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10 Cluster Algebra from Grassmannian
Recall from lecture 1 that we have an identification of
ClGr(2,n + 3)] := C[Ay]/{(AiAji = AijAp + DiAj)

with a cluster algebra A of type A, given by identification with triangulations of
an (n + 3)-gon:

C[Gr(2,n+3) | Aoftype A, | (n+3) — gon
Ay li—j]#1 cluster variables diagonals
Ajit1 frozen variables sides

Pliicker relations | Exchange relations | Flipping of diagonals/Ptolemy’s Theorem

In this lecture, we will look at the general Grassmannian Gr(k,n), and show that it
also prosesses a cluster algebra structure of geometric type. We will follow [Scott].

Remark 10.1. The cluster algebra structure of the Grassmannian leads to the
notion of “Positive Grassmannian”, where each cluster gives a “total positivity cri-
terion” on the positive variety of Gr(k,n), generalizing the results for total positivity
of matrices. Recently this has been utilized to study scattering amplitudes problems
in the popular paper by Akarni-Hamed et al. [ABCGPT].

10.1 Grassmannian Gr(k,n)

The Grassmannian is the algebraic variety of k-dimensional subspace in C”, it has
dimension k(n — k). We can express an element of Gr(k,n) as a collection of row
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vectors, up to a change of basis:
—vy—
—y—
q= . € Maty n(C) : rank(q) = k » /GL,(C)
— g —
Definition 10.2. We have the Pliicker embedding:
Gr(k,n) — P(A*C") ~ PN

g [vr Avg A Ay

where N = ( Z ) —1.
In terms of coordinate, they are given by minors

g [A%Y

where A C [1,n] is a k-element subset, and A* = A1 k),4 8 the minor of q.

1 J2 o Jk
permutation, and let A% = 0 if some indices are the same.

Let us also define A%t = sgn(m)AJ-dk if 7 = ( otz ) is a

Lemma 10.3. The Plicker relation is given by

k

r=0
for any tuples i1 < iag < -+- < ig—1 and jo < j1 < --- < jk, and we omit the hat
indices.
A consequence of the Pliicker relations is the short Pliicker relations given by
AlijAIst _ AIiSAIjt + AIjsAIit

where I is a subset of size k — 2 disjoint from {4, j, s,t}, and {i,j} and {s,t} are
crossing (if we label a n-gon clockwise by 1, ...,n, then the chord [ij] and [st] cross
each other). It can be obtained from the Lemma by letting I = (iy,...,i5—2) =
(41, .- ju_2), and using the fact that A%~ = 0 if some indices are the same.

Definition 10.4. The homogeneous coordinate ring of Gr(k,n) is defined by

A = C[Gr(k,n)] := C[AA]|A|:k/<Plz'icker relations)

where we recall that for a projective variety X € PN, its affine cone is defined as
X =7 YX)U {0} c CN*! where 7 : CNHL — PV s the projection.

Also note that Gr(k,n) ~ Gr(n — k,n) hence we will only consider the case
when 2 < k < %



10.2 Postnikov diagram

To parametrize the clusters of Pliicker coordinates, we introduce the Postnikov
diagram:

Definition 10.5. Let m € S, be a permutation. Label a 2n-gon clockwise by
1,1,2",2,....,n",n. A Postnikov diagram for m, or m-diagram, is a collection of
n oriented paths, joining i and w(i)', such that

(1) No path intersects itself
(2) All path intersections are transversal

(8) FEach intersection alternates in orientation from: left, right, left, ..., finally

from right.

NN

(4) We do not allow such configuration:

(5) Postnikov diagrams are identified up to isotopy, and we also identify this local

untwisting:
: J —J

Proposition 10.6. By Property (3), Postnikov diagram cuts the 2n-gon into re-
gions of two types:

e cven region: the boundary alternate in orientation



e odd region: the boundary is oriented

We will sometimes shade the odd regions for clarity.

We label the even region with index t if the region lies to the left of the i-th wire
joining i — m(i)’.

Definition 10.7. We let 7y, be the permutation i — ¢ 4+ k mod n.

Example 10.8. An example of w3 7-diagram. We shade the odd regions and label
the even regions.



Figure 1: Postnikov diagram for 73 7.

Note that any 7, ,,-diagram has n boundary cells labeled by [1, k], [2, k+1], ..., [, k—
1] (cyclically).

Proposition 10.9 (Postnikov). (1) Number of even regions in a Postnikov dia-
gram for my p, is k(n — k) + 1

(2) FEach even region is labeled by k-subset of [1,n]
(3) Every k-subset occurs as labeling in some 7y, ,-diagram.

Definition 10.10. A geometric exchange on a w-diagram is a local move (i.e.
nothing appear inside this configuration) which gives a new w-diagram with new
labelling. Here I is a common labelling of all the regions.



Figure 2: Geometric exchange with new labelling.

Proposition 10.11 (Postnikov). Any 7y, -diagram can be transformed to one an-
other by a sequence of geometric exchange.

Example 10.12. Geometric exchange corresponds to flipping of triangles when
k = 2. Given a triangulation of a polygon, we associate the corresponding Postnikov
diagram as follows:

b b

5

Then a single flip of triangulation corresponds to the geometric exchange



Theorem 10.13. For 4 < k+ 2 < n, there exists a special 7y, ,-diagram Ay,
where each even region is a 4-gon.

Example 10.14. An ezample of the special diagram Assg. Note that all even
regions are quadrilateral.



123 234

N
N

678 567

Figure 3: The A3 g diagram

The labels of the interior even regions are given by disjoint union of two intervals
T T, such that if I = [i,j] and I' = [', 7], then [ii'] forms the triangulations of
the snake diagram of an n-gon.

In general, the construction of Ay, looks something like this, by stacking
“bands” on top one by one. (In this example, & is odd).
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Figure 6: Ay r14 diagram
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10.3 Cluster algebra structure

Fix a Postnikov diagram D. We define a quiver @) from the Postnikov diagram by:
e The nodes of ) correspond to even regions

e We assign the arrows of @ (in red) by the configuration

e Let B (D) be the corresponding exchange matrix to the quiver Q.

The ambient field F= rational functions generated by xx where K are the
label of the even regions.

Cluster variables x(D)= set of indeterminantes corresponding to interior la-
bels

o ¢ = {T[11]s T[2,k+1], -+ T[n,k—1] y= set of indeterminates corresponding to bound-
ary labels.

e Aj ., be the cluster algebra generated by the seed (x(D),c, B(D)) inside F

Theorem 10.15. Each my, ,,-diagram give rise to a seed of Ay,,. If D' is obtained
from D by a single geometric exchange through a 4-sided cell with label K, then

px (B(D)) = B(D").

Proof. Explicitly checking local configurations, which reduces to two cases up to
symmetry. See [Scott]. O

Hence cluster algebra mutation generalize the geometric exchange to other config-
urations.

—

Theorem 10.16. There is an isomorphism ¢ : Ay, — C[Gr(k,n)] of Clc]-algebra
such that
TR — AK

for every k-subsets K C [1,n].

Proof. The main ingredient is to show that

—

(1) dim(Gr(k,n)) = rank(Ag,) + |c|
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(2) ¢: 2z — A is consistent with the exchange relation and Pliicker relations

(3) ¢(x) is a regular function in C[Gm)] for any cluster variables = € A

(1) follows from our construction directly. We know that the dimension of Gr(k,n)
is k(n — k), hence dimension of the affine cone (Gr(k,n)) is k(n — k) + 1, which is
the number of even regions in a Postnikov diagram.

(2) Any 7y, ,-diagram can be obtained from one another by sequence of geometric
exchanges. Then the correspondence between cluster variables zx and minors A%
implies that cluster mutation corresponds to the short Pliicker relation.

TrstTlij = LIitTIjs T T1jtT1is
. AIStAI’L] _ AhtAI]s + AIthhs

(3) Finally, by considering the special diagram Ay, (so that each interior re-
gion can be mutated by just the geometric exchange above) and using the Laurent

Phenomenon, one shows that ¢(z) is regular on an open subset & C Gr(k,n) where

—

Gr(k,n) \ U has codimension at least 2, which implies that ¢(z) is regular every-
where. This is almost the same proof giving the upper cluster algebra structure
of Double Bruhat cells. This also implies that the cluster algebra and the upper
cluster algebra coincides. O

Example 10.17. The quiver configuration in k = 2 recovers the case we have seen
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before.

N

N

—

Theorem 10.18. Using the special diagram Ay, ., the cluster type of C[Gr(k, k +1)]
is described by the quiver Ay_1 X A;_1 where all the arrows are alternating.

——

In particular we have the following cluster algebra type for C[Gr(k,n)] with

2< k<2
Gr Gr(2,n+3) | Gr(3,6) | Gr(3,7) | Gr(3,8) | Gr(3,9) | Gr(4,8) | other
Type of C[Gr] A, D, Eg By eV [ ERY infinite

where E;l’l) and Eél’l) are finite mutation type (see the classification in Lecture 6

Theorem 6.20)

Example 10.19. For Gr(3,8), from Figure 3, we can see that the quiver (only the
non-frozen part) associated to As g is given by Ag x Ay, which is mutation equivalent

to Eg.
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Figure 7: The quiver corresponding to Az g diagram
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