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5 Review of Root Systems

In this section, let us have a brief introduction to root system and finite Lie type
classification using Dynkin diagrams. It follows [Fomin-Reading].
5.1 Reflection groups

Let V be Euclidean space.

Definition 5.1. o A reflection is a linear map s : V. — V that fixes a hyper-
plane, and reverse the direction of the normal vector of the hyperplane.

e A finite reflection group is a finite group generated by some reflections in V.

o B

Sa(ﬁ) =pB- ii?jf;()&

Figure 1: Orthogonal reflection
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Example 5.2. Symmetry of the pentagon, given by the reflection group I5(5) (Di-
hedral group) generated by s and t. Products of odd number of generators are again
reflection through some hyperplane (indicated in the picture). Products of even
number of generators are rotations by certain angles.

ststs = tstst

Figure 2: The reflection group I5(5)

In general Iy(m) is a group with 2m elements, generated by reflections s,t such
that (st)™ =1 and s> =2 = 1.

Definition 5.3. The set H of all reflecting hyperplanes is called a Coxeter arrange-
ment. It cuts V into connected components called regions.

Lemma 5.4. Fiz an arbitrary region Ry. Then the map w — Ry, := w(Ry) is a
bijection between reflection group W and the set of regions. Reflections by the facet
hyperplanes of Ry generates W.

Let a hyperplane H,, given by {v : (v, a) = 0} for some vector o (normal vector).
Let s, be the reflection in the hyperplane H,. Then

Lemma 5.5. s, is orthogonal linear transformation (i.e. preserving inner product),

and
2(0,5)
(o, @)

sa(ﬁ) = B -

5.2 Root system

Definition 5.6. A finite root system is a finite non-empty collection ® of nonzero
vectors in V called roots such that

(1) For all a € @, span(a) NP = {+a}.



(2) If a € @, then so(P) = @. In particular if « € D, then —a € D.

Lemma 5.7. Any reflection group W correpsond to a root system @y, : The roots
correspond to the normal vector of the reflecting hyperplanes.

Definition 5.8. e The simple roots II C @ are the roots normal to the facet
hyperplanes of Ry and pointing into the half-space containing R;.

e The rank of ® is n= dim(span(®)) = #{simple roots}. Il = {a; : i € I} for
some index set I = [n] :={1,2,....,n}.

o The set of positive roots @, (resp. negative roots ®_) are the roots « =
> icr Cioi such that all ¢; > 0. (resp. ¢; <0).

Lemma 5.9. @ is disjoint union of &4 and ®_.

We also assume

(3) (Crystallographic condition) s,(8) = f — caper With cop = 2 (@5) ¢ 7,

()

It means that any simple root coordinates of any root are integers. Crystallographic
reflection group W is also called the Weyl group of ®.

Lemma 5.10. ¢, € {0,+1,£2,£3}.
Proof. Let the angle between o and S be 6. Then («, 8) = |«||8] cos 8, hence

Cap = 2@0059 €z

|al
and
CaBCBa = 4cOs 0% c 7
which forces |cos 6] = 0, %, ?, @,1. If we assume |3] > |a|, then % =1,v2,V3
respectively. (When |cosf| = 0 there is no restriction. When |cosf| = 1,8 =
+a). O

Definition 5.11. The ambient space Qr(®P) := R-span(®). Root systems ® and
®’ are isomorphic if there is an isometry of Qr(®) — Qr(P’) that sends P to
some dilation c®' of ®.

Definition 5.12. The Cartan matrix of ® is an integer matric C = (ci5);,jer where

Cij = Caya; = 2% with «; € I1.

Lemma 5.13. Root systems ® and ®' are isomorphic iff they have same Cartan
matriz up to simultaneous rearrangement of rows and columns (i.e. reindexing).

Example 5.14. These are all 4 Cartan matrices of rank 2 and their corresponding
root systems:



Q2

Type A1 x Aq
_ 20 < > (V]
(0 3)
Y
Qay ai + ag

Type Az

_ 2 -1 < > (V2
o=(4)

(63 o) + s 201 4+ a
Type B




3aq + 2a0

Qo ar + az 201 + 3o +

They correspond to tiling of the plane.
Theorem 5.15. An integer n X n matriz (c;;) is a Cartan matriz of a root system
if
(1) cii =2 for every i
(2) cij <0ifi#j, andc;;j =0<=¢;; =0

(8) There exists a diagonal matriz D such that DA is symmetric and positive
definite (i.e. all eigenvalues > 0)

Definition 5.16. A root system ® is reducible if ® = &1 I &5 such that a €
Dq,8 € Py = (a,8) =0, i.e. C is block diagonal with > 1 blocks. Otherwise it is
irreducible.

Definition 5.17. Cartan matrixz of finite type can be encoded by Dynkin diagrams:

7 J .
[ J ® 1faij:aj,~:0
*——=0 ifaijzajiz—l

—>» if a;; = —1 and a;; = —2
— if a;; = —1 and aj; = =3
Theorem 5.18 (Cartan-Killing classification of irreducible root system). Any ir-

reducible root system is isomorphic to the root system corresponding to the Dynkin
diagram of An(n > 1), Bp(n > 2),Cp(n > 3), Dy(n > 4), Eg, E7, Es, Fy or Gs.
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Example 5.19 (Root systems of type A,). The root system is realized on the
hyperplane P = {x1 + ... + x,, = 0} C R"TL. Simple roots are realized as o; :=
€it1 — €; € R™1 and positive roots are e; — e, 1<j<i<n+1.

Example 5.20 (Root systems of type B, ). Simple roots are realized as oy =
e, = e; —ej—1,1 > 2 in R"™. Positive roots are e; and e; £ e; for 1 < j <i<n.
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Figure 3: Roots system of type Bj
Example 5.21 (Root systems of type C,). Simple roots are realized as oy =

2e1,; = e; —ej—1 in R™. Positive roots are 2e; and e; ej for 1 <j <i<n. The
reflection group coincide with By,.

s
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Figure 4: Roots system of type Cj
In type B,, and C),, the action of W on the roots are not transitive, there are 2
orbits, corresponding to short and long roots.
Example 5.22 (Root system of type D,,). Simple roots are realized as cg = €1+ €2
and a; = ej41 — e;. Positive roots are e; £ e; for 1 < j <i<n.
5.3 Root Systems in Lie Theory

Root systems are related to representation theory of Lie algebra. Consider simple
Lie algebra g with Cartan subalgebra b (i.e. maximal commutative Lie subalgbera
consisting of semisimple elements, i.e. diagonalizable in the adjoint representation).



Definition 5.23. Let V' be a representation of g. For any homomorphism X\ : h —
C, i.e. X €b*, we can define

Wwi={veV:Veeh: & v=A¢v}
If V) is nonempty, then V) is called a weight space of V', and X is called its weight.
We have
V=P wn
AED*

Definition 5.24. If V is the adjoint representation, i.e. g acts on itself V := g
by g - v = [g,v], then the set of nonzero weights form a root system ®. i.e. a root
a € © is an element in h*. In this case we have the root space decomposition

g=bo® @ Ja
acd
Classification of root systems then give a classification of simple Lie algebra. In
particular, A,, = sl,11, By = 502,11, Cp, = 8Py, and D,, = 509,
5.4 Some useful calculations
o o4 ={a}

[ ) (ng = {Oél,ag,Oél +042}

+
(I)Ag, - {Oél,@Q,ag,Oé]_ +a2,0&2 +0¢3,0{1 +Oé2 +a3}

e Let s; := $q,. Then s;(a;) = —a;
o if ¢;; = —1, then s;(a;) = o + o5
o if ¢;; = —2, then s,(a;) = 204 + o5

Each element w € W can be written as product of simple reflections
W = 84, 8iy---Sqy

Shortest factorization of this form is called a reduced word for w, and [ is called the
length of w.

Proposition 5.25. Any Weyl group has a unique element wgy of maximal length,
called the longest element

o Wa, ={1,s1}
o W4, ={1,s1, 52,8182, 8281, wo }, longest element is wy = $15281 = $251 82

o W4, = S4 the permutation group. wp = s15251535251



L4 WAn =
Si4+18iSi+1-

41 18 generated by transposition s; = (i,4+ 1). We have s;s;415;

® 5159515358283 is non-reduced: it equals so515359.
e In type Az, wo(a1) = —az, wo(ag) = —

e In type Az, wo(o) = —az, wo(az) = —az, wo(az) = —a;

e In general, wo(e;) = —a+. The map ¢ — i* is called the Dynkin involution.

Definition 5.26. Dynkin diagram has no cycles = bipartite. Let I = I, 11 1_
where the nodes are marked as + and — alternatively. A Coxeter element is defined

as
H S; H S; = t+t,

iely iel_

CcC =

The order h of ¢ (i.e. ¢ =1) is called Coxeter number.
Proposition 5.27. The longest element wy can be written as

woy = t+t,t+t7 t:t
—_———

h

In particular if g is not of type Aa, then h is even and

[NIE

Wy = C?.

Theorem 5.28. We have the following table:

[ Type | 24 [ h | [W]

A, |nn+1)/2] n+1 (n+1)!
B,,C, n? 2n 2"n!

D, nn—1) [2(n—-1)| 2" In
By 36 12 51840
D 63 18 2903040
Eg 120 30 696729600
Fy 24 12 1152
Ga 6 6 12




