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9 Double Bruhat Cells

In this section, we describe the identification between double Bruhat cells and
certain upper cluster algebra.

9.1 Notation and Definitions

Let [1, r] := {1, 2, 3, ..., r}.

9.1.1 Lie Theory

• G a simply-connected, connected, semisimple complex algebraic group of rank
r

• B,B− the opposite Borel subgroups

• N,N− the unipotent radicals

• H = B ∩B− a maximal torus

• W = NormG(H)/H the Weyl group

• g = Lie(G) the Lie algebra

• h = Lie(H) the Cartan subalgebra

• A root system Φ and decomposition of root space: g = h⊕
⊕

α∈Φ gα

• Π = {α1, ..., αr} ⊂ h∗ the simple roots, such that gαi
⊂ Lie(N).

• α∨i ∈ h simple coroot, such that Cartan matrix is given by cij = αj(α
∨
i )
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• φi : SL2 −→ G the embedding corresponding to sl2 ' 〈gαi
, g−αi

〉 ↪→ g

• The root subgroups are defined for t ∈ C by

xi(t) := φi

(
1 t
0 1

)
∈ N, hi(t) := φi

(
t 0
0 t−1

)
∈ H, x−i(t) := φi

(
1 0
t 1

)
∈ N−

9.1.2 Weyl group

Weyl group is generated by simple reflections si, and they can be represented by
si = siH where

si = φi

(
0 −1
1 0

)
∈ NormG(H)

Can also be written as
si = xi(−1)x−i(1)xi(−1)

• In general for w ∈W , we write

w ∈ NormG(H) ⊂ G

for its representative in G given by products of si.

• i = (i1, ..., il) is called a reduced word for w ∈ W if w = si1 ...sil is a reduced
expression.

In type Ar, W ' Sr+1, and si is the permutation matrix (with appropriate
signs).

9.1.3 W ×W

Now consider W ×W .

• We use −1, ...,−r for the simple reflections on first copy of W , and 1, ..., r for
second copy.

• A reduced word for (u, v) ∈ W ×W is an arbitrary shuffle of reduced word
for u written in −[1, r] and reduced word for v written in [1, r].

• Let ε(i) denote the sign of i ∈ ±[1, r].

• Let Supp(u, v) = {i : (u, v) contains either i or −i} ⊂ [1, r] be the support.

9.1.4 Bruhat decompositions

Theorem 9.1. The group G has Bruhat decompositions

G =
∐
u∈W

BuB =
∐
v∈W

B−vB−

The double Bruhat cells are

Gu,v = BuB ∩B−vB−
Hence G is disjoint union of the double Bruhat cells.
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Example 9.2. When G = SLr+1(C), B (resp. B−) can be chosen to be the
upper (resp. lower) triangular matrix. Then Bruhat decompositions say that any
element in G can be reduced to a permutation matrix after certain row and column
operations.

There is an explicit description of the Bruhat cells for type Ar:

Proposition 9.3. For G = SLr+1(C), x ∈ G belongs to BwB iff

• ∆w([1,i]),[1,i])(x) 6= 0 for i = 1, ..., r

• ∆w([1,i−1]∪{j}),[1,i](x) = 0 for i < j and w(i) < w(j)

This follows from the explicit description below in Prop 9.19.

Example 9.4. In particular for G = SL3(C), let u = v = w0 = s1s2s1 = s2s1s2.
Then Gw0,w0 ⊂ SL3(C) consists of 3× 3 matrices x with det(x) = 1 such that

x13 6= 0, x31 6= 0, det

(
x12 x13

x22 x23

)
6= 0, det

(
x12 x22

x31 x32

)
6= 0

The following Theorem gives important structural properties of the double
Bruhat cells:

Theorem 9.5. • Gu,v is biregularly isomoprhic to a Zariski open subset of an
affine space of dimension r + l(u) + l(v).

• Let i = (i1, ..., iN ) be a reduced word for (u, v) ∈ W ×W . Define the map
xi : H × CN −→ G by

xi(a; t1, ..., tN ) = axi1(t1)...xiN (tN )

Then the map xi restricts to a biregular isomorphism between H × CN6=0 and
a Zariski open subset of the double Bruhat cell Gu,v.

Proof. Let us show that xi(H × CN6=0) ⊂ B−vB−. Consider the part of the words
(ik1 , ..., ikl) that form a reduced word for v (i.e. all those with ε = +). Note that
we have

xi(t) ∈ B−siB−, x−i(t) ∈ B−
Hence

xi(a; t1, ..., tN ) ∈B− ·B−sik1
B− ·B− · · ·B− ·B−sikl

B− ·B−
= B−vB−

since it is well-known that

B−w
′B− ·B−w′′B− = B−w

′w′′B−

whenever l(w′w′′) = l(w′) + l(w′′).
It is also easy to see that this map is injective.
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Example 9.6. Consider G = SL3(C). Consider u = s1s2, v = e. The image in
Gs1s2,e = Bs1s2B ∩B− is

x(1,2)(a; t1, t2) =

 a1 0 0
0 a2 0
0 0 a3

 1 0 0
t1 1 0
0 0 1

 1 0 0
0 1 0
0 t2 1


=

 a1 0 0
a2t1 a2 0

0 a3t2 a3


where a1a2a3 = 1. We see that Bs1s2B ∩B− can be described by

∆3,1 = 0, ∆2,1 6= 0, ∆3,2 6= 0

Furthermore, we can recover our parameters from some minors (say, with consec-
utive columns) by monomial transforms, e.g.

a1 = ∆1,1, a2 =
∆12,12

∆1,1
, t1 =

∆1,1∆2,1

∆12,12
, t2 =

∆12,12∆23,12

∆2,1

Example 9.7. On the other hand, the image in Gs2s1,e = Bs2s1B ∩B− is

x(1,2)(a; t1, t2) =

 a1 0 0
0 a2 0
0 0 a3

 1 0 0
0 1 0
0 t1 1

 1 0 0
t2 1 0
0 0 1


=

 a1 0 0
a2t2 a2 0
a3t1t2 a3t1 a3


We see that in this case Bs2s1B ∩B− can be described by

∆23,12 = 0, ∆3,1 6= 0, ∆3,2 6= 0.

and similarly we can recover our parameters by monomial transforms:

a1 = ∆1,1, a2 =
∆12,12

∆1,1
, t1 =

∆12,12∆13,12

∆1,1
, t2 =

∆1,1∆2,1

∆12,12

In general, the Bruhat cells can be described by conditions of the form ∆(x) =
0,∆(x) 6= 0. (see Proposition 9.19) and the parameters can be recovered by certain
collection F (i) of minors (see Definition 9.21). More precisely,

H × Cm6=0 'monomial Gu
−1,v−1

'twisting Gu,v

for some twisting Gu,v −→ Gu
−1,v−1

which is a biregular isomorphism, and the
parameters of x′ can be expressed as Laurent monomials from the minors in F (i).
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9.2 Combinatorial data

From a reduced word i = (i1, ..., il(u)+l(v)), we will construct a rectangular matrix

B̃ = B̃(i) which defines our cluster algebra of geometric type.
Let

M := −[1, r] ∪ [1, l(u) + l(v)]

and let m := |M | = r + l(u) + l(v).

• Let us add i−r, ..., i−1 at the beginning of i by setting i−j = −j for j ∈ [1, r]

• For k ∈ M , let k+ be smallest index l such that k < l and |il| = |ik|. If it
does not exist we set k+ = l(u) + l(v) + 1.

• k is called i-exchangeable if both k, k+ ∈ [1, l(u), l(v)].

• Let e(i) be the set of i-exchangeable indices. Let

n := |e(i)| = l(u) + l(v)− |Supp(u, v)|

• Let B̃(i) be a m× n matrix. The rows are labeled by the set M and columns
are labeled by the set e(i)

Definition 9.8. The quiver Γ(i) has vertices set M . For vertices k, l with k < l,
it is connected by an edge iff either k or l (or both) are i-exchangeable, and

(1) l = k+

(2) l < k+ < l+, c|ik|,|il| 6= 0 and ε(il) = ε(ik+)

(3) l < l+ < k+, c|ik|,|il| 6= 0 and ε(il) = −ε(il+)

• In case (1), the (horizontal) edge is k −→ l if ε(il) = +, and vice versa.

• In case (2) and (3), the (inclined) edge is k −→ l if ε(il) = −, and vice versa.

(1) + −

(2) −

−

+

+

(3)

− + + −
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Figure 1: Γ(i) for SLw0,w0

3

Definition 9.9. The matrix B̃ is defined by

(1) bkl = 0 iff there are no edges connecting k and l.

(2) bkl > 0 if k −→ l, bkl < 0 if k ←− l

(3) |bkl| =
{

1 |ik| = |il| (horizontal edge)
−c|ik|,|il| |ik| 6= |il| (inclined edge)

Example 9.10. For G = SL3, r = 2. Take u = v = w0. We have l(u) = l(v) = 3,
m = 8, n = 4. Take i = (1, 2, 1,−1,−2,−1). Then e(i) = {1, 2, 3, 4}. The graph
has vertices {−2,−1, 1, 2, 3, 4, 5, 6} but we label them by i. The vertices ∈ e(i) is

highlighted in red. Then B̃ is given by

1 2 3 4
−2 −1 1 0 0
−1 1 0 0 0
1 0 −1 1 0
2 1 0 −1 1
3 −1 1 0 −1
4 0 −1 1 0
5 0 1 0 −1
6 0 0 0 1

with the (skew-symmetric) principal part B highlighted in red.

Proposition 9.11. The matrix B̃(i) has full rank n. Its principal part B(i) is
skew-symmetrizable.

Proof. Enough to show that the determinant of the n×n submatrix ∆ of B̃ labeled
by the row set

e(i)− := {k ∈M : k+ ∈ e(i)}

is nonzero. Note that if k ∈ e(i)− and l ∈ e(i), then

|bkl| =
{

1 k+ = l
0 k+ < l

,
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hence ∆ is triangular (after reindexing) with diagonal entries 6= 0.

The matrix ∆ (−1 and −2 interchanged):

1 2 3 4
−1 1 0 0 0
−2 −1 1 0 0
1 0 −1 1 0
3 −1 1 0 −1

Cartan matrix is symmetrizable =⇒ B(i) is skew-symmetrizable by our definition.

Hence by previous results, the matrix B̃(i) give rise to a well-defined upper
cluster algebra A(i) of geometric type, which coincides with the upper bound U(S)

for the seed S(i) = (x, B̃(i)). The ambient field F of A(i) is the field of rational
functions over Q in m independent variables x̃ = {xk : k ∈ M}. The cluster
variables in x are labeled by the set e(i), and the coefficient group P is generated
by the remaining indices.

Example 9.12. In our previous example for i = (−2,−1, 1, 2, 1,−1,−2,−1), we
have x = {x1, x2, x3, x4}, P = 〈x±−2, x

±
−1, x

±
5 , x

±
6 〉, and the exchange relation

x1x
′
1 = x−1x2 + x−2x3

x2x
′
2 = x−2x3x5 + x1x4

x3x
′
3 = x1x4 + x2

x4x
′
4 = x2x6 + x3x5

The algebra A(i) consists of all rational functions in F = Q(x−2, x−1, x1, ..., x6)
that can be written as Laurent polynomials in each of the 5 clusters:

x = (x1, x2, x3, x4),x1 = (x′1, x2, x3, x4), · · · ,x4(x1, x2, x3, x
′
4)
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