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3 Definition and Examples of Cluster algebra

3.1 Quivers
We first revisit the notion of a quiver.

Definition 3.1. A quiver is a finite oriented graph. We allow multiple arrows, but
no 1-cycles and 2-cycles.

(e )
1-cycle 2-cycle

We will let some vertices be frozen, while others be mutable. We assume there
are no arrows between frozen vertices.

Definition 3.2. Let k be mutable vertex in a quiver Q. A quiver mutation
transforms Q into a new quiver Q' := ug(Q) by the three steps:

(1) For each pair of directed edges i — k — j, introduce a new edge i — j
(unless both i,j are frozen)

(2) Reverse direction of all edges incident to k
(3) Remove all oriented 2-cycles.
Example 3.3. Consider the example: (Let u,v be frozen)
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Proposition 3.4. e Mutation is an involution pr(ur(Q)) = Q.

o If k and I are two mutable vertices with no arrows between them, then the
mutations at k and | commute p(pr(Q)) = ur(1(Q)).

Definition 3.5. Two quivers Q and Q' are called mutation equivalent if Q can
be transformed into Q' by a sequence of mutations. The mutation equivalence class
[Q] is the set of all quivers which are mutation equivalent to Q.

A quiver Q is said to have finite mutation type if [Q] is finite.

Example 3.6. o All orientations of a tree are mutation equivalent to each
other.

e The mutation equivalence class [Q] of the Markov quiver @ consists of a single
element.

Definition 3.7. Let Q be a quiver with m vertices, and n of them mutable. The
extended exchange matrix of @ is the m x n matriz B(Q) = (b;;) defined by

r if there are r arrows from i to j in @
bij = —r if there are r arrows from j to i in @
—otherwise

The exchange matrix B(Q) is the n X n skew-symmetric submatriz of E(Q) occu-
pying the first n rows:

B(Q) = (bij)ijeqn

Lemma 3.8. The extended exchange matriz B' = (bi;) of the mutated quiver ux(Q)
is given by

—bij ke {ij}
Y= bij + bikbkj bir >0 and bkj >0 (3 1)
ij bij — bikbkj bir <0 and bkj <0 ’
bi; otherwise

or more compactly:

. = _bij ke {27.7}
Y bij + [bik)+brj + bin[—brj]+  otherwise

or
Y :{ —bij ke {i,j}
bi; + M otherwise
or
b — { —bi; ke {i,j}
Y bij + sgn(bix) [bikbr;l+  otherwise



Definition 3.9. An n xn matriz B is skew-symmetrizable, if there exists integers
dl, ,dn such that dlb” = —djbji.

An m X n integer matriz with top n x n submatriz skew-symmetrizable is called
extended skew-symmetrizable matriz.

Definition 3.10. The diagram of a skew-symmetrizable n x n matriz B is the
weighted directed graph T'(B) such that there is a directed edge from i to j iff b;; > 0,
and this edge is assigned the weight |b;;bj;.

3.2 Cluster algebra of geometric type

Now we can define algebraically the notion of cluster algebra. We first define cluster
algebra of geometric type (without coefficients). Let m > n be two positive integers.
Let the ambient field F be the field of rational functions over C in m independent
variables.

Definition 3.11. A labeled seed of geometric type in F is a pair (i,é) where

e X =(x1,...,Zm) is an m-tuple of elements of F forming a free generating set,
i.e. X1,...,Tm are algebraically independent, and F = C(x1, ..., Tm)

e B is an m x n extended skew-symmetrizable integer matriz.

We have the terminology:

e X is the (labeled) extended cluster of the labeled seed (X, B)

e x = (x1,...,z,) is the (labeled) cluster of this seed;

® xq,..,T, are its cluster variables;

e The remaining x,11, ..., T, of X are the frozen variables;

B is called the extended exchange matriz of the seed

e The top n x n submatrix B of B is the exchange matriz
“Labeled” means we also care about the order (index) of the seeds.

Definition 3.12. A seed mutation uy in direction k transform the labeled seed
(X, B) into a new labeled seed (X', B') := px(X, B) where B' is defined in (3.1), and

X' = (ah,...,x,) is given by

x_ly = Zj, .] 7é k7
and xj, € F defined by the exchange relation
Ty = H x; bir 4 H x‘b”“‘
bk >0 bix <0

or equivalently

xk:c H$ bik]+ +H [—bik]+



We say two skew-symmetrizable matrices B and B’ are mutation equivalent
if one can get from B to B by a sequence of mutations, possibly followed by
simultaneous renumbering of rows and columns.

Definition 3.13. Let T,, denote the n-reqular tree. A seed pattern is defined by
assigning a labeled seed (X(t), B(t)) to every vertext € T,,, so that the seeds assigned

to the end points of any edge t ¥ are obtained from each other by the seed
mutation in direction k. To a seed pattern, we can associate an exchange graph
which is n-regular, whose vertex are seeds and edges are mutations (the exchange
graph is Ty, only when no seeds repeat.)

/ /
Ty,T2,T3 xT1,To, T3

/
gxla z2, 35'3?

Figure 1: Exchange graph
Definition 3.14. Let (X(t), B(t)) be a seed pattern, and let
X= | x()
teT,

be the set of all cluster variables appearing in its seeds. Let the ground ring R =
Clznt1, -, Tm] be the polynomial ring generated by the frozen variables.

The cluster algebra of geometric type A of rank n is the R-subalgebra of F
generated by all cluster variables

A= R[X]

Usually, we pick an initial seed (io,go), and build a seed pattern out of it.
Then the corresponding cluster algebra A(Xg, Eo) is generated over R by all cluster
variables appearing in the seeds mutation equivalent to (Xo, EO). Hence if we let S
denote the set of all seeds, then we can write A = A(S).

3.3 Examples
Rank 1 Case. T; is very simple



.L.

We have two seeds and two clusters (1) and (z). By can be any m x 1 matrix with
top entry 0. A C F = C(x1, 22, ..., ) is generated by 1,2}, za, ..., 2, subject to
relation of the form

IllL'/l = M1 + M2

where M; are monomials in the frozen variables xo, ..., z,, which do not share a
common factor.

Example 3.15. C[SLs] = Cla,b,c,d] is a cluster algebra, z Z with ad =

1+ be. We have two extended clusters {a,b,c} and {b,c,d} and clusters {a} and
{d}.
Example 3.16. C[SL3/N]: Recall we have the Plicker relation
AoAyg = A1Agz + A12Ag
Then C[SL3/N] has frozen variables {A1, A12, Aoz, As} and clusters {As}, {A13}.

Rank 2 Case. Any 2 x 2 skew-symmetrizable matrix look like this:

(%0)

for some positive integers b, ¢, or both zero. u; or s simply changes its sign.
Example 3.17. b = ¢ = 0. This reduce to the rank 1 case.

Example 3.18. Let A = A(b,c) denote cluster algebra of rank 2 with exchange
0 b
c

matriz + < ¢ 0 ) and no frozen variables. Then we have

| zi+1 ks even
Trt1Tk-1 = xz +1 ks odd

o This is the same as the Conway-Coxeter frieze pattern for (dyi,ds) = (¢, b).

e The exchange graph is finite only when (d1,ds) = (1,1),(1,2),(1,3), such that
the graph is pentagon, hexagon and octagon respectively.

e In all other cases, the exchange graph is Ta, which is an infinite line.

Example 3.19. Let us introduce frozen variable. Consider a seed pattern with

0 1
initial seed {21, 22,y} and exchange matric By = —1 0 |. we get
P q
z2 +y” YPriz 4 20 +yP yiz +1
21,422,223 = — ", 24 = yRE = T, 26 = 1,27 = 22
Z1 Z122 zZ9



Again there are 5 distinct cluster variables. The cluster algebra is then defined to

be

2o+ yP yPTzy + 20 + P 4921 + 1
A:R[X]:C[yil] 2,7, 2T Y 7y 1 2 TY ’y 1
Z1 zZ122 z9

Example 3.20. Grassmannian Comparing the properties, we see that the coor-
dinate ring of the Grassmannian C[Gr(2,n + 3)] is a cluster algebra, where

o cluster = {2Xx 2 minors} = triangulation

cluster variables = A; ; = diagonals

o frozen variables = A; ;11 = sides

e mutation = Plicker relation = flipping of diagonals
Similarly, C[SL,/N] is a cluster algebra.

Example 3.21. Markov triples. Triples of integers satisfying
22+ 22 4 22 = 3z 2013,
Consider it as equation in x1:
y? — (3wawa)y + (23 + 23) = 0.

2 2
12+m3
1

Then it has two roots: y = x1 and =) = . Starting with x1 = xo2 = x3 = 1,

replacing with another root: Vieta jumping.

~ 0 2 -2
B=+| -2 0 2
2 -2 0

Conjecture 3.22 (Uniqueness). Maximal elements of Markov triples are all dis-
tinct.



(1, 34, 89)

(1, 34, 13)
(1325,34,13)
(1, 5, 13)
(194,7561,13)
/
(194, 5, 13)
N (194,5,2897)
(13 13 1)_(15 1a 2)—(17 57 2)
(6466,5.433)
(29, 5, 433)
\
(29,37666,433)
(29, 5, 2)
(29,169,14701)
/
(29, 169, 2)
N (985,169,2)

Figure 2: Markov triples

Example 3.23. Somos-4 sequence.

2
TnTntd = Tp4+1Tn+3 + HO)

|

TnTn+ts = Tn4+1Tn+d T Tnt2Tn43

Mutate at 1 rotate the graph by 90 degree.

] +—

4 —

Somos-5 sequence.

Mutate at 1 rotate the graph by 72 degree.
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In both Somos-r sequence, x,, will be Laurent polynomials in the initial variables
T1yeees Ty In particular they will be integers if xt1 = ... =z, = 1.
= Laurent phenomenon/

3.4 Semifields and coefficients

The mutation does not really use the frozen variables. So let us treat them as
“coefficients”, which leads to a more general notion of cluster algebra with semifields
as coefficients.

Let us denote

m
bij .
Yj = H ;" 7=1..,n.
1=n+1
Then y1, ..., yn encodes the same information as the lower (n — m) X n submatrix

of B. Hence a labeled seed can equivalently be presented as triples (x,y, B) where

X = (21, s@n), Yy = (Y1, -, Yn)-
Now the mutation of x; becomes:

m n m n
"kal‘;c = H :L,Ebzkv]+ Hx£b1k]+ + H ZL’,Eib7'L']+ ]:[:L’Eibik]'*'
i=n-+1 i=1 i=n-+1 i=1
Yk T glo 1 0 o]
k bir]s Cbuls
D €, + — Tt
Y D 1 Z];E v Y D 1 };[1 4

where the semifield addition is defined by
H i ® H o= H gmin(aibi)

in particular,

1@ [[ab = [ar"

1
The mutation of the frozen variables x,,41, ..., Z,, also induces the mutation of the
coefficient y-variables:
(ylla ey y’;].) = :uk(yla ) yn)



—1 L
yk 1= ]f
yi =19 yilye ®1)7"%  if j# k and by <0
yilyy T @ 1) if j # kand by >0

This is called tropical Y -seed mutation rule This is general, we can use any semifield!

Definition 3.24. A semifield (P,o,®) is an abelian group (P,o) (written multi-
plicatively) together with a binary operator & such that

G :PxP—P
(pg) > p®q
is commutative, associative, and distributive:
po(qdr)=pogd®por
Note: @& may not be invertible!
Example 3.25. Ezamples of semifield (P, o0, ®):
o (Rxg, x,+)
e (R,+, min)
o (Qsp(uty .y m),-,+) “subtraction-free” rational functions
(

Trop(yi, . Ym), -, ®) Laurent monomials with usual multiplication and
i bi . min(a;,b;)
fo @sz' = Hmi
i i i

P is called the coefficient group of our cluster algbera.
Proposition 3.26. If (P,0,®) is a semifield, then
o (P,0) is torsion free (if there exists p,m such that p™ =1, then p =1).

o Let ZP be the group ring of (P,0). Then it is a domain (pog=0=—=p =10
orqg=0).

o Can define field of fractions QP of ZIP

Proof. (1) If p™ = 1, then note that 1 ©p @ ... o p™~! € P but 0 ¢ P, we can

write
p_plEBpEB...@pm_l _pope..ep"
1op®...op™ 1 10pd..opm1

(2) Let p,q € ZP with po g = 0. Then p and ¢ are contained in ZH for some
finitely generated subgroup H of P. Since H C P is abelian, H ~ Z", hence
ZH C Z(x1,...,x,) consists of all Laurent polynomials in z;. In particular
ZH is an integral domain, and hence p =0 or ¢ = 0.

O



Then we can set our ambient field to be F := QP(uq,... Now we can

rewrite previous definitions and results:

s Un)-

Definition 3.27. A labeled seed in F is (x,y, B) with
o x ={x1,...,2,} free generating set of F
e y={y1,...,yn} C P any elements
e B = n x n skew-symmetrizable Z-matriz

We have mutations for all x,y and B, together with the exchange patterns.
A cluster algebra with coefficients P is then

A(x,y, B) :== ZP l U x(t)}

teT,

Example 3.28. For rank n = 2 we have in the most general case:

4 By Y Xt
0 1

0 1 0 Y1 Y2 X1 T2
0 -1 1 +1

' ( 10 ) nel) & 2218
0 1 1 Y1y2By1 91 T1Y1Y2+y1+y2 z1y2+1
-1 0 y1(y201) Y2 (19201 @1)z122 22(y201)
0 -1 y191 Y2 T1y1Y2+yi1+ao y1t2
1 Y1Y2 y1y2@y101 | (y1y20y1®)z1z2 1 (Y1D1)
O 1 Y1y 1 Y1tz

! ( -1 0 ) ?!11@21 Y1 T2 301(11116;1)
0 -1

5 1 0 Y2 Y1 Z2 x

Remark 3.29. The prevoius cluster algebra of geometric type = cluster algebra
with coefficients P = Trop(Tpi1, ., Tm)-

e We only need the n x n matrix B
e There are no frozen variables

e Mutation of y only involve two variables

But we need to mutate all y variables, there are usually more y variables than
cluster variables

Y -pattern do not in general exhibit Laurent phenomenon

10



Definition 3.30. Two cluster algebra A(S) and A(S’) are called strongly isomor-
phic if there exists a ZIP-algebra isomorphism F — F' sending some seed in S into
a seed in S, thus inducing a bijection S — S’ of seeds and an algebra isomorphism

A(S) — A(S')

Any cluster algebra A is uniquely determined by any single seed (x,y, B). Hence
A is determined by B and y up to strong isomoprhism, and we can write A =

A(B,y).

11



