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9 Double Bruhat Cells

In this section, we describe the identification between double Bruhat cells and
certain upper cluster algebra.

9.1 Notation and Definitions

Let [1,7] :={1,2,3,...,7}.

9.1.1 Lie Theory

e (G a simply-connected, connected, semisimple complex algebraic group of rank
r

B, B_ the opposite Borel subgroups

N, N_ the unipotent radicals

e H = BN B_ a maximal torus

W = Normg(H)/H the Weyl group

g = Lie(G) the Lie algebra

h = Lie(H) the Cartan subalgebra
e A root system ® and decomposition of root space: g =b @ P, da
e II={ai,...,a,} Ch* the simple roots, such that g,, C Lie(N).

e a € b simple coroot, such that Cartan matrix is given by ¢;; = a;(v))
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e ¢, : SLy — G the embedding corresponding to sl ~ (g4,, 9—a,) < 9
e The root subgroups are defined for ¢t € C by
1 ¢ t 0 10
Iz(t) —d)z( 0 1 > € N, hz(t) :—¢i( 0 -1 ) € H, ,I_j,(t) —¢Z< T ) e N_
9.1.2 Weyl group

Weyl group is generated by simple reflections s;, and they can be represented by
s; = 5; H where

S = @ 0 -l € Normg(H)
1 0
Can also be written as
e In general for w € W, we write
w € Normg(H) C G
for its representative in G given by products of 5;.

e i=(i1,...,1) is called a reduced word for w € W if w = s;,...s;, is a reduced
expression.

In type A,., W ~ S,41, and §; is the permutation matrix (with appropriate
signs).
9.1.3 WxW
Now consider W x W.

e We use —1, ..., —r for the simple reflections on first copy of W, and 1, ..., r for
second copy.

e A reduced word for (u,v) € W x W is an arbitrary shuffle of reduced word
for w written in —[1,7] and reduced word for v written in [1,7].

e Let €(i) denote the sign of ¢ € £[1,7].

e Let Supp(u,v) = {i: (u,v) contains either ¢ or —i} C [1,r]| be the support.

9.1.4 Bruhat decompositions

Theorem 9.1. The group G has Bruhat decompositions

G= H BuB = H B_vB_

ueW veW
The double Bruhat cells are

G“" = BuBN B_vB_

Hence G is disjoint union of the double Bruhat cells.



Example 9.2. When G = SL,41(C), B (resp. B_) can be chosen to be the
upper (resp. lower) triangular matriz. Then Bruhat decompositions say that any
element in G can be reduced to a permutation matriz after certain row and column
operations.

There is an explicit description of the Bruhat cells for type A,:

Proposition 9.3. For G = SL,+1(C), z € G belongs to BwB iff
o Ay, (@) #0 fori=1,..,r
o Ay(i—1u{ih),Li(®) =0 fori < j and w(i) < w(j)

This follows from the explicit description below in Prop 9.19.

Example 9.4. In particular for G = SL3(C), let u = v = wy = $18281 = $25152.
Then G*¥owo C SL3(C) consists of 3 x 3 matrices x with det(x) = 1 such that

x13#0, w31 #0, det ( 1z s ) #0, det ( Ti2 22 ) £0

T22 T23 r31 T32

The following Theorem gives important structural properties of the double
Bruhat cells:

Theorem 9.5. o G™" is biregularly isomoprhic to a Zariski open subset of an
affine space of dimension r + l(u) + 1(v).

o Leti= (i1,...,in) be a reduced word for (u,v) € W x W. Define the map
i HxCVN — G by
zi(a;ty, ..., tn) = axy (t1)..xiy (EN)

Then the map x; restricts to a bireqular isomorphism between H X (Cgo and
a Zariski open subset of the double Bruhat cell G*".

Proof. Let us show that z;(H x (CQO) C B_vB_. Consider the part of the words
(ify s -y ig, ) that form a reduced word for v (i.e. all those with ¢ = +). Note that
we have

x;(t) € B_s;B_, x_;(t) € B_
Hence
zi(a;ty, ..., ty) €EB_ - B_sy,B_-B_---B_-B_s; B_-B_
=B_vB_
since it is well-known that
B_w'B_-B_w'B_=B_w'w"B_

whenever [(w'w”) = l(w") + 1(w").
It is also easy to see that this map is injective. O



Example 9.6. Consider G = SL3(C). Consider u = sys2,v = e. The image in
G*%1%2:¢ = Bgs1s9oBN B_ is

ag 0 O 1 0 0 1 0 O
1(172)(a;t1,t2) = 0 a9 0 tl 1 0 0 1 0
0 0 as 0 0 1 0 tg 1

aq 0 0

= a2t1 a9 0
0 agtg as

where ajasaz = 1. We see that Bs1soB N B_ can be described by
Ag,l = 0, A271 # O7 A372 7£ 0

Furthermore, we can recover our parameters from some minors (say, with consec-
utive columns) by monomial transforms, e.q.

Aq2.12
b
Ay

o Ar11Qz1 . A121209312
el B e £12,12823,12

a1 =Aq1,a2 = by = X
21

ANTRT:

Example 9.7. On the other hand, the image in G2°1° = Bsys1 BN B_ is

ag 0 O 1 0 O 1 00
x(172)(a;t1,t2) = 0 a9 0 0 1 0 tg 1 0
0 0 a3 0 ¢t 1 0 0 1

ay 0 0
= agtg a9 0
agtits asty asg

We see that in this case Bsas1 B N B_ can be described by
Ag312 =0, Az #0, Az o # 0.
and similarly we can recover our parameters by monomial transforms:

Aq2.12 o Aq212013 12 b A1109,
1= y 02 —

ar =A011,a00 =
’ ASRE Aqq

In general, the Bruhat cells can be described by conditions of the form A(z) =
0, A(z) # 0. (see Proposition 9.19) and the parameters can be recovered by certain
collection F'(i) of minors (see Definition 9.21). More precisely,

—1 -1
m u” v w,v
H x C;ﬁo “monomial G ’ twisting G*

. . -1 -1 . . . . .
for some twisting G** — G" ¥  which is a biregular isomorphism, and the
parameters of &’ can be expressed as Laurent monomials from the minors in F'(i).



9.2 Combinatorial data

From a reduced word i = (i1, ..., ij(u)+i(v)), We will construct a rectangular matrix

B= E(l) which defines our cluster algebra of geometric type.
Let
M :=—[1,7r]U 1, l(u) + 1(v)]

and let m := |M| =r + l(u) + I(v).
e Let us add i¢_,,...,i_; at the beginning of i by setting i_; = —j for j € [1,7]

e For k € M, let k™ be smallest index [ such that k < [ and |i;] = |ig]. If it
does not exist we set kT = I(u) +I(v) + 1.

k is called i-exchangeable if both k, k* € [1,1(u),l(v)].

Let e(i) be the set of i-exchangeable indices. Let
n = |e(i)| = l(u) + I(v) — |Supp(u,v)|

Let B(i) be a m x n matrix. The rows are labeled by the set M and columns
are labeled by the set e(i)

Definition 9.8. The quiver I'(i) has vertices set M. For vertices k,l with k < I,
it is connected by an edge iff either k or 1 (or both) are i-exchangeable, and

(1) 1=kt
(2) 1<kt <1, ¢iy))i) # 0 and €(iy) = €(ig+)
(8) 1<t <k*,cp i #0 and (i) = —e(ir+)
e In case (1), the (horizontal) edge is k — 1 if €(i;) = +, and vice versa.

o In case (2) and (3), the (inclined) edge is k — 1 if €(i;) = —, and vice versa.

W O—® O—0O

o O o



Figure 1: I'(i) for SL5*"°

Definition 9.9. The matriz B is defined by
(1) by = 0 iff there are no edges connecting k and .
(2) by >0 ifk — 1, by <0 if k+—1

(3) |bri| = 1 lix| = lit] ~ (horizontal edge)
MU il ikl # lal - (inclined edge)

Example 9.10. For G = SL3, r = 2. Take u=v = wy. We have l(u) =(v) =
m=8n=4. Takei= (1,2,1,—-1,-2,—1). Then e(i) = {1,2,3,4}. The graph
has vertices {—2,—1,1,2,3,4,5,6} but we label them by i. The vertices € e(i) is
highlighted in red. Then B is given by

1 2 3 4
-21-1 1 0 0
-1 1 0 0 0

1 0 -1 1 0
2 1 0 -1 1
3 ||-1 1 0 -1
4 0 -1 1 0
5 0 1 0 -1
6 0 0 0 1

with the (skew-symmetric) principal part B highlighted in red.

Proposition 9.11. The matriz E(l) has full rank n. Its principal part B(i) is
skew-symmetrizable.

Proof. Enough to show that the determinant of the n x n submatrix A of B labeled
by the row set
e(i)" ={ke M k" ce(i)}

is nonzero. Note that if k¥ € e(i)” and ! € e(i), then

bt = 1 kt=1
FI=Y 0 kTt <1



hence A is triangular (after reindexing) with diagonal entries # 0.

|1 2 3 4

-1} 1 0 0 O

The matrix A (—1 and —2 interchanged): —2| -1 1 0 0
110 -1 1 0

31-1 1 0 -1

Cartan matrix is symmetrizable = B(i) is skew-symmetrizable by our definition.
O

Hence by previous results, the matrix E(l) give rise to a well-defined upper
cluster algebra A(i) of geometric type, which coincides with the upper bound U(S)
for the seed S(i) = (x, B(i)). The ambient field F of A(i) is the field of rational
functions over Q in m independent variables X = {x : k € M}. The cluster
variables in x are labeled by the set e(i), and the coefficient group P is generated
by the remaining indices.

Example 9.12. In our previous example for i = (—2,—1,1,2,1,—-1,—2,—1), we
have x = {x1,x2, x5, 24}, P = (fo, zj_tl,xg[, 1:6i>, and the exchange relation
11T = T 179 + T o3
Tolh = T_oT3T5 + T1T4
T3Thy = T1X4 + T
T4T) = ToTg + T35

The algebra A(i) consists of all rational functions in F = Q(x_2,2_1,21, ..., T¢)
that can be written as Laurent polynomials in each of the 5 clusters:

X = (./L'17.’L'2,$3,‘T4),X1 = ($l17$2,$3,$4), e 7X4($175E2,$3,.’E2)
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