has orthonormal columns

• UTU = Idn×n

• ‖Ux‖ = ‖x‖ (i.e. it preserves length)

• (Ux) · (Uy) = 0 iff x · y = 0 (i.e. it preserves right angle)

Definition 3.26. If n = m, the square matrix U corresponding to a linear isometry is called an
orthogonal matrix. It is invertible with

U−1 = UT

The set of n× n orthogonal matrices is denoted by O(n).
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Properties 3.27. Orthogonal matrices satisfy the following “group properties”:

• Idn×n ∈ O(n).

• If U ∈ O(n), then U−1 ∈ O(n).

• If U,V ∈ O(n), then UV ∈ O(n).

Example 3.8. In R2 and R3, an orthogonal matrix corresponds to combinations of rotations and
mirror reflections.

In R2, all orthogonal matrix is of the form Rotations by angle θ counterclockwise

U =

(
cos θ − sin θ
sin θ cos θ

)
Mirror reflections along the line with slope tan θ

2 passing through the origin

U =

(
cos θ sin θ
sin θ − cos θ

)
Example 3.9. The change-of-coordinate matrix PBB′ between orthonormal bases B and B′ is an
orthogonal matrix.

Non-Example 3.10. Projection ProjW is in general not an orthogonal matrix: It does not preserve
lengths.

3.5 Gram-Schmidt Process

Gram-Schmidt Process gives a simple algorithm to compute an orhtogonal basis from an arbitrary
basis.

Theorem 3.28 (Gram-Schmidt Process). Let {x1, ...,xp} be a basis for a subspace W ⊂ Rn.
Define

v1 := x1

v2 := x2 − Projv1
(x2)

v3 := x3 − Projv1
(x3)− Projv2

(x3)

...

vp := xp − Projv1
(xp)− Projv2

(x3)− · · · − Projvp−1
(xp)

where
Projv(x) :=

x · v
v · v

v
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is the orthogonal projection (see Definition 3.18).

Then B = {v1, ...,vp} is an orthogonal basis for W . Furthermore,

Span(v1, ...,vk) = Span(x1, ...,xk), for all 1 ≤ k ≤ p

To obtain an orthonormal basis, just normalize the vectors:

vi  
vi
‖vi‖

The Gram-Schmidt Process implies the following factorization, which is very important in compu-
tation algorithms, best linear approximations, and eigenvalues decomposition.

Theorem 3.29 (QR Decomposition). If A is an m×n matrix with linearly independent columns,
then

A = QR

where

• Q is a m× n matrix with orhtonormal columns forming a basis for ColA,

• R is an n× n upper triangular invertible matrix with positive entries on the diagonal.

Example 3.11. Let

A =


1 0 0
1 1 0
1 1 1
1 1 1



Let x1 =


1
1
1
1

 ,x2 =


0
1
1
1

 ,x3 =


0
0
1
1

 be the columns of A.

Part 1: Gram-Schmidt Process.
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Apply the formula, we obtain

v1 = x1 =


1
1
1
1



v2 = x2 − Projv1
x2 =


0
1
1
1

− 3

4


1
1
1
1

 =
1

4


−3
1
1
1



v3 = x3 − Projv1
x3 − Projv2

x3 =


0
0
1
1

− 1

2


1
1
1
1

− 1

6


−3
1
1
1

 =
1

3


0
−2
1
1


Then {v1,v2,v3} is an orthogonal basis for ColA.

Part 2: Orthonormal basis and Q.

The vectors have lengths

‖v1‖ = 2, ‖v2‖ =

√
12

4
, ‖v3‖ =

√
6

3
,

hence the corresponding orthonormal basis is

v′1 =


1/2
1/2
1/2
1/2

 ,v′2 =


−3/
√

12

1/
√

12

1/
√

12

1/
√

12

 ,v′3 =


0

−2/
√

6

1/
√

6

1/
√

6


Then Q is formed by {v′1,v′2,v′3}, i.e.

Q =


1/2 −3/

√
12 0

1/2 1/
√

12 −2/
√

6

1/2 1/
√

12 1/
√

6

1/2 1/
√

12 1/
√

6



Part 3: The triangular matrix R.

To find R, recall that Q is a linear isometry, hence

QTA = QT (QR) = Id ·R = R
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Therefore

R = QTA

=

 1/2 1/2 1/2 1/2

−3/
√

12 1/
√

12 1/
√

12 1/
√

12

0 −2/
√

6 1/
√

6 1/
√

6




1 0 0
1 1 0
1 1 1
1 1 1


=

2 3/2 1

0 3/
√

12 2/
√

12

0 0 2/
√

6


Note that the diagonal of R is the same as the length of ‖v1‖, ‖v2‖, ‖v3‖ used for the normalization
in Part 2.

3.6 Least Square Approximation

If A is an m× n matrix with m > n, then the system of linear equations

Ax = b

is overdetermined and we may not have a solution.

If A has linear independent columns, we can use the QR decomposition to find a best approximation
x̂ to the solution of Ax̂ = b such that ‖Ax̂− b‖ is the smallest.

By the Best Approximation Theorem (Theorem 3.23), the closest point Ax ∈ ColA to b ∈ Rm
should be ProjColAb. But ColA has orthonormal basis given by columns of Q, so ProjColA = QQT .
Hence Ax̂ = QQTb. Using A = QR we obtain:

Theorem 3.30 (Least Square Approximation). If A is an m×n matrix with m > n and has linear
independent columns, such that we have the QR decomposition A = QR, then

x̂ = R−1QTb ∈ Rn

is the vector such that for every x ∈ Rn,

‖Ax̂− b‖ ≤ ‖Ax− b‖

Note. It is easier to solve for x̂ by

Rx̂ = QTb

instead of finding R−1, because R is upper triangular, so that we can use backward substitution.
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Example 3.12. Continue our example, if b =


1
2
3
4

, then the closest point x̂ such that ‖Ax− b‖

is smallest is given by

Rx̂ = QTb2 3/2 1

0 3/
√

12 2/
√

12

0 0 2/
√

6

x1x2
x3

 =

 1/2 1/2 1/2 1/2

−3/
√

12 1/
√

12 1/
√

12 1/
√

12

0 −2/
√

6 1/
√

6 1/
√

6




1
2
3
4


=

 5√
3

3/
√

6


This is a very simple system of linear equations, and we can solve for x̂ to get

x̂ =

x1x2
x3

 =

2/3
1

3/2


Therefore

Ax̂ =


1 0 0
1 1 0
1 1 1
1 1 1


2/3

1
3/2

 =


2/3
5/3
19/6
19/6



is the closest approximation in ColA to


1
2
3
4

.

Note. It is called ”least square” because ‖u‖ is computed by summing the squares of the coor-
dinates. We want to find the smallest ‖Ax − b‖. This is very useful in regression problems in
statistics, where we want to fit the data onto a linear model as closely as possible.
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