CHAPTER 3

Euclidean Space

We define the geometric concepts of length, distance, angle and perpendicularity for R™. This gives
R™ the structure of an Fuclidean Space.

3.1 Inner Product

We write a point u € R™ as a column vector, i.e. 1 X n matrix.

Definition 3.1. The inner product of u,v € R" i.e.

is given by
U1

n
u-v::uTv:(u1 un) : :E u;v; € R
i=1

Un

Note. To avoid confusion, I will omit the dot for scalar multiplication: I use cu instead of ¢ - u.

Some easily checked properties:
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Chapter 3. FEuclidean Space 3.1. Inner Product

Theorem 3.2. Let u,v,w € R", c€ R

1

u-v=v-u
2) (u+v) - w=u-wH+v-w

3) (cu)-v=c(u-v)=u-(cv)

(1)
(2)
(3)
(4)

4)Yu-u>0andu-u=0if u=0.

More generally:

Definition 3.3. Any vector space V over R equipped with an inner product V x V — R satisfying
Theorem 3.2 is called an inner product space. When V = R" it is called an Euclidean space.

Example 3.1 (Optional). An example of inner product space that is infinite dimensional: Let
C'la, b] be the vector space of real-valued continuous function defined on a closed interval [a,b] C R.

Then for f,g € Cla, ],
b
frgi= [ fogto

Remark. All the Definitions and Theorems below applies to inner product spaces.

gives an inner product on Cla, b].

Remark. When K = C, the inner product involves the complex conjugate

U1 n
u-vi=utvi= (T o W) | | =) mueC

Un

so that the last property (4) can hold. Also the third property have to be replaced by

(3*) (cu) - v=c(u-v)=u-(cv)

Properties 3.4. If A = (a;;) is an m x n matrix, then the matrix entries are given by
aij = eé 0 Aej

where {e;} is the standard basis for R" and {e}} is the standard basis for R™.
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Chapter 3. FEuclidean Space 3.1. Inner Product

Definition 3.5. The norm (or length) of v is the nonnegative scalar

vl :==vv-v =4/} + -+ vl €Rxg

For ¢ € R, we have ||cv|| = |¢|||v].
Definition 3.6. The vector u with unit length, i.e. ||ul| =1 is called a unit vector.
Given v # 0, ﬁv has unit length and is called the normalization of v
1
Example 3.2. v = _22 € R* has norm ||v| = /12 + (-2)2 +22 + 02 = V9 = 3.
0
1/3
1 ~2/3
3V 23
0

is a unit vector.

Definition 3.7. The distance between u,v € R"” is defined by

dist(u,v) := ||[u—v||

Theorem 3.8 (Law of cosine). The angle 6 between u and v can be calculated by

u-v = ||ul|||v| cosb

When 6 = 90°, we have
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Chapter 3. FEuclidean Space 3.2. Orthogonal Basis

Definition 3.9. Two vectors u,v € R" are orthogonal (or perpendicular) to each other if
u-v=0.

Properties 3.10 (Pythagorean Theorem). If u-v =0,
la+v|[* = [[uf]? + ||v]?
Properties 3.11 (Cauchy-Schwarz Inequality). For all u,v € R™,
[u-v| < f[ual]lv]
Properties 3.12 (Triangle Inequality). For all u,v € R",

Ju v < fufl +iv]
1 1 . 9
Example 3.3. 1 and - 1) are orthogonal to each other in R~.

Example 3.4. 0 is orthogonal to every vector in R™.

3.2 Orthogonal Basis

Definition 3.13. Let S = {uy,...,u,} € R™.

e S is called an orthogonal set if u; - u; = 0 for all i # j.
e [f in addition S is a basis of W C R", it is called an orthogonal basis for W.

e [f in addition all vectors in S has unit norm, it is called an orthonormal basis for V.

Example 3.5. The standard basis {e;, ez, --e,} for R" is an orthonormal basis.

Example 3.6. The set { (1) , (_11> } is an orthogonal basis for R2.

1 1
Its rescaled version, the set { <‘{§> , ( \/51 ) } is an orthonormal basis for R2.
% 1
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Chapter 3. Euclidean Space 3.3. Orthogonal Projection

Theorem 3.14. Let B = {uy,...,u,} be an orthogonal basis for a subspace W C R™. Then for
x € W we can solve for the coordinates with respect to B explicitly as

C1
x]g= 1 :
Cn
where
X - u;
Gy = ) ? _’17' » D
u; - u;

3.3 Orthogonal Projection

Definition 3.15. Let W C R™ be a subspace. The orthogonal complement of W is the set

Wt :={veR":v.-w=0for every w € W}

Properties 3.16. We have the following properties:

e W+ is a subspace of R™.
o If L =W+, then W = L+

e x € W iff x is orthogonal to every vector in a spanning set ot WW.

Theorem 3.17. Let A € M, (R). Then

(RowA)!t = Nul4,  (Cold)* = NulaT

Definition 3.18. The orthogonal projection of b onto u is given by

b-
Proj,(b) :=(b-e)e = 2%y

u-u

_u_

] is the normalization of u.

where e :=
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Chapter 3. Euclidean Space 3.3. Orthogonal Projection

Theorem 3.19 (Orthogonal Decomposition Theorem). Let W C R™ a subspace. Then each x € R"
can be written uniquely in the form
X=X+2z

where X € W and z € W+. Therefore we have

R =W @ W+

We sometimes write Projy,(x) := X. Note that Projy, € L(R",R") with

Im(Projy,) = W,  Ker(Projy,) = W+

Proof. Explicitly, if {uy,...,u,} is an orthogonal basis of W, then

X = Proj,, (x) +--- + Projy, (x)

XUy X+ Up
u +---+
uq - uqp up-up

up

and z = x — X. O

W = Span(uy,uz)

Figure 3.1: Orthogonal Projection

Remark. In particular, the uniqueness statement says that the orthogonal decomposition, i.e. the
formula for X, does not depend on the basis used for W in the proof.
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Chapter 3. Euclidean Space 3.3. Orthogonal Projection

Properties 3.20. If x € W, then Projy, (x) = x.

By using orthonormal basis, we can represent Projy;, as a matrix:

Theorem 3.21. If {uy,...,u,} is an orthonormal basis for W C R", then
Projyy(x) = (x-up)ug + -+ - (x - up)u,
Equivalently, if U = (u1 e up) is an n X p matrix, then

Projy, (x) = UUTx

The matrix P := UU” is an n X n matrix which is called an orthogonal projection matrix.

Definition 3.22. A projection matrix is an n X n matrix such that
Pl=p

It is an orthogonal projection matrix if in addition

Pr=p
1 1
Example 3.7. If W = Span(vi,ve) where vi = [ 0| ,vo = | 1 | then {vy,va} is an orthogonal
1 -1
basis for W: vy - vy = 0.
The normalization . .
V1 _ ? Vo _ f
v a7 v i
V2 V3
is then an orthonormal basis for W. We have
1 1
U=10 —=
PG
V2 V3
and therefore
41 5 1 1
V2 V38 1 9 1 € 3 @
Projy =UUT = | 0 % (\{5 1 \/51>: g g g
1 1 V3 V3 V3 I _1 >
v 7 V3 V3 V3 G 5 6
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Chapter 3. FEuclidean Space 3.4. Orthogonal Matrix

Theorem 3.23 (Best Approximation Theorem). Let W be a subspace of R" and x € R™. Then
lx — Projyyx|| < ||x —v||, for any ve W

i.e. Projyyx € W is the closest point in W to x.

3.4 Orthogonal Matrix

Definition 3.24. A linear transformation 7' € L(V, W) between inner product spaces is called an
isometry if it preserves the inner product:

(Tu)- (Tv)=u-v

for any vector u,v € V.

Theorem 3.25. If T' € L(R",R™) is a linear isometry which is represented by an m X n matrix
U, then for x,y € R™:

U has orthonormal columns

vl'u=1d,,

|Ux|| = ||x]|| (i.e. it preserves length)

(Ux) - (Uy) =0iff x-y =0 (i.e. it preserves right angle)

Definition 3.26. If n = m, the square matrix U corresponding to a linear isometry is called an
orthogonal matrix. It is invertible with

ul=u"

The set of n x n orthogonal matrices is denoted by O(n).
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Chapter 3. Euclidean Space 3.5. Gram-Schmidt Process

Properties 3.27. Orthogonal matrices satisfy the following “group properties”:

L] Iann S O(n)
e If U € O(n), then U™ € O(n).
e If U,V €O(n), then UV € O(n).

Example 3.8. In R? and R?, an orthogonal matrix corresponds to combinations of rotations and
mirror reflections.

In R?, all orthogonal matrix is of the form Rotations by angle § counterclockwise
cosf —sinf
U= <sin9 cos 6 >
Mirror reflections along the line with slope tang passing through the origin
cosf sinf
U= (sin@ — Cos 9)

Example 3.9. The change-of-coordinate matrix Pg, between orthonormal bases B and B’ is an
orthogonal matrix.

Non-Example 3.10. Projection Projy; is in general not an orthogonal matrix: It does not preserve
lengths.

3.5 Gram-Schmidt Process

Gram-Schmidt Process gives a simple algorithm to compute an orhtogonal basis from an arbitrary
basis.

Theorem 3.28 (Gram-Schmidt Process). Let {xi,...,x,} be a basis for a subspace W C R™.
Define

V1 = X1

Vg := X3 — Proj,, (x2)

V3 1= X3 — PI‘OjV1 (X3) - Projvz (X3)

vy 1= X, — Projy, (xp) — Projy,, (x3) =+ — Projvp_l(xp)
where XV
Proj =
rojy(x) := ——v
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Chapter 3. Euclidean Space 3.5. Gram-Schmidt Process

is the orthogonal projection (see Definition 3.18).
Then B = {vi, ..., vp} is an orthogonal basis for W. Furthermore,
Span(vi, ..., vk) = Span(Xi, ...,Xx), foralll<k<p

To obtain an orthonormal basis, just normalize the vectors:

Vi

V;
il

The Gram-Schmidt Process implies the following factorization, which is very important in compu-
tation algorithms, best linear approximations, and eigenvalues decomposition.

Theorem 3.29 (QR Decomposition). If A is an m x n matrix with linearly independent columns,
then
A =QR

where

e Qis a m X n matrix with orhtonormal columns forming a basis for ColA,

e R is an n X n upper triangular invertible matrix with positive entries on the diagonal.

Example 3.11. Let

— =
—_= == O
_ =0 O

Let x1 = , X9 = , X3 = be the columns of A.

[ R G S G —Y
_ = = O
=0 O

Part 1: Gram-Schmidt Process.
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Chapter 3. Euclidean Space 3.5. Gram-Schmidt Process

Apply the formula, we obtain

1
Vi =X !
1=X1= [y
1
0 1 -3
— w0 — Pro; ) o311
Vo = X9 I'OJV1X2 =S 1 4 1 =S 4 1
1 1 1
0 1 -3 0
%1 — Proi _ Pro; o 11 {1 f_1]-2
V3 = X3 1"0_]le3 rOJV2X3 = 1 B 1 6 1 = 3 1
1 1 1
Then {v1,va,v3} is an orthogonal basis for ColA.
Part 2: Orthonormal basis and Q.
The vectors have lengths
vall = 2 fvall = 2, v = X2
Vv = Vv = — Vv = —
1 ) 2 4 3 3
hence the corresponding orthonormal basis is
1/2 —3/v/12 0
v |2 o 1/V/12 o —2/v/6
1 1/2 |72 1/v/12 |73 1/v6
1/2 1/v/12 1/v6
Then Q is formed by {v}, v, v4}, ie.
1/2 =3/V12 0

|2 vz —2/v6
Q= 1/2 1/vV/12  1/V6
1/2 1/V12  1/V6

Part 3: The triangular matrix R.
To find R, recall that Q is a linear isometry, hence
QTA=Q'(QR)=1d-R=R
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Chapter 3. FEuclidean Space 3.6. Least Square Approximation

Therefore
R=QTA
/2 12 12 12 1 (1) 8
= |-3/viz vz vz yviz| |
0 =26 1V6 V6 \| |

2 3/2 1
0 3/V12 2/V12
0 0 2//6

Note that the diagonal of R is the same as the length of ||v1]|, || v2]], ||v3|| used for the normalization
in Part 2.

3.6 Least Square Approximation

If A is an m X n matrix with m > n, then the system of linear equations
Ax =D
is overdetermined and we may not have a solution.

If A has linear independent columns, we can use the () R decomposition to find a best approximation
X to the solution of AX = b such that ||AX — b|| is the smallest.

By the Best Approximation Theorem (Theorem 3.23), the closest point Ax € ColA to b € R™
should be Projc, ab. But ColA has orthonormal basis given by columns of Q, so Projo,a = QQT.
Hence AX = QQTb. Using A = QR we obtain:

Theorem 3.30 (Least Square Approximation). If A is an m x n matrix with m > n and has linear
independent columns, such that we have the QR decomposition A = QR, then

x=R!'Q"b eR"
is the vector such that for every x € R”,

[AX = b| < [[Ax - b]|

Note. It is easier to solve for X by
Rx=Q™b

instead of finding R™!, because R is upper triangular, so that we can use backward substitution.
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Chapter 3. FEuclidean Space 3.6. Least Square Approximation

Example 3.12. Continue our example, if b = , then the closest point X such that ||Ax — b]|

W N

is smallest is given by

0 3/vV12 2/V12 | [ 2 -3/V/12 1/V/12 1/V/12 1/V/12
0 0 2/v/6 ) \x3 —2/v/6 1/vV6  1/V6

B~ W N =

=Q'b
2 3/2 1 1 ( 1/2 /2 1/2  1/2

3/[

This is a very simple system of linear equations, and we can solve for X to get

I 2/3
X = X9 = 1
x3 3/2

Therefore
100 2/3
AS — 1 10 2{3 | 5/3
1111 3/2 1 19/6
111 19/6
1
is the closest approximation in ColA to ?)
4

Note. It is called ”least square” because ||ul| is computed by summing the squares of the coor-
dinates. We want to find the smallest |Ax — b||. This is very useful in regression problems in
statistics, where we want to fit the data onto a linear model as closely as possible.
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