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3 Definition and Examples of Cluster algebra

3.1 Quivers

We first revisit the notion of a quiver.

Definition 3.1. A quiver is a finite oriented graph. We allow multiple arrows, but
no 1-cycles and 2-cycles.

1-cycle 2-cycle

We will let some vertices be frozen, while others be mutable. We assume there
are no arrows between frozen vertices.

Definition 3.2. Let k be mutable vertex in a quiver Q. A quiver mutation µk
transforms Q into a new quiver Q′ := µk(Q) by the three steps:

(1) For each pair of directed edges i −→ k −→ j, introduce a new edge i −→ j
(unless both i, j are frozen)

(2) Reverse direction of all edges incident to k

(3) Remove all oriented 2-cycles.

Example 3.3. Consider the example: (Let u, v be frozen)

u v

x y

z
µz−→

u v

x y

z′
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Proposition 3.4. • Mutation is an involution µk(µk(Q)) = Q.

• If k and l are two mutable vertices with no arrows between them, then the
mutations at k and l commute µl(µk(Q)) = µk(µl(Q)).

Definition 3.5. Two quivers Q and Q′ are called mutation equivalent if Q can
be transformed into Q′ by a sequence of mutations. The mutation equivalence class
[Q] is the set of all quivers which are mutation equivalent to Q.

A quiver Q is said to have finite mutation type if [Q] is finite.

Example 3.6. • All orientations of a tree are mutation equivalent to each
other.

• The mutation equivalence class [Q] of the Markov quiver Q consists of a single
element.

Definition 3.7. Let Q be a quiver with m vertices, and n of them mutable. The
extended exchange matrix of Q is the m× n matrix B̃(Q) = (bij) defined by

bij =

 r if there are r arrows from i to j in Q
−r if there are r arrows from j to i in Q
−otherwise

The exchange matrix B(Q) is the n× n skew-symmetric submatrix of B̃(Q) occu-
pying the first n rows:

B(Q) = (bij)i,j∈[1,n]

Lemma 3.8. The extended exchange matrix B̃′ = (b′ij) of the mutated quiver µk(Q)
is given by

b′ij =


−bij k ∈ {i, j}
bij + bikbkj bik > 0 and bkj > 0
bij − bikbkj bik < 0 and bkj < 0
bij otherwise

(3.1)

or more compactly:

b′ij =

{
−bij k ∈ {i, j}
bij + [bik]+bkj + bik[−bkj ]+ otherwise

.

or

b′ij =

{
−bij k ∈ {i, j}
bij +

|bik|bkj+bik|bkj |
2 otherwise

.

or

b′ij =

{
−bij k ∈ {i, j}
bij + sgn(bik)[bikbkj ]+ otherwise

.
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Definition 3.9. An n×n matrix B is skew-symmetrizable, if there exists integers
d1, ..., dn such that dibij = −djbji.

An m× n integer matrix with top n× n submatrix skew-symmetrizable is called
extended skew-symmetrizable matrix.

Definition 3.10. The diagram of a skew-symmetrizable n × n matrix B is the
weighted directed graph Γ(B) such that there is a directed edge from i to j iff bij > 0,
and this edge is assigned the weight |bijbji|.

3.2 Cluster algebra of geometric type

Now we can define algebraically the notion of cluster algebra. We first define cluster
algebra of geometric type (without coefficients). Let m ≥ n be two positive integers.
Let the ambient field F be the field of rational functions over C in m independent
variables.

Definition 3.11. A labeled seed of geometric type in F is a pair (x̃, B̃) where

• x̃ = (x1, ..., xm) is an m-tuple of elements of F forming a free generating set,
i.e. x1, ..., xm are algebraically independent, and F = C(x1, ..., xm)

• B̃ is an m× n extended skew-symmetrizable integer matrix.

We have the terminology:

• x̃ is the (labeled) extended cluster of the labeled seed (x̃, B̃)

• x = (x1, ..., xn) is the (labeled) cluster of this seed;

• x1, ..., xn are its cluster variables;

• The remaining xn+1, ..., xm of x̃ are the frozen variables;

• B̃ is called the extended exchange matrix of the seed

• The top n× n submatrix B of B̃ is the exchange matrix

“Labeled” means we also care about the order (index) of the seeds.

Definition 3.12. A seed mutation µk in direction k transform the labeled seed
(x̃, B̃) into a new labeled seed (x̃′, B̃′) := µk(x̃, B̃) where B̃′ is defined in (3.1), and
x̃′ = (x′1, ..., x

′
m) is given by

x′j = xj , j 6= k,

and x′k ∈ F defined by the exchange relation

xkx
′
k =

∏
bik>0

xbiki +
∏
bik<0

x
|bik|
i

or equivalently

xkx
′
k =

m∏
i=1

x
[bik]+
i +

m∏
i=1

x
[−bik]+
i
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We say two skew-symmetrizable matrices B̃ and B̃′ are mutation equivalent
if one can get from B̃ to B̃′ by a sequence of mutations, possibly followed by
simultaneous renumbering of rows and columns.

Definition 3.13. Let Tn denote the n-regular tree. A seed pattern is defined by
assigning a labeled seed (x̃(t), B̃(t)) to every vertex t ∈ Tn, so that the seeds assigned

to the end points of any edge t
k−→ t′ are obtained from each other by the seed

mutation in direction k. To a seed pattern, we can associate an exchange graph
which is n-regular, whose vertex are seeds and edges are mutations (the exchange
graph is Tn only when no seeds repeat.)

Figure 1: Exchange graph

Definition 3.14. Let (x̃(t), B̃(t)) be a seed pattern, and let

X :=
⋃
t∈Tn

x(t)

be the set of all cluster variables appearing in its seeds. Let the ground ring R =
C[xn+1, ..., xm] be the polynomial ring generated by the frozen variables.

The cluster algebra of geometric type A of rank n is the R-subalgebra of F
generated by all cluster variables

A = R[X ]

Usually, we pick an initial seed (x̃0, B̃0), and build a seed pattern out of it.

Then the corresponding cluster algebra A(x̃0, B̃0) is generated over R by all cluster

variables appearing in the seeds mutation equivalent to (x̃0, B̃0). Hence if we let S
denote the set of all seeds, then we can write A = A(S).

3.3 Examples

Rank 1 Case. T1 is very simple
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We have two seeds and two clusters (x1) and (x′1). B̃0 can be any m×1 matrix with
top entry 0. A ⊂ F = C(x1, x2, ..., xm) is generated by x1, x

′
1, x2, ..., xm subject to

relation of the form
x1x
′
1 = M1 +M2

where Mi are monomials in the frozen variables x2, ..., xm which do not share a
common factor.

Example 3.15. C[SL2] = C[a, b, c, d] is a cluster algebra,

(
a b
c d

)
with ad =

1 + bc. We have two extended clusters {a, b, c} and {b, c, d} and clusters {a} and
{d}.

Example 3.16. C[SL3/N ]: Recall we have the Plücker relation

∆2∆13 = ∆1∆23 + ∆12∆3

Then C[SL3/N ] has frozen variables {∆1,∆12,∆23,∆3} and clusters {∆2}, {∆13}.

Rank 2 Case. Any 2× 2 skew-symmetrizable matrix look like this:

±
(

0 b
−c 0

)
for some positive integers b, c, or both zero. µ1 or µ2 simply changes its sign.

Example 3.17. b = c = 0. This reduce to the rank 1 case.

Example 3.18. Let A = A(b, c) denote cluster algebra of rank 2 with exchange

matrix ±
(

0 b
−c 0

)
and no frozen variables. Then we have

xk+1xk−1 =

{
xck + 1 k is even
xbk + 1 k is odd

• This is the same as the Conway-Coxeter frieze pattern for (d1, d2) = (c, b).

• The exchange graph is finite only when (d1, d2) = (1, 1), (1, 2), (1, 3), such that
the graph is pentagon, hexagon and octagon respectively.

• In all other cases, the exchange graph is T2, which is an infinite line.

Example 3.19. Let us introduce frozen variable. Consider a seed pattern with

initial seed {z1, z2, y} and exchange matrix B̃0 =

 0 1
−1 0
p q

. we get

z1, z2, z3 =
z2 + yp

z1
, z4 =

yp+qz1 + z2 + yp

z1z2
, z5 =

yqz1 + 1

z2
, z6 = z1, z7 = z2
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Again there are 5 distinct cluster variables. The cluster algebra is then defined to
be

A = R[X ] = C[y±1]

[
z1, z2,

z2 + yp

z1
,
yp+qz1 + z2 + yp

z1z2
,
yqz1 + 1

z2

]
Example 3.20. Grassmannian Comparing the properties, we see that the coor-
dinate ring of the Grassmannian C[Gr(2, n+ 3)] is a cluster algebra, where

• cluster = {2× 2 minors} = triangulation

• cluster variables = ∆i,j = diagonals

• frozen variables = ∆i,i+1 = sides

• mutation = Plücker relation = flipping of diagonals

Similarly, C[SLn/N ] is a cluster algebra.

Example 3.21. Markov triples. Triples of integers satisfying

x21 + x22 + x23 = 3x1x2x3.

Consider it as equation in x1:

y2 − (3x2x3)y + (x22 + x23) = 0.

Then it has two roots: y = x1 and x′1 =
x2
2+x

2
3

x1
. Starting with x1 = x2 = x3 = 1,

replacing with another root: Vieta jumping.

B̃ = ±

 0 2 −2
−2 0 2
2 −2 0


Conjecture 3.22 (Uniqueness). Maximal elements of Markov triples are all dis-
tinct.
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Figure 2: Markov triples

Example 3.23. Somos-4 sequence.

xnxn+4 = xn+1xn+3 + x2n+2

Mutate at 1 rotate the graph by 90 degree.

1 2

34

Somos-5 sequence.

xnxn+5 = xn+1xn+4 + xn+2xn+3

Mutate at 1 rotate the graph by 72 degree.
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2

3

45

In both Somos-r sequence, xn will be Laurent polynomials in the initial variables
x1, ..., xr. In particular they will be integers if x1 = ... = xr = 1.

=⇒ Laurent phenomenon!

3.4 Semifields and coefficients

The mutation does not really use the frozen variables. So let us treat them as
“coefficients”, which leads to a more general notion of cluster algebra with semifields
as coefficients.

Let us denote

yj :=

m∏
i=n+1

x
bij
i , j = 1, ..., n.

Then y1, ..., yn encodes the same information as the lower (n −m) × n submatrix

of B̃. Hence a labeled seed can equivalently be presented as triples (x,y, B) where
x = (x1, ..., xn),y = (y1, ..., yn).

Now the mutation of xk becomes:

xkx
′
k =

m∏
i=n+1

x
[bik]+
i

n∏
i=1

x
[bik]+
i +

m∏
i=n+1

x
[−bik]+
i

n∏
i=1

x
[−bik]+
i

=
yk

yk ⊕ 1

n∏
i=1

x
[bik]+
i +

1

yk ⊕ 1

n∏
i=1

x
[−bik]+
i

where the semifield addition is defined by∏
i

xaii ⊕
∏
i

xbii :=
∏
i

x
min(ai,bi)
i

in particular,

1⊕
∏
i

xbii :=
∏
i

x
−[−bi]+
i

The mutation of the frozen variables xn+1, ..., xm also induces the mutation of the
coefficient y-variables:

(y′1, ..., y
′
n) := µk(y1, ..., yn)
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y′j :=

 y−1k i = k
yj(yk ⊕ 1)−bkj if j 6= k and bkj ≤ 0
yj(y

−1
k ⊕ 1)−bkj if j 6= k and bkj ≥ 0

This is called tropical Y -seed mutation rule This is general, we can use any semifield!

Definition 3.24. A semifield (P, ◦,⊕) is an abelian group (P, ◦) (written multi-
plicatively) together with a binary operator ⊕ such that

⊕ : P× P −→ P
(p, q) 7→ p⊕ q

is commutative, associative, and distributive:

p ◦ (q ⊕ r) = p ◦ q ⊕ p ◦ r

Note: ⊕ may not be invertible!

Example 3.25. Examples of semifield (P, ◦,⊕):

• (R>0,×,+)

• (R,+,min)

• (Qsf (u1, ..., um), ·,+) “subtraction-free” rational functions

• (Trop(y1, ..., ym), ·,⊕) Laurent monomials with usual multiplication and∏
i

xaii ⊕
∏
i

xbii :=
∏
i

x
min(ai,bi)
i

P is called the coefficient group of our cluster algbera.

Proposition 3.26. If (P, ◦,⊕) is a semifield, then

• (P, ◦) is torsion free (if there exists p,m such that pm = 1, then p = 1).

• Let ZP be the group ring of (P, ◦). Then it is a domain (p ◦ q = 0 =⇒ p = 0
or q = 0).

• Can define field of fractions QP of ZP

Proof. (1) If pm = 1, then note that 1 ⊕ p ⊕ ... ⊕ pm−1 ∈ P but 0 /∈ P, we can
write

p = p
1⊕ p⊕ ...⊕ pm−1

1⊕ p⊕ ...⊕ pm−1
=

p⊕ p2 ⊕ ...⊕ pm

1⊕ p⊕ ...⊕ pm−1
= 1

(2) Let p, q ∈ ZP with p ◦ q = 0. Then p and q are contained in ZH for some
finitely generated subgroup H of P. Since H ⊂ P is abelian, H ' Zn, hence
ZH ⊂ Z(x1, ..., xn) consists of all Laurent polynomials in xi. In particular
ZH is an integral domain, and hence p = 0 or q = 0.
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Then we can set our ambient field to be F := QP(u1, ..., un). Now we can
rewrite previous definitions and results:

Definition 3.27. A labeled seed in F is (x,y, B) with

• x = {x1, ..., xn} free generating set of F

• y = {y1, ..., yn} ⊂ P any elements

• B = n× n skew-symmetrizable Z-matrix

We have mutations for all x,y and B, together with the exchange patterns.
A cluster algebra with coefficients P is then

A(x,y, B) := ZP

[ ⋃
t∈Tn

x(t)

]

Example 3.28. For rank n = 2 we have in the most general case:

t Bt yt xt

0

(
0 1
−1 0

)
y1 y2 x1 x2

1

(
0 −1
1 0

)
y1(y2 ⊕ 1) 1

y2
x1

x1y2+1
x2(y2⊕1)

2

(
0 1
−1 0

)
1

y1(y2⊕1)
y1y2⊕y1⊕1

y2

x1y1y2+y1+y2
(y1y2⊕y1⊕1)x1x2

x1y2+1
x2(y2⊕1)

3

(
0 −1
1 0

)
y1⊕1
y1y2

y2
y1y2⊕y1⊕1

x1y1y2+y1+x2

(y1y2⊕y1⊕1)x1x2

y1+x2

x1(y1⊕1)

4

(
0 1
−1 0

)
y1y2
y1⊕1

1
y1

x2
y1+x2

x1(y1⊕1)

5

(
0 −1
1 0

)
y2 y1 x2 x1

Remark 3.29. The prevoius cluster algebra of geometric type = cluster algebra
with coefficients P = Trop(xn+1, ..., xm).

• We only need the n× n matrix B

• There are no frozen variables

• Mutation of y only involve two variables

• But we need to mutate all y variables, there are usually more y variables than
cluster variables

• Y -pattern do not in general exhibit Laurent phenomenon
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Definition 3.30. Two cluster algebra A(S) and A(S ′) are called strongly isomor-
phic if there exists a ZP-algebra isomorphism F −→ F ′ sending some seed in S into
a seed in S ′, thus inducing a bijection S −→ S ′ of seeds and an algebra isomorphism
A(S) −→ A(S ′)

Any cluster algebra A is uniquely determined by any single seed (x,y, B). Hence
A is determined by B and y up to strong isomoprhism, and we can write A =
A(B,y).
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