
CHAPTER 5

Diagonalization

In this Chapter, we will learn how to diagonalize a matrix, when we can do it, and what else we
can do if we fail to do it.

5.1 Diagonalization

Definition 5.1. A square n× n matrix A is diagonalizable if A is similar to a diagonal matrix,
i.e.

A = PDP−1

for a diagonal matrix D and an invertible matrix P.

Diagonalization let us simplify many matrix calculations and prove algebraic theorems. The most
important application is the following. If A is diagonalizable, then it is easy to compute its powers:

Properties 5.2. If A = PDP−1, then An = PDnP−1.

Example 5.1. Let A =

(
4 −3
2 −1

)
. Then A = PDP−1 where

P =

(
3 1
2 1

)
, D =

(
2 0
0 1

)
, P−1 =

(
1 −1
−2 3

)
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Then for example

D8 =

(
28 0
0 18

)
=

(
256 0
0 1

)
and

A8 = PD8P−1

=

(
3 1
2 1

)(
256 0
0 1

)(
1 −1
−2 3

)
=

(
766 −765
510 −509

)

The Main Theorem of the Chapter is the following

Theorem 5.3 (The Diagonalization Theorem). An n× n matrix A is diagonalizable

A = PDP−1

if and only if A has n linearly independent eigenvectors.
(Equivalently, Rn has a basis formed by eigenvectors of A)

• The columns of P consists of eigenvectors of A

• D is a diagonal matrix consists of the corresponding eigenvalues.

Proof. Since the columns of P is linearly independent, P is invertible. We have

AP = A

 | |
v1 · · · vn
| |

 =

 | |
λ1v1 · · · λnvn
| |

 =

 | |
v1 · · · vn
| |


λ1 . . .

λn

 = PD

Example 5.2. Let us diagonalize A =

 3 −2 4
−2 6 2
4 2 3


Step 1: Find Eigenvalues. Characteristic equation is

p(λ) = det(A− λId) = −λ3 + 12λ2 − 21λ− 98 = −(λ− 7)2(λ+ 2) = 0

Hence the eigenvalues are λ = 7 and λ = −2.
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Step 2: Find Eigenvectors. We find by usual procedure the linearly independent eigenvectors:

λ = 7 : v1 =

1
0
1

 ,v2 =

−1
2
0

 , λ = −2 : v3 =

−2
−1
2


Step 3: P constructed from eigenvectors. Putting them in columns,

P =

1 −1 −2
0 2 −1
1 0 2


Step 4: D consists of the eigenvalues. Putting the eigenvalues according to vi:

D =

7 0 0
0 7 0
0 0 −2


and we have

A = PDP−1

We have seen in last chapter (Theorem 4.6) that if the eigenvectors have different eigenvalues, then
they are linearly independent. Therefore by the Diagonalization Theorem

Corollary 5.4. If A is an n× n matrix with n different eigenvalues, then it is diagonalizable.

Example 5.3. The matrix A =

3 4 5
0 0 7
0 0 6

 is triangular, hence the eigenvalues are the diagonal

entries λ = 3, λ = 0 and λ = 6. Since they are all different, A is diagonalizable.

Non-Example 5.4. We have seen from Example 4.4 that the matrix A =

3 0 0
0 1 1
0 0 1

 has 2

eigenvalues λ = 1, 3 only, so we cannot apply the Corollary. In fact, each of the eigenvalue has only
1-dimensional eigenvectors. Hence R3 does not have a basis formed by eigenvectors and so it is not
diagonalizable by the Diagonalization Theorem.

From this Non-Example, we can also deduce that

Theorem 5.5. A square matrix A is diagonalizable if and only if for each eigenvalue λ, the
algebraic multiplicity equals the geometric multiplicity.
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Chapter 5. Diagonalization 5.2. Symmetric Matrices

5.2 Symmetric Matrices

A wide class of diagonalizable matrices are given by symmetric matrices, and the diagonalization
has very nice properties.

Definition 5.6. A linear operator T ∈ L(V, V ) on an inner product space is called symmetric if

Tu · v = u · Tv

If T is represented by an n× n square matrix A on V = Rn, then a matrix is called symmetric if

AT = A

The first important property of symmetric matrix is the orthogonality between eigenspaces.

Theorem 5.7. If A is symmetric, then two eigenvectors from different eigenspaces are orthogonal.

Proof. If v1 ∈ Vλ1 ,v2 ∈ Vλ2 are eigenvectors with eigenvalues λ1, λ2 such that λ1 6= λ2, then

λ1v1 · v2 = Av1 · v2 = v1 ·Av2 = λ2v1 · v2

and so we must have v1 · v2 = 0.

Therefore, if we normalize the eigenvectors, then the matrix P formed from the eigenvectors will
consist of orthonormal columns, i.e. P is an orthogonal matrix.

Definition 5.8. A matrix A is orthogonally diagonalizable if

A = PDP−1 = PDPT

for some orthogonal matrix P and diagonal matrix D.

Theorem 5.9. An n× n matrix A is symmetric if and only if it is orthogonally diagonalizable.

In particular, A is diagonalizable means that each eigenvalue λ has the same algebraic and geo-
metric multiplicity. That is, dimension of the eigenspace Vλ = the number of linearly independent
eigenvectors with eigenvalue λ = multiplicity of the root λ of p(λ) = 0.
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Example 5.5 (Exercise 5.2 cont’d). We have diagonalize the matrix A =

 3 −2 4
−2 6 2
4 2 3

 before.

But the matrix P we found is not an orthogonal matrix.

We have found before (Step 1, Step 2.)

λ = 7 : v1 =

1
0
1

 ,v2 =

−1
2
0

 , λ = −2 : v3 =

−2
−1
2



Since A is symmetric, different eigenspaces are orthogonal to each other. So for example we see
that

v1 · v3 = v2 · v3 = 0

So we just need to find an orthogonal basis for the eigenspace V7.

Step 2a: Use the Gram-Schmidt process on V7:

b1 = v1 =

1
0
1


b2 = v2 −

(
b1 · v2

b1 · b1

)
b1 =

1

2

−1
4
1


Therefore {b1,b2} is an orthogonal basis for V7, and {b1,b2,v3} is an orthogonal eigenvector basis
for R3.

Step 2b: Normalize.

b′1 =
1√
2

1
0
1

 , b′2 =
1√
18

−1
4
1

 , v′3 =
1

3

−2
−1
2


Step 3, Step 4: Construct P and D

Putting together the eigenvectors, we have

P =


1√
2
− 1√

18
−2

3

0 4√
18

−1
3

1√
2

1√
18

2
3



and D =

7 0 0
0 7 0
0 0 −2

, consisting of the eigenvalues, is the same as before.
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Theorem 5.10. If A is a symmetric n × n matrix, then it has n real eigenvalues (counted with
multiplicity) i.e. the characteristic polynomial p(λ) has n real roots (counted with repeated roots).

The collection of Theorems 5.7, 5.9, and 5.10 in this Section are known as the Spectral Theorem
for Symmetric Matrices.

5.3 Minimal Polynomials

By the Cayley-Hamilton Theorem, if p(λ) is the characteristic polynomial of a square matrix A,
then

p(A) = O

Although this polynomial tells us about the eigenvalues (and their multiplicities), it is sometimes
too “big” to tell us information about the structure of the matrix.

Definition 5.11. The minimal polynomial m(λ) is the unique polynomial such that

m(A) = O

with leading coefficient 1, and has the smallest degree among such polynomials.

To see it is unique: If we have different minimal polynomials m,m′, then m(A) −m′(A) = O,
but since m,m′ have the same degree with the same leading coefficient, m − m′ is a polynomial
with smaller degree, contradicting the fact that m has smallest degree.

Since it has the smallest degree, in particular we have

deg(m) ≤ deg(p) = n

Example 5.6. The diagonal matrix A =

2 0 0
0 2 0
0 0 2

 has characteristic polynomial

p(λ) = (2− λ)3

but obviously A− 2Id = O, hence the minimal polynomial of A is just

m(λ) = λ− 2
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In particular,

The minimal polynomial m(λ) of A has degree 1 if and only if A is a multiple of Id.

Example 5.7. The diagonal matrix A =

1 0 0
0 2 0
0 0 2

 has characteristic polynomial

p(λ) = (1− λ)(2− λ)2

Since A is not a multiple of Id, m(λ) has degree at least 2. Since (A − Id)(A − 2Id) = O, the
polynomial

m(λ) = (λ− 1)(λ− 2)

having degree 2 is the minimal polynomial.

Example 5.8. The matrix A =

1 1 0
0 1 1
0 0 1

 has characteristic polynomial

p(λ) = (1− λ)3

and it turns out that the minimal polynomial is the same also (up to a sign):

m(λ) = (λ− 1)3

From the above examples, we also observe that

Theorem 5.12. p(λ) = m(λ)q(λ) for some polynomial q(λ). That is m(λ) divides p(λ).

Proof. We can do a polynomial division

p(λ) = m(λ)q(λ) + r(λ)

where r(λ) is the remainder with deg(r) < deg(m). Since p(A) = O and m(A) = O, we must have
r(A) = O. But since deg(r) < deg(m) and m is minimal, r must be the zero polynomial.

Theorem 5.13. Let λ1, ..., λk be the eigenvalues of A (i.e. roots of p(λ)) Then

m(λ) = (λ− λ1)s1 · · · (λ− λk)sk

where 1 ≤ si ≤ mi where mi is the algebraic multiplicity of λi.
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Proof. To see si ≥ 1, note that if vi is an eigenvector for the eigenvalue λi, then since m(A) = O,

0 = m(A)vi = m(λi)vi

But since vi 6= 0, we have m(λi) = 0, so λi is a root of m(λ).

Finally, the most useful criterion is the following result:

Theorem 5.14. An n × n matrix A is diagonalizable if and only if each si = 1. That is, m(λ)
only has linear factors.

Using this result, minimal polynomials can let us determine whether a matrix is diagonalizable or
not without even calculating the eigenspaces!

Example 5.9. The matrix A =

(
−1 1
−4 3

)
has characteristic polynomial p(λ) = (λ − 1)2. Since

m(λ) 6= λ− 1 because A 6= Id, we must have m(λ) = (λ− 1)2, hence A is not diagonalizable.

Example 5.10. The matrix A =

−1 1 0
−4 3 0
−1 0 0

 has characteristic polynomial p(λ) = λ(λ − 1)2,

hence it has eigenvalues λ = 1 and λ = 0. The minimal polynomial can only be λ(λ−1) or λ(λ−1)2.
Since

A(A− Id) 6= O

the minimal polynomial must be m(λ) = λ(λ− 1)2, hence A is not diagonalizable.

Example 5.11. The matrix A =

2 −2 2
0 −2 4
0 −2 4

 has characteristic polynomial p(λ) = λ(λ − 2)2,

hence it has eigenvalues λ = 2 and λ = 0. The minimal polynomial can only be λ(λ−2) or λ(λ−2)2.
Since

A(A− 2Id) = O

the minimal polynomial is m(λ) = λ(λ− 2), hence A is diagonalizable.

5.4 Jordan Canonical Form

Finally we arrive at the most powerful tool in Linear Algebra, called the Jordan Canonical Form.
This completely determines the structure of a given matrix. It is also the best approximation to
diagonalization if the matrix is not diagonalizable.
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The result below works as long as p(λ) has n roots (counted with multiplicity), and so it is
always available if the field is K = C, so that the characteristic polynomial p(λ) always has n roots
by the Fundamental Theorem of Algebra.

Definition 5.15. Let A = A1 ⊕ · · · ⊕Am denote the n× n matrix in block form:

A =


A1 O · · · O

O A2
. . .

...
...

. . .
. . . O

O · · · O Am


such that Ai are square matrices of size di × di, and O are zero matrices of the appropriate sizes.
In particular n = d1 + d2 + · · ·+ dm.

For any d ≥ 1, and λ ∈ C, let J
(d)
λ be the Jordan block denote the d× d matrix

J
(d)
λ =



λ 1
λ 1

λ 1
. . .

. . .

λ 1
λ 1

λ


where all the unmarked entries are 0.

Note. When d = 1, we have J
(1)
λ =

(
λ
)
.

With these notations, we can now state the Main Big Theorem

Theorem 5.16 (Jordan Canonical Form). Let A ∈Mn×n(C). Then A is similar to

J := J
(d1)
λ1
⊕ · · ·J(dm)

λm

where λi belongs to the eigenvalues of A. (λi with different index may be the same!).
This decomposition is unique up to permuting the order of the Jordan blocks.

Since eigenvalues, characteristic polynomials, minimal polynomials, and multiplicity etc. are all
the same for similar matrices, if we can determine the Jordan block from these data, we
can determine the Jordan Canonical Form of a matrix A.
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Let us first consider a single block.

Properties 5.17. The Jordan block J
(d)
λ has

• only one eigenvalue λ

• characteristic polynomial (t− λ)d

• minimal polynomial (t− λ)d

• geometric multiplicity of λ is 1.

Now let us combine several blocks of the same eigenvalues:

Properties 5.18. The matrix J
(d1)
λ ⊕ · · · ⊕ J

(dk)
λ has

• only one eigenvalue λ

• characteristic polynomial (t− λ)d1+···dk

• minimal polynomial (t− λ)max(d1,...,dk)

• geometric multiplicity of λ is k.

Now we can do the same analysis by combining different Jordan blocks. We arrive at the following
structure:

Theorem 5.19. Given a matrix A in the Jordan canonical form:

• The eigenvalues λ1, ..., λk are the entries of the diagonal.

• The characteristic polynomial is

p(λ) = (λ− λ1)r1 · · · (λ− λk)rk

where ri is the number of occurrences of λi on the diagonal.

• The minimal polynomial is

m(λ) = (λ− λ1)s1 · · · (λ− λk)sk

where si is the size of the largest λi-block in A

• The geometric multiplicity of λi is the number of λi-blocks in A.
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Example 5.12. Assume A is a 6× 6 matrix with characteristic polynomial

p(λ) = (λ− 2)4(λ− 3)2

and minimal polynomial
m(λ) = (λ− 2)2(λ− 3)2,

with eigenspaces dimV2 = 3, dimV3 = 1. Then it must have 3 blocks of λ = 2, with maximum
block-size of 2 so that the λ = 2 blocks add up to 4 rows. It also has 1 block of λ = 3 with block-size
2. Hence

A ∼ J
(2)
2 ⊕ J

(1)
2 ⊕ J

(1)
2 ⊕ J

(2)
3

A ∼

2 1 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 3 1

0 0 0 0 0 3




The uniqueness of Jordan Canonical Form says that A is also similar to the matrix where the
Jordan blocks are in different order. For example we can have:

A ∼

3 1 0 0 0 0

0 3 0 0 0 0

0 0 2 0 0 0

0 0 0 2 1 0

0 0 0 0 2 0

0 0 0 0 0 2




Example 5.13. Another example, let A be a matrix such that it has characteristic polynomial

p(λ) = λ4(λ− 1)3(λ− 2)3

and minimal polynomial
m(λ) = λ3(λ− 1)2(λ− 2)

With this information only, we can determine

A ∼ J
(3)
0 ⊕ J

(1)
0 ⊕ J

(2)
1 ⊕ J

(1)
1 ⊕ J

(1)
2 ⊕ J

(1)
2 ⊕ J

(1)
2

A ∼

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 2




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It turns out that when the matrix is bigger than 6 × 6, sometimes we cannot determine the
Jordan Canonical Form just by knowing p(λ),m(λ) and the dimension of the eigenspaces only:

Example 5.14. Consider a 7× 7 matrix A. Let p(λ) = λ7, m(λ) = λ3, and dimV0 = 3. Then A
has 3 blocks and the largest block has size 3. So it may be similar to

J
(3)
0 ⊕ J

(3)
0 ⊕ J

(1)
0 or J

(3)
0 ⊕ J

(2)
0 ⊕ J

(2)
0

However, by the uniqueness of Jordan Canonical Form, we know that these two are not similar to
each other, but we cannot tell which one is similar to A just from the given information.

To determine which one is the Jordan Canonical Form of A, we need more techniques. In the
Homework, we will discuss how one can determine exactly the size of the Jordan blocks, as well as
the transformation matrix P such that A = PJP−1.

5.5 Positive definite matrix (Optional)

One application of the diagonalization of symmetric matrix allows us to analyses quadratic func-
tions, and define “square root” and “absolute value” of a matrix, which is useful in advanced linear
algebra and optimization problems.

Definition 5.20. Let A be a symmetric matrix. The quadratic function

Q(x) := xTAx = x ·Ax

is called the quadratic form associated to A.

Definition 5.21. A quadratic form Q (or symmetric matrix A) is called positive definite if

Q(x) = x ·Ax > 0, for all nonzero x ∈ Rn

It is called positive semidefinite if

Q(x) = x ·Ax ≥ 0, for all nonzero x ∈ Rn

Example 5.15. Q(x) :=
(
x y

)(9 0
0 1

)(
x
y

)
= 9x2 + y2 is positive definite.

Example 5.16. Let A =

(
5 4
4 5

)
. Then Q(x) := xTAx = 5x2 + 8xy+ 5y2 is positive definite. We

can see that it represents ellipses as follows: We can diagonalize the matrix by A = PDPT where
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D =

(
9 0
0 1

)
and P = 1√

2

(
1 1
−1 1

)
. Then

Q(x) = xTPDPTx = (PTx)TD(PTx)

Therefore if we let x̂ =

(
x̂
ŷ

)
= PTx, i.e. rotating the basis by P−1, then

Q(x̂) = 9x̂2 + ŷ2

and it is represented by an ellipse.

E

Q(x) = 5x2 + 8xy + 5y2 = 1

B

Q(x̂) = 9x̂2 + ŷ2 = 1

PT = (PBE )−1

Figure 5.1: Pictorial explanation of similar matrix.

Theorem 5.22. A quadratic form Q associated to a symmetric matrix A is positive (semi)definite
if and only if λi > 0 (λi ≥ 0) for all the eigenvalues of A.

Proof. Substitute x Px where A = PDPT is the diagonalization.

Remark. If all eigenvalues are λi < 0 (λi ≤ 0), we call the quadratic form negative (semi)definite.
Otherwise if some are positive and some are negative, it is called indefinite.

We can always find a “square root” of A if it is positive (semi)definite.
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Theorem 5.23. If A is positive (semi)definite, then there exists exactly one positive (semi)definite
matrix B such that

B2 = A

We call B the square root of A and denote it by
√

A. It is given by

√
A = PD

1
2 PT

where D
1
2 is the diagonal matrix where we take the square root of the entries of D.

We can also construct the “absolute value” of any matrix A:

Theorem 5.24. Let A be any m× n matrix. Then ATA is a positive semidefinite matrix, and

|A| :=
√

ATA

is called the absolute value of A.

Proof. ATA is symmetric, and x ·ATAx = ‖Ax‖2 ≥ 0 for any x ∈ Rn.

This is used in the construction of Singular Value Decomposition in the next section.

Example 5.17. Let A =

(
5 4
4 5

)
= P

(
9 0
0 1

)
PT where P = 1√

2

(
1 1
−1 1

)
. Then

√
A = P

(
3 0
0 1

)
PT =

(
2 1
1 2

)

Let B =

(
1 −2
−2/5 −11/5

)
. Then BTB =

(
5 4
4 5

)
, therefore by above |B| =

(
2 1
1 2

)
.

5.6 Singular Value Decomposition (Optional)

We know that not all matrix can be diagonalized. One solution to this is to use Jordan Canonical
Form, which give us an approximation. Another approach is the Singular Value Decomposition,
and this can even be applied to rectangular matrix! This method is also extremely important in
data analysis.
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Recall that if Av = λv is the eigenvector, the effect is “stretching by λ” along the direction of v.
We want to consider all such directions if possible, even for rectangular matrix.

Definition 5.25. Let A be m × n matrix. The singular values of A is the eigenvalues σi of
|A| =

√
ATA.

If A has rank r, then we have r nonzero singular values. We arrange them as σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Since ATA is a positive definite symmetric matrix, it has an orthonormal set of eigenvectors
{v1, ...,vn} with positive eigenvalues {λ1, ..., λn}. Then

‖Avi‖2 = vTi ATAvi = vTi λivi = λi

therefore the singular values σi =
√
λi = ‖Avi‖ of A is precisely the length of the vector Avi.

Let us denote a “quasi-diagonal” matrix of size m× n and rank r ≤ m,n:

Σ =

r n− r( )
D O r
O O m− r

where D is a diagonal matrix. (When r = m or n, we omit the rows or columns of zeros).

Theorem 5.26 (Singular value decomposition). Let A be an m× n matrix with rank r. Then we
have the factorization

A = UΣVT

where

• Σ is as above with D consists of the first r singular values of A

• U is an m×m orthogonal matrix

• V is an n× n orthogonal matrix

V =

 | |
v1 · · · vn
| |

 where the columns are the orthonormal eigenvectors {v1, ...,vn} of ATA.

For U, extend the orthogonal set {Av1, ...,Avr} to a basis of Rm, and normalize to obtain an

orthonormal basis {u1, ...,um}. Then U =

 | |
u1 · · · um
| |

.
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Example 5.18. Let A =

(
1 1 1
1 1 −1

)
. Then ATA =

2 2 0
2 2 0
0 0 2

 and it has eigenvalues λ1 =

4, λ2 = 2, λ3 = 0 with orthonormal eigenvectors

v1 =
1√
2

1
1
0

 , v2 =

0
0
1

 , v3 =
1√
2

−1
1
0


Therefore

V =
1√
2

1 0 −1
1 0 1

0
√

2 0


Also σ1 =

√
λ1 = 2, σ2 =

√
λ2 =

√
2. Therefore

Σ =

(
2 0 0

0
√

2 0

)
Finally

u1 =
Av1

‖Av1‖
=

Av1

σ1
=

1√
2

(
1
1

)
u2 =

Av2

‖Av2‖
=

Av2

σ2
=

1√
2

(
1
−1

)
therefore

U =
1√
2

(
1 1
1 −1

)
and

A = UΣVT =

(
1√
2

1√
2

1√
2
− 1√

2

)(
2 0 0

0
√

2 0

)
1√
2

1√
2

0

0 0 1
− 1√

2
1√
2

0


is the Singular Value Decomposition of A.

A−−−→

Figure 5.2: Multiplication by A. It squashed the v3 direction to zero.
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One useful application of SVD is to find the bases of the fundamental subspaces.

Theorem 5.27. Let A be m× n matrix with rank r, and A = UΣVT be the SVD.

Assume U =

 | |
u1 · · · um
| |

 and V =

 | |
v1 · · · vn
| |

. Then

• {u1, ...,ur} is an orthonormal basis of ColA.

• {ur+1, ...,um} is an orthonormal basis of Nul(AT ).

• {v1, ...,vr} is an orthonormal basis of RowA = ColAT .

• {vr+1, ...,vn} is an orthonormal basis of NulA.

Another application is the least-square solution which works like the example from QR decom-
position in Chapter 3.

Definition 5.28. Let Ur =

 | |
u1 · · · ur
| |

 ,Vr =

 | |
v1 · · · vr
| |

 be the submatrix consists of

the first r columns. Then

A =
(
Ur ∗

)(D O
O O

)(
VT
r

∗

)
= UrDVT

r .

The pseudoinverse of A is defined to be

A+ = VrD
−1UT

r

The pseudoinverse satisfies for example

AA+A = A

and

AA+ = ProjColA

because

AA+ = (UrDVT
r )(VrD

−1UT
r ) = UrDD−1UT

r = UrU
T
r = ProjColA
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Chapter 5. Diagonalization 5.6. Singular Value Decomposition (Optional)

Theorem 5.29. Given the equation x = Ab, the least-square solution is given by

x̂ = A+b = VrD
−1UT

r b

Proof. Since Ax̂ = AA+b = ProjColAb, Ax̂ is the closest point to b in ColA.
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