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10 Cluster Algebra from Grassmannian

Recall from lecture 1 that we have an identification of

C[Gr(2, n+ 3)] := C[∆ij ]/〈∆ik∆jl = ∆ij∆kl + ∆il∆jk〉

with a cluster algebra A of type An, given by identification with triangulations of
an (n+ 3)-gon:

C[Gr(2, n+ 3) A of type An (n+ 3)− gon
∆ij , |i− j| 6= 1 cluster variables diagonals

∆i,i+1 frozen variables sides
Plücker relations Exchange relations Flipping of diagonals/Ptolemy’s Theorem

In this lecture, we will look at the general Grassmannian Gr(k, n), and show that it
also prosesses a cluster algebra structure of geometric type. We will follow [Scott].

Remark 10.1. The cluster algebra structure of the Grassmannian leads to the
notion of “Positive Grassmannian”, where each cluster gives a “total positivity cri-
terion” on the positive variety of Gr(k, n), generalizing the results for total positivity
of matrices. Recently this has been utilized to study scattering amplitudes problems
in the popular paper by Akarni-Hamed et al. [ABCGPT].

10.1 Grassmannian Gr(k, n)

The Grassmannian is the algebraic variety of k-dimensional subspace in Cn, it has
dimension k(n − k). We can express an element of Gr(k, n) as a collection of row
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vectors, up to a change of basis:q =


−v1−
−v2−

...
−vk−

 ∈Matk,n(C) : rank(q) = k

 /GLk(C)

Definition 10.2. We have the Plücker embedding:

Gr(k, n) ↪→ P(ΛkCn) ' PN

q 7→ [v1 ∧ v2 ∧ · · · ∧ vk]

where N =

(
n
k

)
− 1.

In terms of coordinate, they are given by minors

q 7→ [∆A]

where A ⊂ [1, n] is a k-element subset, and ∆A = ∆[1,k],A is the minor of q.

Let us also define ∆i1,...,ik = sgn(π)∆j1,...,jk if π =

(
i1 i2 · · · ik
j1 j2 · · · jk

)
is a

permutation, and let ∆i1,...,ik = 0 if some indices are the same.

Lemma 10.3. The Plücker relation is given by

k∑
r=0

(−1)r∆i1,i2,...,ik−1,jr∆j0,...,ĵr,...,jk = 0

for any tuples i1 < i2 < · · · < ik−1 and j0 < j1 < · · · < jk, and we omit the hat
indices.

A consequence of the Plücker relations is the short Plücker relations given by

∆Iij∆Ist = ∆Iis∆Ijt + ∆Ijs∆Iit

where I is a subset of size k − 2 disjoint from {i, j, s, t}, and {i, j} and {s, t} are
crossing (if we label a n-gon clockwise by 1, ..., n, then the chord [ij] and [st] cross
each other). It can be obtained from the Lemma by letting I = (i1, ..., ik−2) =
(j1, ..., jk−2), and using the fact that ∆i1,...,ik = 0 if some indices are the same.

Definition 10.4. The homogeneous coordinate ring of Gr(k, n) is defined by

A := C[Ĝr(k, n)] := C[∆A]|A|=k/〈Plücker relations〉

where we recall that for a projective variety X ∈ PN , its affine cone is defined as
X̂ := π−1(X) ∪ {0} ⊂ CN+1 where π : CN+1 −→ PN is the projection.

Also note that Gr(k, n) ' Gr(n − k, n) hence we will only consider the case
when 2 ≤ k ≤ n

2 .
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10.2 Postnikov diagram

To parametrize the clusters of Plücker coordinates, we introduce the Postnikov
diagram:

Definition 10.5. Let π ∈ Sn be a permutation. Label a 2n-gon clockwise by
1′, 1, 2′, 2, ..., n′, n. A Postnikov diagram for π, or π-diagram, is a collection of
n oriented paths, joining i and π(i)′, such that

(1) No path intersects itself

(2) All path intersections are transversal

(3) Each intersection alternates in orientation from: left, right, left, ..., finally
from right.

· · ·

(4) We do not allow such configuration:

i

j

(5) Postnikov diagrams are identified up to isotopy, and we also identify this local
untwisting:

i

j

i

j

Proposition 10.6. By Property (3), Postnikov diagram cuts the 2n-gon into re-
gions of two types:

• even region: the boundary alternate in orientation

even
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• odd region: the boundary is oriented

odd

We will sometimes shade the odd regions for clarity.

We label the even region with index i if the region lies to the left of the i-th wire
joining i −→ π(i)′.

Definition 10.7. We let πk,n be the permutation i 7→ i+ k mod n.

Example 10.8. An example of π3,7-diagram. We shade the odd regions and label
the even regions.
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Figure 1: Postnikov diagram for π3,7.

Note that any πk,n-diagram has n boundary cells labeled by [1, k], [2, k+1], ..., [n, k−
1] (cyclically).

Proposition 10.9 (Postnikov). (1) Number of even regions in a Postnikov dia-
gram for πk,n is k(n− k) + 1

(2) Each even region is labeled by k-subset of [1, n]

(3) Every k-subset occurs as labeling in some πk,n-diagram.

Definition 10.10. A geometric exchange on a π-diagram is a local move (i.e.
nothing appear inside this configuration) which gives a new π-diagram with new
labelling. Here I is a common labelling of all the regions.
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Figure 2: Geometric exchange with new labelling.

Proposition 10.11 (Postnikov). Any πk,n-diagram can be transformed to one an-
other by a sequence of geometric exchange.

Example 10.12. Geometric exchange corresponds to flipping of triangles when
k = 2. Given a triangulation of a polygon, we associate the corresponding Postnikov
diagram as follows:

Then a single flip of triangulation corresponds to the geometric exchange
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Theorem 10.13. For 4 ≤ k + 2 ≤ n, there exists a special πk,n-diagram Ak,n

where each even region is a 4-gon.

Example 10.14. An example of the special diagram A3,8. Note that all even
regions are quadrilateral.
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Figure 3: The A3,8 diagram

The labels of the interior even regions are given by disjoint union of two intervals
I q I ′, such that if I = [i, j] and I ′ = [i′, j′], then [ii′] forms the triangulations of
the snake diagram of an n-gon.

In general, the construction of Ak,n looks something like this, by stacking
“bands” on top one by one. (In this example, k is odd).
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Figure 4: Ak,k+2 diagram

Figure 5: Ak,k+3 diagram

Figure 6: Ak,k+4 diagram
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10.3 Cluster algebra structure

Fix a Postnikov diagram D. We define a quiver Q from the Postnikov diagram by:

• The nodes of Q correspond to even regions

• We assign the arrows of Q (in red) by the configuration

• Let B̃(D) be the corresponding exchange matrix to the quiver Q.

• The ambient field F= rational functions generated by xK where K are the
label of the even regions.

• Cluster variables x(D)= set of indeterminantes corresponding to interior la-
bels

• c = {x[1,k], x[2,k+1], ..., x[n,k−1]}= set of indeterminates corresponding to bound-
ary labels.

• Ak,n be the cluster algebra generated by the seed (x(D), c, B̃(D)) inside F

Theorem 10.15. Each πk,n-diagram give rise to a seed of Ak,n. If D′ is obtained
from D by a single geometric exchange through a 4-sided cell with label K, then
µK(B̃(D)) = B̃(D′).

Proof. Explicitly checking local configurations, which reduces to two cases up to
symmetry. See [Scott].

Hence cluster algebra mutation generalize the geometric exchange to other config-
urations.

Theorem 10.16. There is an isomorphism φ : Ak,n −→ C[Ĝr(k, n)] of C[c]-algebra
such that

xK 7→ ∆K

for every k-subsets K ⊂ [1, n].

Proof. The main ingredient is to show that

(1) dim(Ĝr(k, n)) = rank(Ak,n) + |c|
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(2) φ : xK 7→ ∆K is consistent with the exchange relation and Plücker relations

(3) φ(x) is a regular function in C[Ĝr(k, n)] for any cluster variables x ∈ A

(1) follows from our construction directly. We know that the dimension of Gr(k, n)

is k(n− k), hence dimension of the affine cone (̂Gr(k, n)) is k(n− k) + 1, which is
the number of even regions in a Postnikov diagram.

(2) Any πk,n-diagram can be obtained from one another by sequence of geometric
exchanges. Then the correspondence between cluster variables xK and minors ∆K

implies that cluster mutation corresponds to the short Plücker relation.

xIstxIij = xIitxIjs + xIjtxIis

⇐⇒∆Ist∆Iij = ∆Iit∆Ijs + ∆Ijt∆Iis

(3) Finally, by considering the special diagram Ak,n (so that each interior re-
gion can be mutated by just the geometric exchange above) and using the Laurent

Phenomenon, one shows that φ(x) is regular on an open subset U ⊂ Ĝr(k, n) where

Ĝr(k, n) \ U has codimension at least 2, which implies that φ(x) is regular every-
where. This is almost the same proof giving the upper cluster algebra structure
of Double Bruhat cells. This also implies that the cluster algebra and the upper
cluster algebra coincides.

Example 10.17. The quiver configuration in k = 2 recovers the case we have seen
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before.

Theorem 10.18. Using the special diagram Ak,n, the cluster type of C[ ̂Gr(k, k + l)]
is described by the quiver Ak−1 ×Al−1 where all the arrows are alternating.

In particular we have the following cluster algebra type for C[Ĝr(k, n)] with
2 ≤ k ≤ n

2 :

Gr Gr(2, n+ 3) Gr(3, 6) Gr(3, 7) Gr(3, 8) Gr(3, 9) Gr(4, 8) other

Type of C[Ĝr] An D4 E6 E8 E
(1,1)
8 E

(1,1)
7 infinite

where E
(1,1)
7 and E

(1,1)
8 are finite mutation type (see the classification in Lecture 6

Theorem 6.20)

Example 10.19. For Gr(3, 8), from Figure 3, we can see that the quiver (only the
non-frozen part) associated to A3,8 is given by A2×A4, which is mutation equivalent
to E8.
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Figure 7: The quiver corresponding to A3,8 diagram
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