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9.3 Generalized minors

Consider the weight lattice P C h* of G given by weights v € h* such that v(«)) € Z
for all i = 1,...,r. P has a basis given by the fundamental weights {w, ..., w,} such
that

wj(ay) = 0y

v € h* can be treated as multiplicative characters H — C written as
a—v(a):=a"€C, a€H

Definition 9.13. Let Gy = N_HN be the open subset of elements x € G that have
Gaussian decomposition. We write

v = [z]-[zlo[z]+,  [2z]- € N_,[z]o € H,[z]4 € N

Definition 9.14. Let A¥ be a regular function on G whose restriction to Gy is
given by
A% (z) = [x]y"

The generalized minor Ay, v, 15 the regular function on G whose restriction to
the open set WGov ! is given by
Ag; vw; (T) = A (ﬂ_lﬁ)
By definition we have for any x € G,n~ € N_,n* € N,a € H:
A¥ (n~x) = A¥ (znT) = A¥i(z) (9.1)
A% (az) = A% (za) = a¥ A% (x)
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Remark 9.15. There is a representation theoretic meaning to the generalized mi-
nors. The above formula says that A¥¢ is invariant under the action of Nt on the
right, and is an eigenvector for the action of H. Hence this says that A¥ € C[G]
is a highest weight vector of weight w;, where G acts on C[G] by right translations.
Some results can be proved using this language:

Lemma 9.16. A, v, depends only on the weights uw;, vw; and not on the choice

of u orwv.

Proof. We consider the case for v. The case for u is similar. Recall that s;(w;) = w;
for i # j. Hence we only need to show for i # j,

A% (z5;) = A¥ (z).

Recall 5; = 2;(—1)z_;(1)z;(—1). Since A“ is highest weight vector of weight wj,
it is trivial with respect to ¢;(SLs) since w;(h;) = 0. Therefore we have

A% (za_j(t)) = A% (x)

and also by (9.1) gives the claim. O

Proposition 9.17. A% can be extended from Gy to the whole G by

R

0 otherwise

where x = x~awxt for some x_ € N_,a € Hyw € W,zt € N by the Bruhat
decomposition.
In particular, x € Gy (i.e. w=-¢e) iff A% () # 0 for any i € [1,7].

Proof. Since A¥i(z~ awz™) = a®* A¥ (w), only need to show

AWi (w) — { 1 WW; = Wy

0 otherwise

This is done by induction on I(w) and direct calculation. O

Example 9.18. In type A,, Ayw, vw, (T) is the determinant of the submatriz of =
whose row (resp. columns) are labeled by elements of the set u([1,4]) (resp. v([1,4]))
where u,v € W ~ 8, 41.

Each (double) Bruhat cell can be defined inside G by a collection of conditions
of the form A(z) = 0 and A(x) # 0 where A is a generalized minor. It can be
described explicitly as

Theorem 9.19. The Bruhat cell BuB C G is given by conditions



o Ay, w;, =0 whenever u'w; £ uw; in the Bruhat order

i Auwi,wi 7& 0
Similarly the Bruhat cell B_vB_ C G is given by conditions

o Ay viw; =0 whenever v'w; £ v~ lw; in the Bruhat order

° Awi,vflw,; #0

where the Bruhat order on weights ww; are induced from the Bruhat order on W.
(Bruhat order on W: for u,v € W, u < v <= 1l(v) = l(u) + l(u"'v))

Example 9.20. In type A,, v'w; < uw; <= v'([1,1]) < u([1,:]) where the partial
order on i-element set is defined by

{hi<-<gt<{ki<---<ki}<= (i <k, .4 < ki)
Next we introduce the family of minors that should be grouped as cluster.

Definition 9.21. We define elements u<y € W v € W by

u<p = u<p(i) == H S)i|
I1=1,....k
e(in)=—

Vs = vsg(D) = H Sl
I=l(u)+1(v),....k+1
e(i)==+
(The product is increasing (resp. decreasing) inl for u<; (resp. vsi). (i.e. they are
truncated words for v and v)
For k € —[1,7], we define u< = e,vsp =v~1. For k € M, we set
A(k;i):=A

UL EWig s U> kW4 |

and define
F(i) .= {A(k;i): ke M}

the set of m = r + l(u) + I(v) minors associated with the fixed reduced word i.

Example 9.22. Continuing our example for G = SL3, u = v = wy and 1 =
(-=2,-1,1,2,1,—-1,—2,—1). Recall uw; := u([1,1]).

k -2 -1 1 2 3 4 ) 6
ik -2 -1 1 2 1 -1 -2 -1
U<k € € € & € S1 S182 §18281
VUsk §158281 S1S5281 5152 S1 e (& e (&
u<p[l, lig]] | 12 1 1 12 1 23 3
vl ligl] | 23 3 2 12 1 1 12 1
A(k;i) A2z A1z Ao Apia Arn Agx Aozie Az

Note that these are all the initial minors.



9.4 Cluster algebra structures in C[G""]

Let us extend by scalar and consider the upper cluster algebra A(i)c := A(i) ® C
over the ambient field F¢ := F ® C.

Theorem 9.23. F(i) is an algebraically independent generating set for the field of
rational functions C(G™").

Proof. Note that |F(i)] = dimG™" = r + [(u) + [(v) so the dimension is correct.
By Theorem 9.5 C(G"™") ~ C(H x C;(S)H(U)) is generated by a,t,...,t,;. These
parameters can be expressed explicitly by invertible monomial transforms in the
minors of F(i), see Example 9.6 and [FZ]. O

We can state the main result:

Theorem 9.24. Let i be a reduced word for (u,v) € W x W. The isomoprhism of
fields Fo — C(G*?) defined by

d(z) — A(k;i), keM
restricts to an isomorphism of algebras A(i)c — C[G™"]

Remark 9.25. Recently it was shown by Goodearl- Yakimov (2013) that in fact the
upper cluster algebra coincides with the cluster algebra: A(i) = A(i). It is shown
for a large class of quantized cluster algebra, in which the coordinate ring of double
Bruhat cell is a classical limit of a special case.

Example 9.26. Let us calculate the image of ¢ in our Example 9.12. We have the
correspondence:

¢ T2 ‘3571‘%1‘ Z2 ‘303‘964‘ Z5 ‘5106

‘ Aiz.23 ‘ 13 ‘ L12 ‘ Aqz12 ‘ T11 ‘ T21 ‘ ACERD ‘ L31

o)) =¢>(

21301212 + A1223711

T_1T2 + T _2x3
€

T12
= A12,13

However, not all of them become minors, but they are all reqular functions on
G = SL3(C)



Remark 9.27. A(i) is finitely generated (since A(i) is isomorphic to a Z-form of
the coordinate ring of a quasi-affine algebraic variety G*), although it may not
have acyclic seed.

Remark 9.28. The collection of minors F (i) gives a total positivity criterion in
G“V: x € G is totally positive iff A(z) > 0 for every A € F(i).

Example 9.29. From the quiver (red part) in the Figure of Example 9.10, we see
that C[SL5°"""] is cluster algebra of type Dy. It has 16 cluster variables and 50
clusters, each consisting of 4 variables.

e 1/ minors (19 minors - det - 4 frozen minors)
° 2 regular functions: .’E21A13723 — (E31A12723 and Alz’lg.’bgg — A12_’23{E31

Example 9.30. Let ¢ € W be the Coxeter element with reduced word (1,2,3...,7).
Then C[G*°] is a cluster algebra of type A7, because fori= (—1,—2,...,—r,1,2...,7),
the mutable (red) part of the quiver T'(1) consists of r disconnected vertices, i.e. B(i)
1S a zero matrix.

Example 9.31. Consider (C[Gc’cfl], choose i = (—1,...,—r,r,...,1). Then B(i) is
given by

b — —a;; 1<J

K Qjj 7> ]

Hence the mutable part of T'(1) is a Dynkin graph of G, so that C[chcfl] is a cluster
algebra of type G. This gives a geometric construction of cluster algebra of any finite

type.

Example 9.32. The double cell G=™° is natually identified with open subset of the
base affine space N_ \ G given by

Awhwi 7é 07 Awi,wowi ?é O, VZ = 1, ey T

Then we have

Cartan-Killing type of G | Ay | As | Ay | B2 | other
Cluster type of C[G®"°] | Ay | A3 | D¢ | Ba | infinite

Idea: show that for other types, the quiver contains the extended Dynkin tree dia-
gram (see Lecture 6), hence it is not 2-finite.



\

Figure 1: The mutatble part of I'(i) for C[G®"°] in type As for i =
(1,3,5,2,4,1,3,5,2,4,1,3,5,2,4). It contains the subdiagram Eél), hence it is of
infinite type.

Example 9.33. For the open double Bruhat cell G¥°"° it is described by
A’wowi,wi 7é 07 Awi,wowi 7& 0, V’L - 1, ey T

We have

Cartan-Killing type of G | Ay | Ay | other
Cluster type of C[G"o:*°] | Ay | Dy | infinite

9.5 Proof of Theorem 9.24

We outline some ingredients in the proof of the main theorem.
Lemma 9.34. (1) The minors A(k;i)(x) # 0 for k ¢ e(i) and any v € G*.

(2) The map G** — CrHWH®) defined by g — (A(9))acra restricts to a

7‘+l(u)+l(v)

biregular isomorphism U (i) — C, where

UG) ={geG" :A(g) #0, VA€ F(i)}

Proof. In (1), if k ¢ e(i), then either u<y = e or vs; = e (cf. Example 9.22) and
A(k;i) turns into Ay, o, or Ay, ,-1,,. Hence this is the statement of Theorem
9.19. We can see e.g. that A, ,-1,,, # 0 follows from Proposition 9.17 and the fact
that B_vB_v~! C Gy.

(2) is a restatement of Theorem 9.5, where the parameters a,tq,...,ty can be
expressed in terms of minors from F(i). O

Lemma 9.35. (8) The rational functions A'(¢;1) := ¢(x}) are regular, i.e. be-
longs to C[G™"]



(4) The map G** — C'TUWH) defined by g — (A(9))acr, ) restricts to a

biregular isomorphism U(i) — C;‘El(u)ﬂ(v) where

Fy(i) == F(i) — {A(G 1)} U {A(61}

and

Ue(i) :={g € G“" : A(g) #0, VA € Fy(i)}

Proof. This follows from hard calculations involving identities between the gener-
alized minors developed in [Z, Section 4], see the proof of Lemma 2.12 in [FZ]. Let
us outline a special case:

We have the following identity for the generalized minors: if I(us;) = I(u) + 1
and I(vs;) = I(v) + 1, then

—cis
— = | I gt
Auwi,vwiAusiwi,vsiwi Ausiwi,vwiAuwi,vsiwi - Uwy,vw;

J#i
which follows from the case for u = v = e.
Recall in our example for SLy”"°, we have

Tolh = T_oX3T5 + T174
which translates to

A12,12A" =A1293003 12011 + A1 2001
=A12,23023 12(A121201313 — A1312012.13)
+ (A12,12013,23 — A13,12012,23) (A12,12023 13 — Aag 12A12.13)
Ajg23 A213 Ao

=Ajg1odet | Aizoz Aiziz Ao
0 Agz13 Asgz o

Hence A’ is a regular function on G*?. O

Fact 9.36. Let X be normal variety and Y C X a subvariety of codimension at
least 2. Then any rational function on X regular on X — Y extends to a regular
function on X.

Lemma 9.37. Let
U=U)u (] Ui)
Lee(i)

The complement G*¥ — U has complex codimension at least 2 in G*".

Proof. Let x € G*? — U. Since x ¢ U(i), A(k;i) = 0 for some k € e(i). Since
x ¢ Ug(i), either A(l;i) = 0 for some [ € e(i), or A’(k;i) = 0. Hence G** — U
is the union of finitely many subvarieties, each given by two distinct irreducible
equations. O



Let xp = X — {z¢} U {z}}. We have
Ali)e =Cx*In (] CRx;]
Lee(i)

Hence we only need to show C = C[G™"] where

By Lemma (2) and (4) we have
S(CEF) =CUG),  ¢(CE)) = ClUe()]

so C consists of rational functions on G** that is regular on U. By Lemma 9.37,
these are functions regular on the whole double cell G**.
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