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5 Review of Root Systems

In this section, let us have a brief introduction to root system and finite Lie type
classification using Dynkin diagrams. It follows [Fomin-Reading].

5.1 Reflection groups

Let V be Euclidean space.

Definition 5.1. • A reflection is a linear map s : V −→ V that fixes a hyper-
plane, and reverse the direction of the normal vector of the hyperplane.

• A finite reflection group is a finite group generated by some reflections in V .

α β

sα(β) = β − 2〈α,β〉
〈α,α〉 α

Figure 1: Orthogonal reflection
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Example 5.2. Symmetry of the pentagon, given by the reflection group I2(5) (Di-
hedral group) generated by s and t. Products of odd number of generators are again
reflection through some hyperplane (indicated in the picture). Products of even
number of generators are rotations by certain angles.

Figure 2: The reflection group I2(5)

In general I2(m) is a group with 2m elements, generated by reflections s, t such
that (st)m = 1 and s2 = t2 = 1.

Definition 5.3. The set H of all reflecting hyperplanes is called a Coxeter arrange-
ment. It cuts V into connected components called regions.

Lemma 5.4. Fix an arbitrary region R1. Then the map w 7→ Rw := w(R1) is a
bijection between reflection group W and the set of regions. Reflections by the facet
hyperplanes of R1 generates W .

Let a hyperplane Hα given by {v : (v, α) = 0} for some vector α (normal vector).
Let sα be the reflection in the hyperplane Hα. Then

Lemma 5.5. sα is orthogonal linear transformation (i.e. preserving inner product),
and

sα(β) = β − 2(α, β)

(α, α)
α

5.2 Root system

Definition 5.6. A finite root system is a finite non-empty collection Φ of nonzero
vectors in V called roots such that

(1) For all α ∈ Φ, span(α) ∩ Φ = {±α}.
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(2) If α ∈ Φ, then sα(Φ) = Φ. In particular if α ∈ Φ, then −α ∈ Φ.

Lemma 5.7. Any reflection group W correpsond to a root system ΦW : The roots
correspond to the normal vector of the reflecting hyperplanes.

Definition 5.8. • The simple roots Π ⊂ Φ are the roots normal to the facet
hyperplanes of R1 and pointing into the half-space containing R1.

• The rank of Φ is n= dim(span(Φ)) = #{simple roots}. Π = {αi : i ∈ I} for
some index set I = [n] := {1, 2, ..., n}.

• The set of positive roots Φ+ (resp. negative roots Φ−) are the roots α =∑
i∈I ciαi such that all ci ≥ 0. (resp. ci ≤ 0).

Lemma 5.9. Φ is disjoint union of Φ+ and Φ−.

We also assume

(3) (Crystallographic condition) sα(β) = β − cαβα with cαβ = 2 (α,β)
(α,α) ∈ Z.

It means that any simple root coordinates of any root are integers. Crystallographic
reflection group W is also called the Weyl group of Φ.

Lemma 5.10. cαβ ∈ {0,±1,±2,±3}.

Proof. Let the angle between α and β be θ. Then (α, β) = |α||β| cos θ, hence

cαβ = 2
|β|
|α|

cos θ ∈ Z

and
cαβcβα = 4 cos θ2 ∈ Z

which forces | cos θ| = 0, 1
2 ,
√

2
2 ,
√

3
2 , 1. If we assume |β| ≥ |α|, then |β||α| = 1,

√
2,
√

3

respectively. (When | cos θ| = 0 there is no restriction. When | cos θ| = 1, β =
±α).

Definition 5.11. The ambient space QR(Φ) := R-span(Φ). Root systems Φ and
Φ′ are isomorphic if there is an isometry of QR(Φ) −→ QR(Φ′) that sends Φ to
some dilation cΦ′ of Φ.

Definition 5.12. The Cartan matrix of Φ is an integer matrix C = (cij)i,j∈I where

cij := cαiαj = 2
(αi,αj)
(αi,αi)

with αi ∈ Π.

Lemma 5.13. Root systems Φ and Φ′ are isomorphic iff they have same Cartan
matrix up to simultaneous rearrangement of rows and columns (i.e. reindexing).

Example 5.14. These are all 4 Cartan matrices of rank 2 and their corresponding
root systems:
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Type A1 ×A1

C =

(
2 0
0 2

)
α1

α2

Type A2

C =

(
2 −1
−1 2

)

α1 α1 + α2

α2

Type B2

C =

(
2 −2
−1 2

)
α1

2α1 + α2α1 + α2α2
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Type G2

C =

(
2 −3
−1 2

)
α1

2α1 + α2α1 + α2 3α1 + α2

3α1 + 2α2

α2

They correspond to tiling of the plane.

Theorem 5.15. An integer n×n matrix (cij) is a Cartan matrix of a root system
iff

(1) cii = 2 for every i

(2) cij ≤ 0 if i 6= j, and cij = 0⇐⇒ cji = 0

(3) There exists a diagonal matrix D such that DA is symmetric and positive
definite (i.e. all eigenvalues > 0)

Definition 5.16. A root system Φ is reducible if Φ = Φ1 q Φ2 such that α ∈
Φ1, β ∈ Φ2 =⇒ (α, β) = 0, i.e. C is block diagonal with > 1 blocks. Otherwise it is
irreducible.

Definition 5.17. Cartan matrix of finite type can be encoded by Dynkin diagrams:

Theorem 5.18 (Cartan-Killing classification of irreducible root system). Any ir-
reducible root system is isomorphic to the root system corresponding to the Dynkin
diagram of An(n ≥ 1), Bn(n ≥ 2), Cn(n ≥ 3), Dn(n ≥ 4), E6, E7, E8, F4 or G2.
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Example 5.19 (Root systems of type An). The root system is realized on the
hyperplane P = {x1 + ... + xn = 0} ⊂ Rn+1. Simple roots are realized as αi :=
ei+1 − ei ∈ Rn+1 and positive roots are ei − ej , 1 ≤ j < i ≤ n+ 1.

Example 5.20 (Root systems of type Bn). Simple roots are realized as α1 =
e1, αi = ei − ei−1, i ≥ 2 in Rn. Positive roots are ei and ei ± ej for 1 ≤ j < i ≤ n.
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Figure 3: Roots system of type B3

Example 5.21 (Root systems of type Cn). Simple roots are realized as α1 =
2e1, αi = ei− ei−1 in Rn. Positive roots are 2ei and ei± ej for 1 ≤ j < i ≤ n. The
reflection group coincide with Bn.

Figure 4: Roots system of type C3

In type Bn and Cn, the action of W on the roots are not transitive, there are 2
orbits, corresponding to short and long roots.

Example 5.22 (Root system of type Dn). Simple roots are realized as α0 = e1 +e2

and αi = ei+1 − ei. Positive roots are ei ± ej for 1 ≤ j < i ≤ n.

5.3 Root Systems in Lie Theory

Root systems are related to representation theory of Lie algebra. Consider simple
Lie algebra g with Cartan subalgebra h (i.e. maximal commutative Lie subalgbera
consisting of semisimple elements, i.e. diagonalizable in the adjoint representation).
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Definition 5.23. Let V be a representation of g. For any homomorphism λ : h −→
C, i.e. λ ∈ h∗, we can define

Vλ := {v ∈ V : ∀ξ ∈ h : ξ · v = λ(ξ)v}

If Vλ is nonempty, then Vλ is called a weight space of V , and λ is called its weight.
We have

V =
⊕
λ∈h∗

Vλ

Definition 5.24. If V is the adjoint representation, i.e. g acts on itself V := g
by g · v = [g, v], then the set of nonzero weights form a root system Φ. i.e. a root
α ∈ Φ is an element in h∗. In this case we have the root space decomposition

g = h⊕
⊕
α∈Φ

gα

Classification of root systems then give a classification of simple Lie algebra. In
particular, An = sln+1, Bn = so2n+1, Cn = sp2n and Dn = so2n.

5.4 Some useful calculations

• Φ+
A1

= {α}

• Φ+
A2

= {α1, α2, α1 + α2}

• Φ+
A3

= {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}

• Let si := sαi
. Then si(αi) = −αi

• if cij = −1, then si(αj) = αi + αj

• if cij = −2, then si(αj) = 2αi + αj

Each element w ∈W can be written as product of simple reflections

w = si1si2 ...sil

Shortest factorization of this form is called a reduced word for w, and l is called the
length of w.

Proposition 5.25. Any Weyl group has a unique element w0 of maximal length,
called the longest element

• WA1 = {1, s1}

• WA2
= {1, s1, s2, s1s2, s2s1, w0}, longest element is w0 = s1s2s1 = s2s1s2

• WA3
= S4 the permutation group. w0 = s1s2s1s3s2s1

8



• WAn
= Sn+1 is generated by transposition si = (i, i+ 1). We have sisi+1si =

si+1sisi+1.

• s1s2s1s3s2s3 is non-reduced: it equals s2s1s3s2.

• In type A2, w0(α1) = −α2, w0(α2) = −α1

• In type A3, w0(α1) = −α3, w0(α2) = −α2, w0(α3) = −α1

• In general, w0(αi) = −αi∗ . The map i 7→ i∗ is called the Dynkin involution.

Definition 5.26. Dynkin diagram has no cycles =⇒ bipartite. Let I = I+ q I−
where the nodes are marked as + and − alternatively. A Coxeter element is defined
as

c =

∏
i∈I+

si

∏
i∈I−

si

 :=: t+t−

The order h of c (i.e. ch = 1) is called Coxeter number.

Proposition 5.27. The longest element w0 can be written as

w0 = t+t−t+t−...t±︸ ︷︷ ︸
h

In particular if g is not of type A2n then h is even and

w0 = c
h
2 .

Theorem 5.28. We have the following table:

Type |Φ+| h |W |
An n(n+ 1)/2 n+ 1 (n+ 1)!

Bn, Cn n2 2n 2nn!
Dn n(n− 1) 2(n− 1) 2n−1n!
E6 36 12 51840
E7 63 18 2903040
E8 120 30 696729600
F4 24 12 1152
G2 6 6 12
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