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Introduction

Real life problems are hard.

Linear Algebra is easy (in the mathematical sense).

We make linear approximations to real life problems, and reduce the problems to systems of linear
equations where we can then use the techniques from Linear Algebra to solve for approximate
solutions. Linear Algebra also gives new insights and tools to the original problems.

Real Life Problems Linear Algebra

Optimization Problems −→ Tangent Spaces
Economics −→ Linear Regression
Stochastic Process −→ Transition Matrices
Engineering −→ Vector Calculus
Data Science −→ Principal Component Analysis
Signals Processing −→ Fourier Analysis
Artificial Intelligence −→ Deep Learning
Computer Graphics −→ Euclidean Geometry

Roughly speaking,

Real Life Problems Linear Algebra

Data Sets ←→ Vector Spaces
Relationship between data ←→ Linear Transformations

In Linear Algebra with Exercises A, we learned techniques to solve linear equations, such as row
operations, reduced echelon forms, existence and uniqueness of solutions, basis for null space etc.

In part B of the course, we will focus on the more abstract part of linear algebra, and study the
descriptions, structures and properties of vector spaces and linear transformations.
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Mathematical Notations

Numbers:

• R : The set of real numbers

• Rn : n-tuples of real numbers

• Q : Rational numbers

• C : Complex numbers x+ iy where i2 = −1

• N : Natural numbers {1, 2, 3, ...}

• Z : Integers {...,−2,−1, 0, 1, 2, ...}

Sets:

• x ∈ X : x is an element in the set X

• S ⊂ X : S is a subset of X

• S ( X : S is a subset of X but not equals to X

• X × Y : Cartesian product, the set of pairs {(x, y) : x ∈ X, y ∈ Y }

• |S| : Cardinality (size) of the set S

• φ : Empty set

• V −→W : A map from V to W

• x 7→ y : A map sending x to y, (“x maps to y”)

Logical symbols:

• ∀ : “For every”

• ∃ : “There exists”

• ∃! : “There exists unique”

• := : “is defined as”

• =⇒ : “implies”

• ⇐⇒ or iff : “if and only if”. A iff B means

– if: B =⇒ A

– only if: A =⇒ B

• Contrapositive: A =⇒ B is equivalent to Not(B) =⇒ Not(A)



CHAPTER 1

Abstract Vector Spaces

1.1 Vector Spaces

Let K be a field, i.e. a “number system” where you can add, subtract, multiply and divide.
In this course we will take K to be R,C or Q.

Definition 1.1. A vector space over K is a set V together with two operations: + (addition)
and · (scalar multiplication) subject to the following 10 rules for all u,v,w ∈ V and c, d ∈ K:

(+1) Closure under addition: u ∈ V,v ∈ V =⇒ u + v ∈ V.

(+2) Addition is commutative: u + v = v + u.

(+3) Addition is associative: (u + v) + w = u + (v + w).

(+4) Zero exists: there exists 0 ∈ V such that u + 0 = u.

(+5) Inverse exists: for every u ∈ V , there exists u′ ∈ V such that u + u′ = 0. We write u′ := −u.

(·1) Closure under multiplication: c ∈ K,u ∈ V =⇒ c · u ∈ V.

(·2) Multiplication is associative: (cd) · u = c · (d · u).

(·3) Multiplication is distributive: c · (u + v) = c · u + c · v.

(·4) Multiplication is distributive: (c+ d) · u = c · u + d · u.

(·5) Unity: 1 · u = u.

The elements of a vector space V are called vectors.
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Chapter 1. Abstract Vector Spaces 1.1. Vector Spaces

Note. We will denote a vector with boldface u in this note, but you should use −→u for handwriting.
Sometimes we will omit the · for scalar multiplication if it is clear from the context.

Note. Unless otherwise specified, all vector spaces in the examples below is over R.

The following facts follow from the definitions

Properties 1.2. For any u ∈ V and c ∈ K:

• The zero vector 0 ∈ V is unique.

• The negative vector −u ∈ V is unique.

• 0 · u = 0.

• c · 0 = 0.

• −u = (−1) · u.

Examples of vector spaces over R:

Example 1.1. The space Rn, n ≥ 1 with the usual vector addition and scalar multiplication.

Example 1.2. C is a vector space over R.

Example 1.3. The subset {

xy
z

 : x+ y + z = 0} ⊂ R3.

Example 1.4. Real-valued functions f(t) defined on R.

Example 1.5. The set of real-valued differentiable functions satisfying the differential equations

f +
d2f

dx2
= 0.

Examples of vector spaces over a field K:

Example 1.6. The zero vector space {0}.
Example 1.7. Polynomials with coefficients in K:

p(t) = a0 + a1t+ a2t
2 + ...+ ant

n

with ai ∈ K for all i.

Example 1.8. The set Mm×n(K) of m× n matrices with entries in K.

-2-



Chapter 1. Abstract Vector Spaces 1.2. Subspaces

Counter-Examples: these are not vector spaces:

Non-Example 1.9. R is not a vector space over C.

Non-Example 1.10. The first quadrant {
(
x
y

)
: x ≥ 0, y ≥ 0} ⊂ R2.

Non-Example 1.11. The set of all invertible 2× 2 matrices.

Non-Example 1.12. Any straight line in R2 not passing through the origin.

Non-Example 1.13. The set of polynomials of degree exactly n.

Non-Example 1.14. The set of functions satisfying f(0) = 1.

1.2 Subspaces

To check whether a subset H ⊂ V is a vector space, we only need to check zero and closures.

Definition 1.3. A subspace of a vector space V is a subset H of V such that

(1) 0 ∈ H.

(2) Closure under addition: u ∈ H,v ∈ H =⇒ u + v ∈ H.

(3) Closure under multiplication: u ∈ H, c ∈ K =⇒ c · u ∈ H.

Example 1.15. Every vector space has a zero subspace {0}.

Example 1.16. A plane in R3 through the origin is a subspace of R3.

Example 1.17. Polynomials of degree at most n with coefficients in K, written as Pn(K), is a
subspace of the vector space of all polynomials with coefficients in K.

Example 1.18. Real-valued functions satisfying f(0) = 0 is a subspace of the vector space of all
real-valued functions.

Non-Example 1.19. Any straight line in R2 not passing through the origin is not a vector space.

Non-Example 1.20. R2 is not a subspace of R3. But {

xy
0

 : x ∈ R, y ∈ R} ⊂ R3, which looks

exactly like R2, is a subspace.
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Chapter 1. Abstract Vector Spaces 1.3. Linearly Independent Sets

Definition 1.4. Let S = {v1, ...,vp} be a set of vectors in V . A linear combination of S is a
any sum of the form

c1v1 + ...+ cpvp ∈ V, c1, ..., cp ∈ K.

The set spanned by S is the set of all linear combinations of S, denoted by Span(S).

Remark. More generally, if S is an infinite set, we define

Span(S) =

{
N∑
i=1

civi : ci ∈ K,vi ∈ S

}
i.e. the set of all linear combinations which are finite sum. It follows that Span(V ) = V if V is a
vector space.

Theorem 1.5. Span(S) is a subspace of V .

Theorem 1.6. H is a subspace of V if and only if H is non-empty and closed under linear
combinations, i.e.

ci ∈ K,vi ∈ H =⇒ c1v1 + ...+ cpvp ∈ H.

Example 1.21. The set H := {


a− 3b
b− a
a
b

 ∈ R4 : a, b ∈ R} is a subspace of R4, since every element

of H can be written as a linear combination of v1 and v2:

a


1
−1
1
0

+ b


−3
1
0
1

 = av1 + bv2 ∈ R4.

Hence H = Span(v1,v2) is a subspace by Theorem 1.6.

1.3 Linearly Independent Sets

Definition 1.7. A set of vectors {v1, ...,vp} ⊂ V is linearly dependent if

c1v1 + ...+ cpvp = 0

for some ci ∈ K, not all of them zero.
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Chapter 1. Abstract Vector Spaces 1.4. Bases

Linearly independent set are those vectors that are not linearly dependent:

Definition 1.8. A set of vectors {v1, ...,vp} ⊂ V is linearly independent if

c1v1 + ...+ cpvp = 0

implies ci = 0 for all i.

Example 1.22. A set of one element {v} is linearly independent iff v 6= 0.

Example 1.23. A set of two nonzero element {u,v} is linearly independent iff u is not a multiple
of v.

Example 1.24. Any set containing 0 is linearly dependent.

Example 1.25. The set of vectors {

1
0
0

 ,

0
1
0

 ,

0
0
1

} is linearly independent.

Example 1.26. The set of polynomials {t2, t, 4t− t2} is linearly dependent.

Example 1.27. The set of functions {sin t, cos t} is linearly independent. The set {sin 2t, sin t cos t}
is linearly dependent.

1.4 Bases

Definition 1.9. Let H be a subspace of a vector space V . A set of vectors B = {b1, ...,bm} ⊂ V
is a basis for H iff

(1) B is a linearly independent set.

(2) H = Span(B).

Note. The plural of “basis” is “bases”.

Example 1.28. The columns of the n× n identity matrix In:

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , ..., en =


0
0
...
1


form the standard basis for Rn.
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Chapter 1. Abstract Vector Spaces 1.4. Bases

Example 1.29. In general, the columns of an invertible matrix A ∈Mn×n(R) form a basis of Rn,
because Ax = 0 only has trivial solution.

Example 1.30. The polynomials {1, t, t2, ..., tn} from the standard basis for Pn(R).

Theorem 1.10 (Spanning Set Theorem). Let S = {v1, ...,vp} be a set in V and let H = Span(S).

(1) If one of the vectors, say vk, is a linear combination of the remaining vectors in S, then
H = Span(S \ {vk}).

(2) If H 6= {0}, some subset of S is a basis of H.

Theorem 1.11 (Unique Representation Theorem). If B = {b1, ...,bn} ⊂ V is a basis for V , then
for each x ∈ V , there exists unique scalars c1, ..., cn ∈ K such that

x = c1b1 + ...+ cnbn.

c1, ..., cn are called the coordinates of x relative to the basis B, and

[x]B :=

c1...
cn

 ∈ Rn

is the coordinate vector of x relative to B.

Example 1.31. The coordinate vector of the polynomial p = t3 + 2t2 + 3t+ 4 ∈ P3(R) relative to
the basis B = {1, t, t2, t3} is

[p]B =


4
3
2
1

 ∈ R4.

We will study the change of basis later.
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Chapter 1. Abstract Vector Spaces 1.5. Dimensions

1.5 Dimensions

Theorem 1.12 (Replacement Theorem). If V = Span(v1, ...,vn), and {u1, ...,um} is linearly
independent set in V , then m ≤ n.

Proof. (Idea) One can replace some vi by u1 so that {u1,v1, ...,vn}\{vi} also spans V . Assume on
the contrary that m > n. Repeating the process we can replace all v’s by u’s, so that {u1, ...,un}
spans V , hence {u1, ...,um} is linearly dependent.

Applying this statement to different bases B and B′, which are both spanning and linearly inde-
pendent, we get

Theorem 1.13. If a vector space V has a basis of n vectors, then every basis of V must also
consists of exactly n vectors.

By this Theorem, the following definition makes sense:

Definition 1.14. If V is spanned by a finite set, then V is said to be finite dimensional,
dim(V ) <∞. The dimension of V is the number of vectors in any basis B of V :

B = {b1, ...,bn} =⇒ dimV := |B| = n.

If V = {0} is the zero vector space, dimV := 0..

If V is not spanned by a finite set, it is infinite dimensional, dim(V ) :=∞.

Note. If the vector space is over the field K we will write dimK V . If it is over R or if the field is
not specified (as in the Definition above), we simply write dimV instead.

Example 1.32. dimRn = n.

Example 1.33. dimK Pn(K) = n+ 1. The space of all polynomials is infinite dimensional.

Example 1.34. dimKMm×n(K) = mn.

Example 1.35. Let V = {(x, y, z) ∈ R3 : x+ y + z = 0}. Then dimV = 2.

-7-



Chapter 1. Abstract Vector Spaces 1.5. Dimensions

Example 1.36. The space of real-valued functions on R is infinite dimensional.

Example 1.37. dimRC = 2 but dimCC = 1. dimRR = 1 but dimQR =∞.

Theorem 1.15 (Basis Extension Theorem). Let H be a subspace of V with dimV < ∞. Any
linearly independent set in H can be expanded, if necessary, to a basis for H.
Also, H is finite dimensional and

dimH ≤ dimV.

Example 1.38. Subspaces of R3 are classified as follows:

• 0-dimensional subspaces: only the zero space {0}.

• 1-dimensional subspaces: any line passing through origin.

• 2-dimensional subspaces: any plane passing through origin.

• 3-dimensional subspaces: only R3 itself.

Summarize: For dimV <∞ and H ⊂ V a subspace:

Linearly
Independent

Set

⊆ Basis ⊆ Spanning
Set

Basis
Extension
Theorem

Spanning
Set

Theorem

Replacement Theorem
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Chapter 1. Abstract Vector Spaces 1.6. Intersections, Sums and Direct Sums

If you know the dimension of V , the following Theorem gives a useful criterion to check whether a
set is a basis:

Theorem 1.16 (The Basis Theorem). Let V be an n-dimensional vector space, n ≥ 1, and S ⊂ V
a finite subset with exactly n elements. Then

(1) If S is linearly independent, then S is a basis for V .

(2) If S spans V , then S is a basis for V .

1.6 Intersections, Sums and Direct Sums

We discuss three important construction of vector spaces.

Definition 1.17. Let U,W be subspaces of V .

• U ∩W is the intersection of U and W .

• U +W = {u + v : u ∈ U,v ∈W} ⊂ V is the sum of U and W .

Properties 1.18.

• U ∩W and U +W are both vector subspaces of V .

Definition 1.19. Let U,W be subspaces of V . Then V is called the direct sum of U and W ,
written as V = U ⊕W if

(1) V = U +W.

(2) U ∩W = {0}.
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Chapter 1. Abstract Vector Spaces 1.6. Intersections, Sums and Direct Sums

Example 1.39. R3 = {

xy
0

 : x, y ∈ R} ⊕ {

0
0
z

 : z ∈ R}.

Example 1.40. {Space of functions}=
{

Even functions
f(−t) = f(t)

}
⊕
{

Odd functions
f(−t) = −f(t)

}
.

Example 1.41. {Matrices} =

{
Symmetric matrices

AT = A

}
⊕
{

Anti-symmetric matrices

AT = −A

}
.

Example 1.42. {Polynomials} = {Constants}⊕{p(t) : p(0) = 0}.

Theorem 1.20. V = U ⊕W iff every v ∈ V can be written uniquely as

v = u + w

where u ∈ U and w ∈W .

Theorem 1.21 (Dimension formula).

dimU + dimW = dim(U +W ) + dim(U ∩W ).

In particular
dimU + dimW = dim(U ⊕W ).

Example 1.43. If U and W are two different planes passing through origin in R3, then U ∩W
must be a line and U +W = R3. The dimension formula then gives 2 + 2 = 3 + 1.
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CHAPTER 2

Linear Transformations and Matrices

2.1 Linear Transformations

Definition 2.1. A linear transformation T from a vector space V to a vector space W is a map

T : V −→W

such that for all vectors u,v ∈ V and scalar c ∈ K:

(1) T (u + v) = T (u) + T (v)

(2) T (c · u) = c · T (u)

V is called domain and W is called codomain of T .

The set of all such linear transformations T : V −→W is denoted by L(V,W ).

Fact. Any T ∈ L(V,W ) is uniquely determined by the image on any basis B of V .

Example 2.1. The identity map Id : V −→ V given by Id(v) = v.

Example 2.2. Differential operators on the space of real-valued differentiable functions.

Example 2.3. Tr : M3×3(R) −→ R on the space of 3× 3 matrices with real entries.

Example 2.4. Matrix multiplication: Rn −→ Rm.
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Chapter 2. Linear Transformations and Matrices 2.1. Linear Transformations

Theorem 2.2. Let V,W be finite dimensional vector spaces with dimV = n,dimW = m. Then
every linear transformation T ∈ L(V,W ) can be represented by an m× n matrix.

Let B ⊂ V,B′ ⊂W be their bases. If T (u) = w, then the matrix is given by

[T ]BB′ : Rn −→ Rm

[u]B 7→ [w]B′

It is called the matrix of T with respect to the bases B and B′.

Definition 2.3.

• The kernel or null space of T is:

Ker(T ) := {u ∈ V : T (u) = 0}

• The image or range of T is:

Im(T ) := {w ∈W : w = T (u) for some u ∈ V }

Theorem 2.4. Let T ∈ L(V,W ). Then

• The kernel of T is a subspace of V .

• The image of T is a subspace of W .

Example 2.5. If T : Rn −→ Rm is represented by a matrix A, then

• The kernel of A is the null space NulA. It is the set of all solutions to Ax = 0 of m
homogeneous linear equations in n unknown. It is a subspace of Rn.

• The image of A is the column space ColA. It is the set of all linear combinations of the
columns of A. It is a subspace of Rm.

Rule. For a matrix A, the row operations do not affect linear dependence of the columns.
Use the reduced echelon form to find the basis of NulA and ColA.

Example 2.6. The kernel of d
dx on the space of differentiable functions is the set of all constant

functions.
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Chapter 2. Linear Transformations and Matrices 2.2. Injection, Surjection and Isomorphism

2.2 Injection, Surjection and Isomorphism

Definition 2.5. A linear transformation T : V −→W is called

• one-to-one or injective if T (u) = T (v) implies u = v

• onto or surjective if for every w ∈W , there exists u ∈ V such that T (u) = w

• isomorphism if T is one-to-one and onto.

Definition 2.6. If there exists an isomorphism T ∈ L(V,W ), we say V is isomorphic to W ,
written as V 'W .

Properties 2.7. Let T ∈ L(V,W ).

• If T is injective, then N (T ) = {0}, i.e. T (u) = 0 =⇒ u = 0.

• If T is injective, it maps linearly independent set to linearly independent set.

• If T is injective, and H ⊂ V is a subspace, then dimT (H) = dimH.

• If T is surjective, then R(T ) = W .

• If T is isomorphism, then dimV = dimW .

Theorem 2.8. If B = {b1, ...,bn} is a basis for a vector space V , then the coordinate mapping

x 7→ [x]B

is an isomorphism V ' Kn.

Example 2.7. {

xy
0

 : x, y ∈ R} 6= R2 but {

xy
0

 : x, y ∈ R} ' R2

Example 2.8. Pn(K) ' Kn+1

Example 2.9. Mm×n(K) ' Kmn

Example 2.10. C ' R2 as vector spaces over R.
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Chapter 2. Linear Transformations and Matrices 2.3. Rank

2.3 Rank

Definition 2.9.

• The rank of T is the dimension of the image of T .

• The nullity of T is the dimension of the kernel of T .

Below we have the Fundamental Theorem of Linear Algebra, which consists of the Rank-
Nullity Theorem and the Theorem of Column Rank = Row Rank :

Theorem 2.10 (Rank–Nullity Theorem). Let T ∈ L(V,W ). Then

dim Im(T ) + dim Ker(T ) = dimV

Let T be represented by a m × n matrix A (i.e. V = Rn,W = Rm). Then rank of A is the
dimension of ColA. The row space is the space spanned by the rows of A. It is a subspace of Rn.
The row rank is the dimension of the row space.

The row space of A is the column space of AT , hence the row rank of A equals the rank of AT .

Theorem 2.11 (Column Rank = Row Rank). Rank of A = Rank of AT .

Theorem 2.12 (Invertible Matrix Theorem). Let A be an n× n matrix. Then A is invertible iff
any one of the statements hold:

(1) Columns of A form a basis of Rn

(2) ColA = Rn

(3) Rank of A = n

(4) NulA = {0}

(5) Nullity of A = 0.
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Chapter 2. Linear Transformations and Matrices 2.4. Change of Basis

2.4 Change of Basis

Recall that for x ∈ V and B = {b1, ...,bn} a basis of V ,

[x]B =

c1...
cn

 ∈ Rn

is the B-coordinate vector of x if
x = c1b1 + ...+ cnbn.

If B′ = {b′1, ...,b′n} is another basis of V , then

[x]B′ =

c
′
1
...
c′n

 ∈ Rn

is the B′-coordinate vector of x if
x = c′1b

′
1 + ...+ c′nb

′
n.

The relationship between the vectors [x]B and [x]B′ is given by

Theorem 2.13 (Change of Basis formula). There exists an n× n matrix PBB′ such that

[x]B′ = PBB′ · [x]B

where column-wise it is given by

PBB′ =
(
[b1]B′ [b2]B′ · · · [bn]B′

)
PBB′ is called the change-of-coordinate matrix from B to B′.

In other words, it is the matrix of the identity map Id with respect to the basis B and B′ (see
Theorem 2.2).

Properties 2.14. The n× n matrix PBB′ is invertible. We have

[x]B =
(
PBB′
)−1 · [x]B′

Hence
PB
′
B =

(
PBB′
)−1

-15-



Chapter 2. Linear Transformations and Matrices 2.4. Change of Basis

Example 2.11. If B is a basis of Rn and E is the standard basis of Rn, then

[bi]E = bi.

Hence we simply have
PBE =

(
b1 b2 · · · bn

)
PB := PBE is called the change-of-coordinate matrix from B to the standard basis of Rn.

Properties 2.15. We have

• PB′B′′ · PBB′ = PBB′′

• PBB′ = (PB
′
)−1 · PB

Example 2.12. Let E = {
(

1
0

)
,

(
0
1

)
} be the standard basis of R2. Let

B = {b1 =

(
1
1

)
,b2 =

(
1
−1

)
},

B′ = {b′1 =

(
1
0

)
,b′2 =

(
1
1

)
}

be two other bases of R2. Then

PB =

(
1 1
1 −1

)
PB
′

=

(
1 1
0 1

)
PBB′ = (PB

′
)−1 · PB

=

(
1 1
0 1

)−1
·
(

1 1
1 −1

)
=

(
0 2
1 −1

)
One can check that this obeys the formula from Theorem 2.13.

b1 = 0 · b′1 + 1 · b′2
b2 = 2 · b′1 + (−1) · b′2.
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CHAPTER 3

Euclidean Space

We define the geometric concepts of length, distance, angle and perpendicularity for Rn. This gives
Rn the structure of an Euclidean Space.

3.1 Inner Product

We write a point u ∈ Rn as a column vector, i.e. 1× n matrix.

Definition 3.1. The inner product of u,v ∈ Rn, i.e.

u =

u1...
un

 , v =

v1...
vn


is given by

u · v := uTv =
(
u1 · · · un

)v1...
vn

 =

n∑
i=1

uivi ∈ R

Note. To avoid confusion, I will omit the dot for scalar multiplication: I use cu instead of c · u.

Some easily checked properties:
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Chapter 3. Euclidean Space 3.1. Inner Product

Theorem 3.2. Let u,v,w ∈ Rn, c ∈ R

(1) u · v = v · u

(2) (u + v) ·w = u ·w + v ·w

(3) (cu) · v = c(u · v) = u · (cv)

(4) u · u ≥ 0 and u · u = 0 iff u = 0.

More generally:

Definition 3.3. Any vector space V over R equipped with an inner product V ×V −→ R satisfying
Theorem 3.2 is called an inner product space. When V = Rn it is called an Euclidean space.

Example 3.1 (Optional). An example of inner product space that is infinite dimensional : Let
C[a, b] be the vector space of real-valued continuous function defined on a closed interval [a, b] ⊂ R.
Then for f, g ∈ C[a, b],

f · g :=

∫ b

a
f(t)g(t)dt

gives an inner product on C[a, b].

Remark. All the Definitions and Theorems below applies to inner product spaces.

Remark. When K = C, the inner product involves the complex conjugate

u · v := u∗v :=
(
u1 · · · un

)v1...
vn

 =

n∑
i=1

uivi ∈ C

so that the last property (4) can hold. Also the third property have to be replaced by

(3*) (cu) · v = c(u · v) = u · (cv)

Properties 3.4. If A = (aij) is an m× n matrix, then the matrix entries are given by

aij = e′i ·Aej

where {ej} is the standard basis for Rn and {e′i} is the standard basis for Rm.
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Chapter 3. Euclidean Space 3.1. Inner Product

Definition 3.5. The norm (or length) of v is the nonnegative scalar

‖v‖ :=
√

v · v =
√
v21 + · · ·+ v2n ∈ R≥0

For c ∈ R, we have ‖cv‖ = |c|‖v‖.

Definition 3.6. The vector u with unit length, i.e. ‖u‖ = 1 is called a unit vector.

Given v 6= 0, 1
‖v‖v has unit length and is called the normalization of v

Example 3.2. v =


1
−2
2
0

 ∈ R4 has norm ‖v‖ =
√

12 + (−2)2 + 22 + 02 =
√

9 = 3.

1

3
v =


1/3
−2/3
2/3
0


is a unit vector.

Definition 3.7. The distance between u,v ∈ Rn is defined by

dist(u,v) := ‖u− v‖

Theorem 3.8 (Law of cosine). The angle θ between u and v can be calculated by

u · v = ‖u‖‖v‖ cos θ

When θ = 90◦, we have

-19-



Chapter 3. Euclidean Space 3.2. Orthogonal Basis

Definition 3.9. Two vectors u,v ∈ Rn are orthogonal (or perpendicular) to each other if
u · v = 0.

Properties 3.10 (Pythagorean Theorem). If u · v = 0,

‖u + v‖2 = ‖u‖2 + ‖v‖2

Properties 3.11 (Cauchy-Schwarz Inequality). For all u,v ∈ Rn,

|u · v| ≤ ‖u‖‖v‖

Properties 3.12 (Triangle Inequality). For all u,v ∈ Rn,

‖u + v‖ ≤ ‖u‖+ ‖v‖

Example 3.3.

(
1
1

)
and

(
1
−1

)
are orthogonal to each other in R2.

Example 3.4. 0 is orthogonal to every vector in Rn.

3.2 Orthogonal Basis

Definition 3.13. Let S = {u1, ...,up} ∈ Rn.

• S is called an orthogonal set if ui · uj = 0 for all i 6= j.

• If in addition S is a basis of W ⊂ Rn, it is called an orthogonal basis for W .

• If in addition all vectors in S has unit norm, it is called an orthonormal basis for W .

Example 3.5. The standard basis {e1, e2, · · · en} for Rn is an orthonormal basis.

Example 3.6. The set

{(
1
1

)
,

(
1
−1

)}
is an orthogonal basis for R2.

Its rescaled version, the set

{(
1√
2
1√
2

)
,

(
1√
2

− 1√
2

)}
is an orthonormal basis for R2.
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Chapter 3. Euclidean Space 3.3. Orthogonal Projection

Theorem 3.14. Let B = {u1, ...,up} be an orthogonal basis for a subspace W ⊂ Rn. Then for
x ∈W we can solve for the coordinates with respect to B explicitly as

[x]B =

c1...
cn


where

ci =
x · ui
ui · ui

, i = 1, ..., p

3.3 Orthogonal Projection

Definition 3.15. Let W ⊂ Rn be a subspace. The orthogonal complement of W is the set

W⊥ := {v ∈ Rn : v ·w = 0 for every w ∈W}

Properties 3.16. We have the following properties:

• W⊥ is a subspace of Rn.

• If L = W⊥, then W = L⊥.

• x ∈W⊥ iff x is orthogonal to every vector in a spanning set ot W .

Theorem 3.17. Let A ∈Mm×n(R). Then

(RowA)⊥ = NulA, (ColA)⊥ = NulAT

Definition 3.18. The orthogonal projection of b onto u is given by

Proju(b) := (b · e)e =
b · u
u · u

u

where e := u
‖u‖ is the normalization of u.

-21-



Chapter 3. Euclidean Space 3.3. Orthogonal Projection

Theorem 3.19 (Orthogonal Decomposition Theorem). Let W ⊂ Rn a subspace. Then each x ∈ Rn
can be written uniquely in the form

x = x̂ + z

where x̂ ∈W and z ∈W⊥. Therefore we have

Rn = W ⊕W⊥

We sometimes write ProjW (x) := x̂. Note that ProjW ∈ L(Rn,Rn) with

Im(ProjW ) = W, Ker(ProjW ) = W⊥

Proof. Explicitly, if {u1, ...,up} is an orthogonal basis of W , then

x̂ = Proju1
(x) + · · ·+ Projup

(x)

=
x · u1

u1 · u1
u1 + · · ·+ x · up

up · up
up

and z = x− x̂.

z x

ProjW (x)

Proju2
(x)

Proju1
(x)

u2

u1

W = Span(u1,u2)

W⊥

Figure 3.1: Orthogonal Projection

Remark. In particular, the uniqueness statement says that the orthogonal decomposition, i.e. the
formula for x̂, does not depend on the basis used for W in the proof.
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Properties 3.20. If x ∈W , then ProjW (x) = x.

By using orthonormal basis, we can represent ProjW as a matrix:

Theorem 3.21. If {u1, ...,up} is an orthonormal basis for W ⊂ Rn, then

ProjW (x) = (x · u1)u1 + · · · (x · up)up

Equivalently, if U =
(
u1 · · · up

)
is an n× p matrix, then

ProjW (x) = UUTx

The matrix P := UUT is an n× n matrix which is called an orthogonal projection matrix.

Definition 3.22. A projection matrix is an n× n matrix such that

P 2 = P

It is an orthogonal projection matrix if in addition

P T = P

Example 3.7. If W = Span(v1,v2) where v1 =

1
0
1

 ,v2 =

 1
1
−1

 then {v1,v2} is an orthogonal

basis for W : v1 · v2 = 0.

The normalization

v1

‖v1‖
=


1√
2

0
1√
2

 ,
v2

‖v2‖
=


1√
3
1√
3

− 1√
3


is then an orthonormal basis for W . We have

U =


1√
2

1√
3

0 1√
3

1√
2
− 1√

3


and therefore

ProjW = UUT =


1√
2

1√
3

0 1√
3

1√
2
− 1√

3

( 1√
2

0 1√
2

1√
3

1√
3
− 1√

3

)
=

5
6

1
3

1
6

1
3

1
3

1
3

1
6 −1

3
5
6


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Theorem 3.23 (Best Approximation Theorem). Let W be a subspace of Rn and x ∈ Rn. Then

‖x− ProjWx‖ ≤ ‖x− v‖, for any v ∈W

i.e. ProjWx ∈W is the closest point in W to x.

3.4 Orthogonal Matrix

Definition 3.24. A linear transformation T ∈ L(V,W ) between inner product spaces is called an
isometry if it preserves the inner product:

(Tu) · (Tv) = u · v

for any vector u,v ∈ V .

Theorem 3.25. If T ∈ L(Rn,Rm) is a linear isometry which is represented by an m × n matrix
U, then for x,y ∈ Rn:

• U has orthonormal columns

• UTU = Idn×n

• ‖Ux‖ = ‖x‖ (i.e. it preserves length)

• (Ux) · (Uy) = 0 iff x · y = 0 (i.e. it preserves right angle)

Definition 3.26. If n = m, the square matrix U corresponding to a linear isometry is called an
orthogonal matrix. It is invertible with

U−1 = UT

The set of n× n orthogonal matrices is denoted by O(n).
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Chapter 3. Euclidean Space 3.5. Gram-Schmidt Process

Properties 3.27. Orthogonal matrices satisfy the following “group properties”:

• Idn×n ∈ O(n).

• If U ∈ O(n), then U−1 ∈ O(n).

• If U,V ∈ O(n), then UV ∈ O(n).

Example 3.8. In R2 and R3, an orthogonal matrix corresponds to combinations of rotations and
mirror reflections.

In R2, all orthogonal matrix is of the form Rotations by angle θ counterclockwise

U =

(
cos θ − sin θ
sin θ cos θ

)
Mirror reflections along the line with slope tan θ

2 passing through the origin

U =

(
cos θ sin θ
sin θ − cos θ

)
Example 3.9. The change-of-coordinate matrix PBB′ between orthonormal bases B and B′ is an
orthogonal matrix.

Non-Example 3.10. Projection ProjW is in general not an orthogonal matrix: It does not preserve
lengths.

3.5 Gram-Schmidt Process

Gram-Schmidt Process gives a simple algorithm to compute an orthogonal basis from an arbitrary
basis.

Theorem 3.28 (Gram-Schmidt Process). Let {x1, ...,xp} be a basis for a subspace W ⊂ Rn.
Define

v1 := x1

v2 := x2 − Projv1
(x2)

v3 := x3 − Projv1
(x3)− Projv2

(x3)

...

vp := xp − Projv1
(xp)− Projv2

(x3)− · · · − Projvp−1
(xp)

where
Projv(x) :=

x · v
v · v

v
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Chapter 3. Euclidean Space 3.5. Gram-Schmidt Process

is the orthogonal projection (see Definition 3.18).

Then B = {v1, ...,vp} is an orthogonal basis for W . Furthermore,

Span(v1, ...,vk) = Span(x1, ...,xk), for all 1 ≤ k ≤ p

To obtain an orthonormal basis, just normalize the vectors:

vi  
vi
‖vi‖

The Gram-Schmidt Process implies the following factorization, which is very important in compu-
tation algorithms, best linear approximations, and eigenvalues decomposition.

Theorem 3.29 (QR Decomposition). If A is an m×n matrix with linearly independent columns,
then

A = QR

where

• Q is a m× n matrix with orthonormal columns forming a basis for ColA,

• R is an n× n upper triangular invertible matrix with positive entries on the diagonal.

Example 3.11. Let

A =


1 0 0
1 1 0
1 1 1
1 1 1



Let x1 =


1
1
1
1

 ,x2 =


0
1
1
1

 ,x3 =


0
0
1
1

 be the columns of A.

Part 1: Gram-Schmidt Process.
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Apply the formula, we obtain

v1 = x1 =


1
1
1
1



v2 = x2 − Projv1
x2 =


0
1
1
1

− 3

4


1
1
1
1

 =
1

4


−3
1
1
1



v3 = x3 − Projv1
x3 − Projv2

x3 =


0
0
1
1

− 1

2


1
1
1
1

− 1

6


−3
1
1
1

 =
1

3


0
−2
1
1


Then {v1,v2,v3} is an orthogonal basis for ColA.

Part 2: Orthonormal basis and Q.

The vectors have lengths

‖v1‖ = 2, ‖v2‖ =

√
12

4
, ‖v3‖ =

√
6

3
,

hence the corresponding orthonormal basis is

v′1 =


1/2
1/2
1/2
1/2

 ,v′2 =


−3/
√

12

1/
√

12

1/
√

12

1/
√

12

 ,v′3 =


0

−2/
√

6

1/
√

6

1/
√

6


Then Q is formed by {v′1,v′2,v′3}, i.e.

Q =


1/2 −3/

√
12 0

1/2 1/
√

12 −2/
√

6

1/2 1/
√

12 1/
√

6

1/2 1/
√

12 1/
√

6



Part 3: The triangular matrix R.

To find R, recall that Q is a linear isometry, hence

QTA = QT (QR) = Id ·R = R
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Therefore

R = QTA

=

 1/2 1/2 1/2 1/2

−3/
√

12 1/
√

12 1/
√

12 1/
√

12

0 −2/
√

6 1/
√

6 1/
√

6




1 0 0
1 1 0
1 1 1
1 1 1


=

2 3/2 1

0 3/
√

12 2/
√

12

0 0 2/
√

6


Note that the diagonal of R is the same as the length of ‖v1‖, ‖v2‖, ‖v3‖ used for the normalization
in Part 2.

3.6 Least Square Approximation

If A is an m× n matrix with m > n, then the system of linear equations

Ax = b

is overdetermined and we may not have a solution.

If A has linear independent columns, we can use the QR decomposition to find a best approximation
x̂ to the solution of Ax̂ = b such that ‖Ax̂− b‖ is the smallest.

By the Best Approximation Theorem (Theorem 3.23), the closest point Ax ∈ ColA to b ∈ Rm
should be ProjColAb. But ColA has orthonormal basis given by columns of Q, so ProjColA = QQT .
Hence Ax̂ = QQTb. Using A = QR we obtain:

Theorem 3.30 (Least Square Approximation). If A is an m×n matrix with m > n and has linear
independent columns, such that we have the QR decomposition A = QR, then

x̂ = R−1QTb ∈ Rn

is the vector such that for every x ∈ Rn,

‖Ax̂− b‖ ≤ ‖Ax− b‖

Note. It is easier to solve for x̂ by

Rx̂ = QTb

instead of finding R−1, because R is upper triangular, so that we can use backward substitution.
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Example 3.12. Continue our example, if b =


1
2
3
4

, then the closest point x̂ such that ‖Ax− b‖

is smallest is given by

Rx̂ = QTb2 3/2 1

0 3/
√

12 2/
√

12

0 0 2/
√

6

x1x2
x3

 =

 1/2 1/2 1/2 1/2

−3/
√

12 1/
√

12 1/
√

12 1/
√

12

0 −2/
√

6 1/
√

6 1/
√

6




1
2
3
4


=

 5√
3

3/
√

6


This is a very simple system of linear equations, and we can solve for x̂ to get

x̂ =

x1x2
x3

 =

2/3
1

3/2


Therefore

Ax̂ =


1 0 0
1 1 0
1 1 1
1 1 1


2/3

1
3/2

 =


2/3
5/3
19/6
19/6



is the closest approximation in ColA to


1
2
3
4

.

Note. It is called ”least square” because ‖u‖ is computed by summing the squares of the coor-
dinates. We want to find the smallest ‖Ax − b‖. This is very useful in regression problems in
statistics, where we want to fit the data onto a linear model as closely as possible.
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CHAPTER 4

Eigenvectors and Eigenvalues

In this Chapter we will learn the important notion of eigenvectors and eigenvalues of matrices and
linear transformation in general.

4.1 Eigenvectors

Definition 4.1. An eigenvector of a linear transformation T ∈ L(V, V ) is a nonzero vector u ∈ V
such that Tu = λu for some scalar λ ∈ K.

λ is called the eigenvalue of the eigenvector u.

The space Vλ := {u : Tu = λu} ⊂ V is called the eigenspace of the eigenvalue λ.

We have the same definition if T ∈ L(Rn,Rn) is represented by an n× n matrix A.

Note. Vλ contains 0, although 0 is not an eigenvector by definition.

Properties 4.2. The eigenspace Vλ = Nul(A− λId) is a vector space.

In particular, any linear combinations of eigenvectors with eigenvalue λ is again an eigenvector with
eigenvalue λ if it is nonzero.

Properties 4.3. λ is an eigenvalue of A if and only if det(A− λId) = 0.
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General strategy:

Step 1. Find the eigenvalues λ using determinant.

Step 2. For each eigenvalue λ, find the eigenvectors by solving the linear equations (A−λId)x = 0,
which have non-trivial solutions.

Example 4.1. Let A =

(
1 1
4 1

)
. To find eigenvalues,

det

(
1− λ 1

4 1− λ

)
= (1− λ)(1− λ)− 4 = λ2 − 2λ− 3 = (λ− 3)(λ+ 1) = 0,

hence λ = 3 or λ = −1.

For λ = 3, we have

(
−2 1
4 −2

)(
x
y

)
= 0 =⇒

(
t
2t

)
are eigenvectors for all t ∈ R.

For λ = −1, we have

(
2 1
4 2

)(
x
y

)
= 0 =⇒

(
t
−2t

)
are eigenvectors for all t ∈ R.

Some useful theorems:

Theorem 4.4. The eigenvalues of a triangular matrix (in particular diagonal matrix) are the
entries on its main diagonal.

Theorem 4.5 (Invertible Matrix Theorem). A is invertible if and only if 0 is not an eigenvalue of
A.

Example 4.2. A =

1 1 1
0 2 2
0 0 3

 has eigenvalues λ = 1, 2, 3.

Example 4.3. A =

3 0 0
0 1 0
0 0 1

 has eigenvalues λ = 1, 3 only. V3 is 1-dimensional spanned by1
0
0

, while V1 is 2-dimensional spanned by {

0
1
0

 ,

0
0
1

}.
Example 4.4. A =

3 0 0
0 1 1
0 0 1

 has eigenvalues λ = 1, 3 only. V3 is 1-dimensional spanned by1
0
0

, but V1 is only 1-dimensional spanned by

0
1
0

.

-32-



Chapter 4. Eigenvectors and Eigenvalues 4.2. Determinants

Example 4.5. Existence of eigenvalues depend on the field K. For example, A =

(
0 −1
1 0

)
has

no eigenvalues in R, but it has two complex eigenvalues λ = i with eigenvectors

(
i
1

)
, and λ = −i

with eigenvectors

(
−i
1

)
.

Theorem 4.6. If v1, ...,vr are eigenvectors corresponding to distinct eigenvalues λ1, ..., λr, then
the set {v1, ...,vr} is linearly independent.

4.2 Determinants

To find eigenvalues, we need to solve the characteristic equation

det(A− λId) = 0

Let us recall the definition of Determinants of a matrix.

Definition 4.7. The determinant is the unique function

det : Mn×n −→ K

such that it satisfies the following properties:

• Determinant of identity matrix is 1: det(Id) = 1

• It is skew-symmetric: Interchange two rows gives a sign:

det


...

− ri −
− rj −

...

 = −det


...

− rj −
− ri −

...


In particular, if the matrix has two same rows, det = 0.

• It is multilinear, i.e. it is linear respective to rows:

– Addition:

det


...

− r + s −
...

 = det


...

− r −
...

+ det


...

− s −
...


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– Scalar multiplication: for k ∈ K,

det


...

− k · r −
...

 = k det


...

− r −
...


– zero:

det


...

− 0 −
...

 = 0

Remark. The definition of the determinant means that det A is the signed volume of the “paral-
lelepiped” spanned by the columns of A (and | det A| is the volume).

From this definition, one can calculate the determinant of A using the reduced row echelon form,
because it says that row operations do not change the determinant:

det


...

− ri + crj −
− rj −

...

 = det


...

− ri −
− rj −

...

+ cdet


...

− rj −
− rj −

...

 = det


...

− ri −
− rj −

...


This also implies that

Properties 4.8. If A is triangular (in particular diagonal), then det A is the product of the entries
on the main diagonal of A.

Example 4.6.

det

0 2 3
1 0 1
0 3 2

 R1←→R2= −det

1 0 1
0 2 3
0 3 2


1
2
R2
= −2 det

1 0 1
0 1 3/2
0 3 2


R3−3R2= −2 det

1 0 1
0 1 3/2
0 0 −5/2


= −2 · 1 · 1 · (−5/2) = 5.

-34-



Chapter 4. Eigenvectors and Eigenvalues 4.2. Determinants

Properties 4.9. The properties of determinant under row operations means that det change as
follows if you multiply your matrix by the elementary matrices on the left:

• E =

i j


. . .

0 1 i
1 0 j

. . .

: Interchanging two rows:

det(EA) = −det(A)

• E =

i


. . .

k i
. . .

: Scalar multiplying i-th row by k:

det(EA) = k det(A)

• E =

i j


. . .

1 c i
0 1 j

. . .

: Adding multiples of j-th row to i-th row:

det(EA) = det(A)

Here the
. . . means it is 1 on the diagonal and 0 otherwise outside the part shown.

The determinant has the following very useful properties

Theorem 4.10. Let A,B be n× n matrices

• A is invertible if and only if det A 6= 0

• det AB = (det A)(det B)

• det AT = det A

• det kA = kn det A
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Corollary 4.11. If A is invertible, det(A−1) = det(A)−1.

If Q is orthogonal matrix, then det(Q) = ±1

Alternative way to compute determinant is

Theorem 4.12 (The Laplace Expansion Theorem). If A is n× n matrix, det A is computed by

det A = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

or
det A = a1jC1j + a2jC2j + · · ·+ anjCnj

where Cij = (−1)i+j det Aij and Aij is the submatrix obtained by deleting the i-th row and j-th
column.

Example 4.7. Using the same example above, using the first row,

det

0 2 3
1 0 1
0 3 2

 = 0 · det

(
0 1
3 2

)
− 2 · det

(
1 1
0 2

)
+ 3 · det

(
1 0
0 3

)
= 0− 2 · 2 + 3 · 3 = 5

or using the second column,

det

0 2 3
1 0 1
0 3 2

 = −2 · det

(
1 1
0 2

)
+ 0 · det

(
0 3
0 2

)
− 3 · det

(
0 3
1 1

)
= −2 · 2 + 0− 3 · (−3) = 5

of course, the smart way is to choose the first column, because there are 2 zeros, making computation
easier :)

4.3 Characteristic polynomial

Definition 4.13. If A is n× n matrix,

p(λ) := det(A− λId)

is a polynomial in λ of degree n, called the characteristic polynomial.

Therefore eigenvalues are the roots of the characteristic equations p(λ) = 0.
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Definition 4.14. We define the notion of multiplicity:

• The dimension of the eigenspace Vλ is called the geometric multiplicity.

• The multiplicity of the root λ of p(λ) = 0 is called the algebraic multiplicity.

From the fundamental theorem of algebra, we note that since any polynomial of degree n has n
roots (with repeats),

The algebraic multiplicities add up to n

Example 4.8. If A =

3 0 0
0 1 1
0 0 1

, then the characteristic polynomial is

p(λ) = det(A− λId) = det

3− λ 0 0
0 1− λ 1
0 0 1− λ

 = (1− λ)2(3− λ)

Note that λ = 1 is a multiple root, hence the algebraic multiplicity of λ = 1 is 2.

On the other hand, the eigenspace V1 is spanned by

0
1
0

 only (see Exercise 4.4), so λ = 1 has

geometric multiplicity = 1 only.

In other words:

Geometric multiplicity is in general not the same as algebraic multiplicity.

Theorem 4.15. The characteristic polynomial p(λ) has the following properties:

• The top term is λn with coefficient (−1)n

• The coefficient of λn−1 is (−1)n−1TrA

• The constant term is det A.
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Finally, we have the following interesting result, which can be used to calculate inverse of matrix!

Theorem 4.16 (Cayley-Hamilton Theorem). If p(λ) is the characteristic polynomial of A, then

p(A) = O

where O is the zero matrix.

Example 4.9 (cont’d). Since (1 − λ)2(3 − λ) = 3 − 7λ + 5λ2 − λ3, the matrix A =

3 0 0
0 1 1
0 0 1


satisfies

3Id− 7A + 5A2 −A3 = O

Therefore

3Id = 7A− 5A2 + A3

Multiplying both sides by A−1 we obtain

3A−1 = 7Id− 5A + A2

This gives the inverse of A easily by usual matrix multiplication only.

4.4 Similarity

Definition 4.17. If A,B are n × n matrices, then A is similar to B if there is an invertible
matrix P such that

A = PBP−1

Since if Q = P−1, then also B = QAQ−1 and B is similar to A. Therefore we can just say A and
B are similar. We usually write

A ∼ B

We have the following properties:

Theorem 4.18. If A and B are similar, then

• They have the same determinant
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• They have the same characteristic polynomial

• They have the same eigenvalues

• They have the same algebraic and geometric multiplicities.

The polynomials of symmetric matrices are also related, which is very useful if the matrix is similar
to a diagonal matrix (see next Chapter)

Theorem 4.19. If
A = PBP−1

then for any integer n,
An = PBnP−1

In particular, for any polynomial p(x),

p(A) = Pp(B)P−1

Recall that for a linear transformation T ∈ L(V, V ), it can be represented as an n × n matrix
Rn −→ Rn with respect to a basis B of V :

[T ]B : [x]B 7→ [Tx]B

Also recall the change of basis matrix

PBB′ : [x]B 7→ [x]B′

Therefore we have the following interpretation of similar matrix:

Theorem 4.20. Let T ∈ L(V, V ) such that [T ]B = A, [T ]B′ = B and P = PBB′ .
Then A is similar to B:

A = P−1BP

In other words, similar matrix represents the same linear transformation with respect
to different basis!

Pictorially, we have

[x]B [Tx]B

[x]B′ [Tx]B′

A

P

B

P−1
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This means that for the linear transformation T : V −→ V , if we choose a “nice basis” B of B, the
matrix [T ]B can be very nice! One choice of “nice basis” is given by diagonalization, which means
under this basis, the linear transformation is represented by a diagonal matrix. We will study this
in more detail in the next Chapter.

Example 4.10. In R2, let E = {
(

1
0

)
,

(
0
1

)
} be the standard basis, and B = {

(
1
2

)
,

(
−2
1

)
}

be another basis. Let T be the linear transformation represented in the standard basis E by

A =

(
14/5 2/5
2/5 11/5

)
. Then we can diagonalize A as follows:

(
1 −2
2 1

)−1(
14/5 2/5
2/5 11/5

)(
1 −2
2 1

)
=

(
2 0
0 3

)
See the picture below for the geometric meaning.

E B

E

A =

(
14/5 2/5
2/5 11/5

)

B

D = P−1AP =

(
2 0
0 3

)

P = PBE =

(
1 −2
2 1

)

P = PBE

A = [T ]E D = [T ]B

Figure 4.1: Pictorial explanation of similar matrix.
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CHAPTER 5

Diagonalization

In this Chapter, we will learn how to diagonalize a matrix, when we can do it, and what else we
can do if we fail to do it.

5.1 Diagonalization

Definition 5.1. A square n× n matrix A is diagonalizable if A is similar to a diagonal matrix,
i.e.

A = PDP−1

for a diagonal matrix D and an invertible matrix P.

Diagonalization let us simplify many matrix calculations and prove algebraic theorems. The most
important application is the following. If A is diagonalizable, then it is easy to compute its powers:

Properties 5.2. If A = PDP−1, then An = PDnP−1.

Example 5.1. Let A =

(
4 −3
2 −1

)
. Then A = PDP−1 where

P =

(
3 1
2 1

)
, D =

(
2 0
0 1

)
, P−1 =

(
1 −1
−2 3

)
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Then for example

D8 =

(
28 0
0 18

)
=

(
256 0
0 1

)
and

A8 = PD8P−1

=

(
3 1
2 1

)(
256 0
0 1

)(
1 −1
−2 3

)
=

(
766 −765
510 −509

)

The Main Theorem of the Chapter is the following

Theorem 5.3 (The Diagonalization Theorem). An n× n matrix A is diagonalizable

A = PDP−1

if and only if A has n linearly independent eigenvectors.
(Equivalently, Rn has a basis formed by eigenvectors of A)

• The columns of P consists of eigenvectors of A

• D is a diagonal matrix consists of the corresponding eigenvalues.

Proof. Since the columns of P is linearly independent, P is invertible. We have

AP = A

 | |
v1 · · · vn
| |

 =

 | |
λ1v1 · · · λnvn
| |

 =

 | |
v1 · · · vn
| |


λ1 . . .

λn

 = PD

Example 5.2. Let us diagonalize A =

 3 −2 4
−2 6 2
4 2 3


Step 1: Find Eigenvalues. Characteristic equation is

p(λ) = det(A− λId) = −λ3 + 12λ2 − 21λ− 98 = −(λ− 7)2(λ+ 2) = 0

Hence the eigenvalues are λ = 7 and λ = −2.
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Step 2: Find Eigenvectors. We find by usual procedure the linearly independent eigenvectors:

λ = 7 : v1 =

1
0
1

 ,v2 =

−1
2
0

 , λ = −2 : v3 =

−2
−1
2


Step 3: P constructed from eigenvectors. Putting them in columns,

P =

1 −1 −2
0 2 −1
1 0 2


Step 4: D consists of the eigenvalues. Putting the eigenvalues according to vi:

D =

7 0 0
0 7 0
0 0 −2


and we have

A = PDP−1

We have seen in last chapter (Theorem 4.6) that if the eigenvectors have different eigenvalues, then
they are linearly independent. Therefore by the Diagonalization Theorem

Corollary 5.4. If A is an n× n matrix with n different eigenvalues, then it is diagonalizable.

Example 5.3. The matrix A =

3 4 5
0 0 7
0 0 6

 is triangular, hence the eigenvalues are the diagonal

entries λ = 3, λ = 0 and λ = 6. Since they are all different, A is diagonalizable.

Non-Example 5.4. We have seen from Example 4.4 that the matrix A =

3 0 0
0 1 1
0 0 1

 has 2

eigenvalues λ = 1, 3 only, so we cannot apply the Corollary. In fact, each of the eigenvalue has only
1-dimensional eigenvectors. Hence R3 does not have a basis formed by eigenvectors and so it is not
diagonalizable by the Diagonalization Theorem.

From this Non-Example, we can also deduce that

Theorem 5.5. A square matrix A is diagonalizable if and only if for each eigenvalue λ, the
algebraic multiplicity equals the geometric multiplicity.
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5.2 Symmetric Matrices

A wide class of diagonalizable matrices are given by symmetric matrices, and the diagonalization
has very nice properties.

Definition 5.6. A linear operator T ∈ L(V, V ) on an inner product space is called symmetric if

Tu · v = u · Tv

If T is represented by an n× n square matrix A on V = Rn, then a matrix is called symmetric if

AT = A

The first important property of symmetric matrix is the orthogonality between eigenspaces.

Theorem 5.7. If A is symmetric, then two eigenvectors from different eigenspaces are orthogonal.

Proof. If v1 ∈ Vλ1 ,v2 ∈ Vλ2 are eigenvectors with eigenvalues λ1, λ2 such that λ1 6= λ2, then

λ1v1 · v2 = Av1 · v2 = v1 ·Av2 = λ2v1 · v2

and so we must have v1 · v2 = 0.

Therefore, if we normalize the eigenvectors, then the matrix P formed from the eigenvectors will
consist of orthonormal columns, i.e. P is an orthogonal matrix.

Definition 5.8. A matrix A is orthogonally diagonalizable if

A = PDP−1 = PDPT

for some orthogonal matrix P and diagonal matrix D.

Theorem 5.9. An n× n matrix A is symmetric if and only if it is orthogonally diagonalizable.

In particular, A is diagonalizable means that each eigenvalue λ has the same algebraic and geo-
metric multiplicity. That is, dimension of the eigenspace Vλ = the number of linearly independent
eigenvectors with eigenvalue λ = multiplicity of the root λ of p(λ) = 0.
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Example 5.5 (Exercise 5.2 cont’d). We have diagonalize the matrix A =

 3 −2 4
−2 6 2
4 2 3

 before.

But the matrix P we found is not an orthogonal matrix.

We have found before (Step 1, Step 2.)

λ = 7 : v1 =

1
0
1

 ,v2 =

−1
2
0

 , λ = −2 : v3 =

−2
−1
2



Since A is symmetric, different eigenspaces are orthogonal to each other. So for example we see
that

v1 · v3 = v2 · v3 = 0

So we just need to find an orthogonal basis for the eigenspace V7.

Step 2a: Use the Gram-Schmidt process on V7:

b1 = v1 =

1
0
1


b2 = v2 −

(
b1 · v2

b1 · b1

)
b1 =

1

2

−1
4
1


Therefore {b1,b2} is an orthogonal basis for V7, and {b1,b2,v3} is an orthogonal eigenvector basis
for R3.

Step 2b: Normalize.

b′1 =
1√
2

1
0
1

 , b′2 =
1√
18

−1
4
1

 , v′3 =
1

3

−2
−1
2


Step 3, Step 4: Construct P and D

Putting together the eigenvectors, we have

P =


1√
2
− 1√

18
−2

3

0 4√
18

−1
3

1√
2

1√
18

2
3



and D =

7 0 0
0 7 0
0 0 −2

, consisting of the eigenvalues, is the same as before.
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Theorem 5.10. If A is a symmetric n × n matrix, then it has n real eigenvalues (counted with
multiplicity) i.e. the characteristic polynomial p(λ) has n real roots (counted with repeated roots).

The collection of Theorems 5.7, 5.9, and 5.10 in this Section are known as the Spectral Theorem
for Symmetric Matrices.

5.3 Minimal Polynomials

By the Cayley-Hamilton Theorem, if p(λ) is the characteristic polynomial of a square matrix A,
then

p(A) = O

Although this polynomial tells us about the eigenvalues (and their multiplicities), it is sometimes
too “big” to tell us information about the structure of the matrix.

Definition 5.11. The minimal polynomial m(λ) is the unique polynomial such that

m(A) = O

with leading coefficient 1, and has the smallest degree among such polynomials.

To see it is unique: If we have different minimal polynomials m,m′, then m(A) −m′(A) = O,
but since m,m′ have the same degree with the same leading coefficient, m − m′ is a polynomial
with smaller degree, contradicting the fact that m has smallest degree.

Since it has the smallest degree, in particular we have

deg(m) ≤ deg(p) = n

Example 5.6. The diagonal matrix A =

2 0 0
0 2 0
0 0 2

 has characteristic polynomial

p(λ) = (2− λ)3

but obviously A− 2Id = O, hence the minimal polynomial of A is just

m(λ) = λ− 2
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In particular,

The minimal polynomial m(λ) of A has degree 1 if and only if A is a multiple of Id.

Example 5.7. The diagonal matrix A =

1 0 0
0 2 0
0 0 2

 has characteristic polynomial

p(λ) = (1− λ)(2− λ)2

Since A is not a multiple of Id, m(λ) has degree at least 2. Since (A − Id)(A − 2Id) = O, the
polynomial

m(λ) = (λ− 1)(λ− 2)

having degree 2 is the minimal polynomial.

Example 5.8. The matrix A =

1 1 0
0 1 1
0 0 1

 has characteristic polynomial

p(λ) = (1− λ)3

and it turns out that the minimal polynomial is the same also (up to a sign):

m(λ) = (λ− 1)3

From the above examples, we also observe that

Theorem 5.12. p(λ) = m(λ)q(λ) for some polynomial q(λ). That is m(λ) divides p(λ).

Proof. We can do a polynomial division

p(λ) = m(λ)q(λ) + r(λ)

where r(λ) is the remainder with deg(r) < deg(m). Since p(A) = O and m(A) = O, we must have
r(A) = O. But since deg(r) < deg(m) and m is minimal, r must be the zero polynomial.

Theorem 5.13. Let λ1, ..., λk be the eigenvalues of A (i.e. roots of p(λ)) Then

m(λ) = (λ− λ1)s1 · · · (λ− λk)sk

where 1 ≤ si ≤ mi where mi is the algebraic multiplicity of λi.
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Proof. To see si ≥ 1, note that if vi is an eigenvector for the eigenvalue λi, then since m(A) = O,

0 = m(A)vi = m(λi)vi

But since vi 6= 0, we have m(λi) = 0, so λi is a root of m(λ).

Finally, the most useful criterion is the following result:

Theorem 5.14. An n × n matrix A is diagonalizable if and only if each si = 1. That is, m(λ)
only has linear factors.

Using this result, minimal polynomials can let us determine whether a matrix is diagonalizable or
not without even calculating the eigenspaces!

Example 5.9. The matrix A =

(
−1 1
−4 3

)
has characteristic polynomial p(λ) = (λ − 1)2. Since

m(λ) 6= λ− 1 because A 6= Id, we must have m(λ) = (λ− 1)2, hence A is not diagonalizable.

Example 5.10. The matrix A =

−1 1 0
−4 3 0
−1 0 0

 has characteristic polynomial p(λ) = λ(λ − 1)2,

hence it has eigenvalues λ = 1 and λ = 0. The minimal polynomial can only be λ(λ−1) or λ(λ−1)2.
Since

A(A− Id) 6= O

the minimal polynomial must be m(λ) = λ(λ− 1)2, hence A is not diagonalizable.

Example 5.11. The matrix A =

2 −2 2
0 −2 4
0 −2 4

 has characteristic polynomial p(λ) = λ(λ − 2)2,

hence it has eigenvalues λ = 2 and λ = 0. The minimal polynomial can only be λ(λ−2) or λ(λ−2)2.
Since

A(A− 2Id) = O

the minimal polynomial is m(λ) = λ(λ− 2), hence A is diagonalizable.

5.4 Jordan Canonical Form

Finally we arrive at the most powerful tool in Linear Algebra, called the Jordan Canonical Form.
This completely determines the structure of a given matrix. It is also the best approximation to
diagonalization if the matrix is not diagonalizable.
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The result below works as long as p(λ) has n roots (counted with multiplicity), and so it is
always available if the field is K = C, so that the characteristic polynomial p(λ) always has n roots
by the Fundamental Theorem of Algebra.

Definition 5.15. Let A = A1 ⊕ · · · ⊕Am denote the n× n matrix in block form:

A =


A1 O · · · O

O A2
. . .

...
...

. . .
. . . O

O · · · O Am


such that Ai are square matrices of size di × di, and O are zero matrices of the appropriate sizes.
In particular n = d1 + d2 + · · ·+ dm.

For any d ≥ 1, and λ ∈ C, let J
(d)
λ be the Jordan block denote the d× d matrix

J
(d)
λ =



λ 1
λ 1

λ 1
. . .

. . .

λ 1
λ 1

λ


where all the unmarked entries are 0.

Note. When d = 1, we have J
(1)
λ =

(
λ
)
.

With these notations, we can now state the Main Big Theorem

Theorem 5.16 (Jordan Canonical Form). Let A ∈Mn×n(C). Then A is similar to

J := J
(d1)
λ1
⊕ · · ·J(dm)

λm

where λi belongs to the eigenvalues of A. (λi with different index may be the same!).
This decomposition is unique up to permuting the order of the Jordan blocks.

Since eigenvalues, characteristic polynomials, minimal polynomials, and multiplicity etc. are all
the same for similar matrices, if we can determine the Jordan block from these data, we
can determine the Jordan Canonical Form of a matrix A.
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Let us first consider a single block.

Properties 5.17. The Jordan block J
(d)
λ has

• only one eigenvalue λ

• characteristic polynomial (t− λ)d

• minimal polynomial (t− λ)d

• geometric multiplicity of λ is 1.

Now let us combine several blocks of the same eigenvalues:

Properties 5.18. The matrix J
(d1)
λ ⊕ · · · ⊕ J

(dk)
λ has

• only one eigenvalue λ

• characteristic polynomial (t− λ)d1+···dk

• minimal polynomial (t− λ)max(d1,...,dk)

• geometric multiplicity of λ is k.

Now we can do the same analysis by combining different Jordan blocks. We arrive at the following
structure:

Theorem 5.19. Given a matrix A in the Jordan canonical form:

• The eigenvalues λ1, ..., λk are the entries of the diagonal.

• The characteristic polynomial is

p(λ) = (λ− λ1)r1 · · · (λ− λk)rk

where ri is the number of occurrences of λi on the diagonal.

• The minimal polynomial is

m(λ) = (λ− λ1)s1 · · · (λ− λk)sk

where si is the size of the largest λi-block in A

• The geometric multiplicity of λi is the number of λi-blocks in A.
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Example 5.12. Assume A is a 6× 6 matrix with characteristic polynomial

p(λ) = (λ− 2)4(λ− 3)2

and minimal polynomial
m(λ) = (λ− 2)2(λ− 3)2,

with eigenspaces dimV2 = 3, dimV3 = 1. Then it must have 3 blocks of λ = 2, with maximum
block-size of 2 so that the λ = 2 blocks add up to 4 rows. It also has 1 block of λ = 3 with block-size
2. Hence

A ∼ J
(2)
2 ⊕ J

(1)
2 ⊕ J

(1)
2 ⊕ J

(2)
3

A ∼

2 1 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 3 1

0 0 0 0 0 3




The uniqueness of Jordan Canonical Form says that A is also similar to the matrix where the
Jordan blocks are in different order. For example we can have:

A ∼

3 1 0 0 0 0

0 3 0 0 0 0

0 0 2 0 0 0

0 0 0 2 1 0

0 0 0 0 2 0

0 0 0 0 0 2




Example 5.13. Another example, let A be a matrix such that it has characteristic polynomial

p(λ) = λ4(λ− 1)3(λ− 2)3

and minimal polynomial
m(λ) = λ3(λ− 1)2(λ− 2)

With this information only, we can determine

A ∼ J
(3)
0 ⊕ J

(1)
0 ⊕ J

(2)
1 ⊕ J

(1)
1 ⊕ J

(1)
2 ⊕ J

(1)
2 ⊕ J

(1)
2

A ∼

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 2




-51-
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It turns out that when the matrix is bigger than 6 × 6, sometimes we cannot determine the
Jordan Canonical Form just by knowing p(λ),m(λ) and the dimension of the eigenspaces only:

Example 5.14. Consider a 7× 7 matrix A. Let p(λ) = λ7, m(λ) = λ3, and dimV0 = 3. Then A
has 3 blocks and the largest block has size 3. So it may be similar to

J
(3)
0 ⊕ J

(3)
0 ⊕ J

(1)
0 or J

(3)
0 ⊕ J

(2)
0 ⊕ J

(2)
0

However, by the uniqueness of Jordan Canonical Form, we know that these two are not similar to
each other, but we cannot tell which one is similar to A just from the given information.

To determine which one is the Jordan Canonical Form of A, we need more techniques. In the
Homework, we will discuss how one can determine exactly the size of the Jordan blocks, as well as
the transformation matrix P such that A = PJP−1.

5.5 Positive definite matrix (Optional)

One application of the diagonalization of symmetric matrix allows us to analyses quadratic func-
tions, and define “square root” and “absolute value” of a matrix, which is useful in advanced linear
algebra and optimization problems.

Definition 5.20. Let A be a symmetric matrix. The quadratic function

Q(x) := xTAx = x ·Ax

is called the quadratic form associated to A.

Definition 5.21. A quadratic form Q (or symmetric matrix A) is called positive definite if

Q(x) = x ·Ax > 0, for all nonzero x ∈ Rn

It is called positive semidefinite if

Q(x) = x ·Ax ≥ 0, for all nonzero x ∈ Rn

Example 5.15. Q(x) :=
(
x y

)(9 0
0 1

)(
x
y

)
= 9x2 + y2 is positive definite.

Example 5.16. Let A =

(
5 4
4 5

)
. Then Q(x) := xTAx = 5x2 + 8xy+ 5y2 is positive definite. We

can see that it represents ellipses as follows: We can diagonalize the matrix by A = PDPT where
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D =

(
9 0
0 1

)
and P = 1√

2

(
1 1
−1 1

)
. Then

Q(x) = xTPDPTx = (PTx)TD(PTx)

Therefore if we let x̂ =

(
x̂
ŷ

)
= PTx, i.e. rotating the basis by P−1, then

Q(x̂) = 9x̂2 + ŷ2

and it is represented by an ellipse.

E

Q(x) = 5x2 + 8xy + 5y2 = 1

B

Q(x̂) = 9x̂2 + ŷ2 = 1

PT = (PBE )−1

Figure 5.1: Pictorial explanation of similar matrix.

Theorem 5.22. A quadratic form Q associated to a symmetric matrix A is positive (semi)definite
if and only if λi > 0 (λi ≥ 0) for all the eigenvalues of A.

Proof. Substitute x Px where A = PDPT is the diagonalization.

Remark. If all eigenvalues are λi < 0 (λi ≤ 0), we call the quadratic form negative (semi)definite.
Otherwise if some are positive and some are negative, it is called indefinite.

We can always find a “square root” of A if it is positive (semi)definite.
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Theorem 5.23. If A is positive (semi)definite, then there exists exactly one positive (semi)definite
matrix B such that

B2 = A

We call B the square root of A and denote it by
√

A. It is given by

√
A = PD

1
2 PT

where D
1
2 is the diagonal matrix where we take the square root of the entries of D.

We can also construct the “absolute value” of any matrix A:

Theorem 5.24. Let A be any m× n matrix. Then ATA is a positive semidefinite matrix, and

|A| :=
√

ATA

is called the absolute value of A.

Proof. ATA is symmetric, and x ·ATAx = ‖Ax‖2 ≥ 0 for any x ∈ Rn.

This is used in the construction of Singular Value Decomposition in the next section.

Example 5.17. Let A =

(
5 4
4 5

)
= P

(
9 0
0 1

)
PT where P = 1√

2

(
1 1
−1 1

)
. Then

√
A = P

(
3 0
0 1

)
PT =

(
2 1
1 2

)

Let B =

(
1 −2
−2/5 −11/5

)
. Then BTB =

(
5 4
4 5

)
, therefore by above |B| =

(
2 1
1 2

)
.

5.6 Singular Value Decomposition (Optional)

We know that not all matrix can be diagonalized. One solution to this is to use Jordan Canonical
Form, which give us an approximation. Another approach is the Singular Value Decomposition,
and this can even be applied to rectangular matrix! This method is also extremely important in
data analysis.

-54-



Chapter 5. Diagonalization 5.6. Singular Value Decomposition (Optional)

Recall that if Av = λv is the eigenvector, the effect is “stretching by λ” along the direction of v.
We want to consider all such directions if possible, even for rectangular matrix.

Definition 5.25. Let A be m × n matrix. The singular values of A is the eigenvalues σi of
|A| =

√
ATA.

If A has rank r, then we have r nonzero singular values. We arrange them as σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Since ATA is a positive definite symmetric matrix, it has an orthonormal set of eigenvectors
{v1, ...,vn} with positive eigenvalues {λ1, ..., λn}. Then

‖Avi‖2 = vTi ATAvi = vTi λivi = λi

therefore the singular values σi =
√
λi = ‖Avi‖ of A is precisely the length of the vector Avi.

Let us denote a “quasi-diagonal” matrix of size m× n and rank r ≤ m,n:

Σ =

r n− r( )
D O r
O O m− r

where D is a diagonal matrix. (When r = m or n, we omit the rows or columns of zeros).

Theorem 5.26 (Singular value decomposition). Let A be an m× n matrix with rank r. Then we
have the factorization

A = UΣVT

where

• Σ is as above with D consists of the first r singular values of A

• U is an m×m orthogonal matrix

• V is an n× n orthogonal matrix

V =

 | |
v1 · · · vn
| |

 where the columns are the orthonormal eigenvectors {v1, ...,vn} of ATA.

For U, extend the orthogonal set {Av1, ...,Avr} to a basis of Rm, and normalize to obtain an

orthonormal basis {u1, ...,um}. Then U =

 | |
u1 · · · um
| |

.
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Example 5.18. Let A =

(
1 1 1
1 1 −1

)
. Then ATA =

2 2 0
2 2 0
0 0 2

 and it has eigenvalues λ1 =

4, λ2 = 2, λ3 = 0 with orthonormal eigenvectors

v1 =
1√
2

1
1
0

 , v2 =

0
0
1

 , v3 =
1√
2

−1
1
0


Therefore

V =
1√
2

1 0 −1
1 0 1

0
√

2 0


Also σ1 =

√
λ1 = 2, σ2 =

√
λ2 =

√
2. Therefore

Σ =

(
2 0 0

0
√

2 0

)
Finally

u1 =
Av1

‖Av1‖
=

Av1

σ1
=

1√
2

(
1
1

)
u2 =

Av2

‖Av2‖
=

Av2

σ2
=

1√
2

(
1
−1

)
therefore

U =
1√
2

(
1 1
1 −1

)
and

A = UΣVT =

(
1√
2

1√
2

1√
2
− 1√

2

)(
2 0 0

0
√

2 0

)
1√
2

1√
2

0

0 0 1
− 1√

2
1√
2

0


is the Singular Value Decomposition of A.

A−−−→

Figure 5.2: Multiplication by A. It squashed the v3 direction to zero.
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One useful application of SVD is to find the bases of the fundamental subspaces.

Theorem 5.27. Let A be m× n matrix with rank r, and A = UΣVT be the SVD.

Assume U =

 | |
u1 · · · um
| |

 and V =

 | |
v1 · · · vn
| |

. Then

• {u1, ...,ur} is an orthonormal basis of ColA.

• {ur+1, ...,um} is an orthonormal basis of Nul(AT ).

• {v1, ...,vr} is an orthonormal basis of RowA = ColAT .

• {vr+1, ...,vn} is an orthonormal basis of NulA.

Another application is the least-square solution which works like the example from QR decom-
position in Chapter 3.

Definition 5.28. Let Ur =

 | |
u1 · · · ur
| |

 ,Vr =

 | |
v1 · · · vr
| |

 be the submatrix consists of

the first r columns. Then

A =
(
Ur ∗

)(D O
O O

)(
VT
r

∗

)
= UrDVT

r .

The pseudoinverse of A is defined to be

A+ = VrD
−1UT

r

The pseudoinverse satisfies for example

AA+A = A

and

AA+ = ProjColA

because

AA+ = (UrDVT
r )(VrD

−1UT
r ) = UrDD−1UT

r = UrU
T
r = ProjColA
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Theorem 5.29. Given the equation x = Ab, the least-square solution is given by

x̂ = A+b = VrD
−1UT

r b

Proof. Since Ax̂ = AA+b = ProjColAb, Ax̂ is the closest point to b in ColA.

-58-



APPENDIX A

Complex Matrix

If the field K = C, we have many similar results corresponding to the real matrix case.

Definition A.1. If c = x+ iy ∈ C is a complex number, we denote by c = x− iy ∈ C the complex
conjugate of c.

Instead of transpose, we have adjoint, which is conjugate transpose:

Definition A.2. If A =

a11 a12 · · · a1n
...

. . .
...

am1 am2 · · · amn

 is an m × n complex matrix, then the adjoint

is an n×m complex matrix given by

A∗ =


a11 · · · am1

a12 am2
...

. . .
...

a1n · · · amn


That is, we take the transpose, and then conjugate every element:(

aij
)∗

=
(
aji
)

The definition of an inner product is changed slightly, as already noted in Chapter 3.
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Definition A.3. The inner product of u =

u1...
un

 ,v =

v1...
vn

 ∈ Cn is given by

u · v = u∗v =
(
u1 · · · un

)v1. . .

vn

 =
n∑
i=1

uivi ∈ C

The important properties of inner product is property (4) from Theorem 3.2:

u · u ≥ 0, and u · u = 0⇐⇒ u = 0

Using this definition of inner product, most of the definitions and results of Chapter 3.1-3.3
applies (length, distance, projection, orthogonal, orthonormal basis etc.) However we cannot talk
about “angle” anymore in the complex case.

The properties of determinant is slightly changed:

Theorem A.4. The determinant of the adjoint is the complex conjugate:

det A∗ = det A

Next, for a linear isometry, that is, the linear transformation that preserves inner product:

(Tu) · (Tv) = u · v

instead of orthogonal matrix, we have the unitary matrix:

Definition A.5. A square matrix U corresponding to a linear isometry is called a unitary matrix.
It is invertible with

U−1 = U∗

The set of n × n unitary matrices is denoted by U(n). It satisfies all the properties of Theorem
3.25.
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From the properties of determinant, we have

Theorem A.6. The determinant of a unitary matrix is a complex number with norm 1:

| det U| = 1

We just have to replace orthogonal matrix by unitary matrix everywhere in the setting of
K = C. For example:

If A = QR is the QR decomposition and A is a square matrix, then Q is a unitary matrix.

By the Fundamental Theorem of Algebra, any degree n polynomial p(λ) has n roots (counted with
multiplicity). Therefore

Theorem A.7. Every complex n×n square matrix A has n eigenvalues (counted with multiplicity)

Instead of symmetric matrix, we have Hermitian matrix:

Definition A.8. An n× n square matrix A is called Hermitian if

A∗ = A

Next we talk about diagonalization:

Definition A.9. A matrix A is unitary diagonalizable if

A = UDU−1 = UDU∗

for some unitary matrix U and diagonal matrix D.

Then we have the Spectral Theorem of Hermitian Matrices similar to the one of symmetric
matrices (see Theorem 5.7, 5.9 and 5.10):
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Theorem A.10 (Spectral Theorem for Hermitian Matrices). We have

• If A is Hermitian, then two eigenvectors from different eigenspaces are orthogonal.

• A is Hermitian if and only if it is unitary diagonalizable.

• If A is Hermitian, then it has n real eigenvalues (counted with multiplicity). The characteristic
polynomial p(λ) has n real roots (counted with multiplicity).

Finally, as mentioned in Chapter 5.4, since p(λ) always has n roots:

Theorem A.11. Every complex matrix A is similar to a Jordan Canonical Form.

Summarize: We have the corresponding definitions and results for n× n matrices:

K = R K = C

Real inner product: −→ Complex inner product:
u · v = u1v1 + · · ·+ unvn u · v = u1v1 + · · ·+ unvn

Transpose: −→ Adjoint (conjugate transpose):

AT : (aij)
T = (aji) A∗ : (aij)

∗ = (aji)

det AT = det A −→ det A∗ = det A

Orthogonal matrix: −→ Unitary matrix:

UTU = Id U∗U = Id

det U = ±1 −→ | det U| = 1

Symmetric matrix: −→ Hermitian matrix:

AT = A A∗ = A

Orthogonal diagonalizable: −→ Unitary diagonalizable:

A = PDPT A = UDU∗

Some matrix may not have eigenvalues −→ All matrix has n eigenvalues (with multiplicity)

Symmetric matrix has n real eigenvalues −→ Hermitian matrix has n real eigenvalues

Jordan Canonical Form: −→ Jordan Canonical Form:
when p(λ) has n roots always
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