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9.3 Generalized minors

Consider the weight lattice P ⊂ h∗ of G given by weights γ ∈ h∗ such that γ(α∨i ) ∈ Z
for all i = 1, ..., r. P has a basis given by the fundamental weights {ω1, ..., ωr} such
that

ωj(α
∨
i ) = δij .

γ ∈ h∗ can be treated as multiplicative characters H −→ C written as

a 7→ γ(a) :=: aγ ∈ C, a ∈ H

Definition 9.13. Let G0 = N−HN be the open subset of elements x ∈ G that have
Gaussian decomposition. We write

x = [x]−[x]0[x]+, [x]− ∈ N−, [x]0 ∈ H, [x]+ ∈ N

Definition 9.14. Let ∆ωi be a regular function on G whose restriction to G0 is
given by

∆ωi(x) := [x]ωi
0 .

The generalized minor ∆uωi,vωi
is the regular function on G whose restriction to

the open set uG0v
−1 is given by

∆uωi,vωi
(x) = ∆ωi(u−1xv)

By definition we have for any x ∈ G,n− ∈ N−, n+ ∈ N, a ∈ H:

∆ωi(n−x) = ∆ωi(xn+) = ∆ωi(x) (9.1)

∆ωi(ax) = ∆ωi(xa) = aωi∆ωi(x)
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Remark 9.15. There is a representation theoretic meaning to the generalized mi-
nors. The above formula says that ∆ωi is invariant under the action of N+ on the
right, and is an eigenvector for the action of H. Hence this says that ∆ωi ∈ C[G]
is a highest weight vector of weight ωi, where G acts on C[G] by right translations.
Some results can be proved using this language:

Lemma 9.16. ∆uωi,vωi
depends only on the weights uωi, vωi and not on the choice

of u or v.

Proof. We consider the case for v. The case for u is similar. Recall that sj(wi) = wi
for i 6= j. Hence we only need to show for i 6= j,

∆ωi(xsj) = ∆ωi(x).

Recall si = xi(−1)x−i(1)xi(−1). Since ∆ωi is highest weight vector of weight ωi,
it is trivial with respect to φj(SL2) since ωi(hj) = 0. Therefore we have

∆ωi(xx−j(t)) = ∆ωi(x)

and also by (9.1) gives the claim.

Proposition 9.17. ∆ωi can be extended from G0 to the whole G by

∆ωi(x) =

{
aωi wωi = ωi
0 otherwise

where x = x−awx+ for some x− ∈ N−, a ∈ H,w ∈ W,x+ ∈ N by the Bruhat
decomposition.

In particular, x ∈ G0 (i.e. w = e) iff ∆ωi(x) 6= 0 for any i ∈ [1, r].

Proof. Since ∆ωi(x−awx+) = aωi∆ωi(w), only need to show

∆ωi(w) =

{
1 wωi = ωi
0 otherwise

This is done by induction on l(w) and direct calculation.

Example 9.18. In type Ar, ∆uωi,vωi(x) is the determinant of the submatrix of x
whose row (resp. columns) are labeled by elements of the set u([1, i]) (resp. v([1, i]))
where u, v ∈W ' Sr+1.

Each (double) Bruhat cell can be defined inside G by a collection of conditions
of the form ∆(x) = 0 and ∆(x) 6= 0 where ∆ is a generalized minor. It can be
described explicitly as

Theorem 9.19. The Bruhat cell BuB ⊂ G is given by conditions
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• ∆u′ωi,ωi
= 0 whenever u′ωi � uωi in the Bruhat order

• ∆uωi,ωi 6= 0

Similarly the Bruhat cell B−vB− ⊂ G is given by conditions

• ∆ωi,v′ωi = 0 whenever v′ωi � v−1ωi in the Bruhat order

• ∆ωi,v−1ωi
6= 0

where the Bruhat order on weights wωi are induced from the Bruhat order on W .
(Bruhat order on W : for u, v ∈W , u < v ⇐⇒ l(v) = l(u) + l(u−1v))

Example 9.20. In type Ar, u
′ωi ≤ uωi ⇐⇒ u′([1, i]) ≤ u([1, i]) where the partial

order on i-element set is defined by

{j1 < · · · < ji} ≤ {k1 < · · · < ki} ⇐⇒ (j1 ≤ k1, · · · , ji ≤ ki)

Next we introduce the family of minors that should be grouped as cluster.

Definition 9.21. We define elements u≤k ∈W, v>k ∈W by

u≤k := u≤k(i) :=
∏

l=1,...,k
ε(il)=−

s|il|

v>k := v>k(i) :=
∏

l=l(u)+l(v),...,k+1
ε(il)=+

s|il|

(The product is increasing (resp. decreasing) in l for u≤j(resp. v>k). (i.e. they are
truncated words for u and v)

For k ∈ −[1, r], we define u≤k = e, v>k = v−1. For k ∈M , we set

∆(k; i) := ∆u≤kωik
,v>kω|ik|

and define
F (i) := {∆(k; i) : k ∈M}

the set of m = r + l(u) + l(v) minors associated with the fixed reduced word i.

Example 9.22. Continuing our example for G = SL3, u = v = w0 and i =
(−2,−1, 1, 2, 1,−1,−2,−1). Recall uωi := u([1, i]).

k −2 −1 1 2 3 4 5 6
ik −2 −1 1 2 1 −1 −2 −1
u≤k e e e e e s1 s1s2 s1s2s1

v>k s1s2s1 s1s2s1 s1s2 s1 e e e e
u≤k[1, |ik|] 12 1 1 12 1 2 23 3
v>k[1, |ik|] 23 3 2 12 1 1 12 1

∆(k; i) ∆12,23 ∆1,3 ∆1,2 ∆12,12 ∆1,1 ∆2,1 ∆23,12 ∆3,1

Note that these are all the initial minors.
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9.4 Cluster algebra structures in C[Gu,v]

Let us extend by scalar and consider the upper cluster algebra A(i)C := A(i) ⊗ C
over the ambient field FC := F ⊗ C.

Theorem 9.23. F (i) is an algebraically independent generating set for the field of
rational functions C(Gu,v).

Proof. Note that |F (i)| = dimGu,v = r + l(u) + l(v) so the dimension is correct.

By Theorem 9.5 C(Gu,v) ' C(H × Cl(u)+l(v)
6=0 ) is generated by a, t1, ..., tm. These

parameters can be expressed explicitly by invertible monomial transforms in the
minors of F (i), see Example 9.6 and [FZ].

We can state the main result:

Theorem 9.24. Let i be a reduced word for (u, v) ∈W ×W . The isomoprhism of
fields FC −→ C(Gu,v) defined by

φ(xk) 7→ ∆(k; i), k ∈M

restricts to an isomorphism of algebras A(i)C −→ C[Gu,v]

Remark 9.25. Recently it was shown by Goodearl-Yakimov (2013) that in fact the
upper cluster algebra coincides with the cluster algebra: A(i) = A(i). It is shown
for a large class of quantized cluster algebra, in which the coordinate ring of double
Bruhat cell is a classical limit of a special case.

Example 9.26. Let us calculate the image of φ in our Example 9.12. We have the
correspondence:

φ x−2 x−1 x1 x2 x3 x4 x5 x6

∆12,23 x13 x12 ∆12,12 x11 x21 ∆23,12 x31

φ(x′1) = φ

(
x−1x2 + x−2x3

x1

)
=
x13∆12,12 + ∆12,23x11

x12

= ∆12,13

However, not all of them become minors, but they are all regular functions on
G = SL3(C)

φ(x′2) = x21∆13,23 − x31∆12,23

φ(x′3) = x22

φ(x′4) = ∆13,12
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Remark 9.27. A(i) is finitely generated (since A(i) is isomorphic to a Z-form of
the coordinate ring of a quasi-affine algebraic variety Gu,v), although it may not
have acyclic seed.

Remark 9.28. The collection of minors F (i) gives a total positivity criterion in
Gu,v: x ∈ Gu,v is totally positive iff ∆(x) > 0 for every ∆ ∈ F (i).

Example 9.29. From the quiver (red part) in the Figure of Example 9.10, we see
that C[SLw0,w0

3 ] is cluster algebra of type D4. It has 16 cluster variables and 50
clusters, each consisting of 4 variables.

• 14 minors (19 minors - det - 4 frozen minors)

• 2 regular functions: x21∆13,23 − x31∆12,23 and ∆12,13x32 −∆12,23x31

Example 9.30. Let c ∈W be the Coxeter element with reduced word (1, 2, 3..., r).
Then C[Gc,c] is a cluster algebra of type Ar1, because for i = (−1,−2, ...,−r, 1, 2..., r),
the mutable (red) part of the quiver Γ(i) consists of r disconnected vertices, i.e. B(i)
is a zero matrix.

Example 9.31. Consider C[Gc,c
−1

], choose i = (−1, ...,−r, r, ..., 1). Then B(i) is
given by

bij =

{
−aij i < j
aij i > j

Hence the mutable part of Γ(i) is a Dynkin graph of G, so that C[Gc,c
−1

] is a cluster
algebra of type G. This gives a geometric construction of cluster algebra of any finite
type.

Example 9.32. The double cell Ge,w0 is natually identified with open subset of the
base affine space N− \G given by

∆ωi,ωi 6= 0, ∆ωi,w0ωi 6= 0, ∀i = 1, ..., r

Then we have

Cartan-Killing type of G A2 A3 A4 B2 other
Cluster type of C[Ge,w0 ] A1 A3 D6 B2 infinite

Idea: show that for other types, the quiver contains the extended Dynkin tree dia-
gram (see Lecture 6), hence it is not 2-finite.
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Figure 1: The mutatble part of Γ(i) for C[Ge,w0 ] in type A5 for i =

(1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4). It contains the subdiagram E
(1)
7 , hence it is of

infinite type.

Example 9.33. For the open double Bruhat cell Gw0,w0 , it is described by

∆w0ωi,ωi
6= 0, ∆ωi,w0ωi

6= 0, ∀i = 1, ..., r

We have
Cartan-Killing type of G A1 A2 other
Cluster type of C[Gw0,w0 ] A1 D4 infinite

9.5 Proof of Theorem 9.24

We outline some ingredients in the proof of the main theorem.

Lemma 9.34. (1) The minors ∆(k; i)(x) 6= 0 for k /∈ e(i) and any x ∈ Gu,v.

(2) The map Gu,v −→ Cr+l(u)+l(v) defined by g 7→ (∆(g))∆∈F (i) restricts to a

biregular isomorphism U(i) −→ Cr+l(u)+l(v)
6=0 where

U(i) = {g ∈ Gu,v : ∆(g) 6= 0, ∀∆ ∈ F (i)}

Proof. In (1), if k /∈ e(i), then either u≤k = e or v>k = e (cf. Example 9.22) and
∆(k; i) turns into ∆uωi,ωi

or ∆ωi,v−1ωi
. Hence this is the statement of Theorem

9.19. We can see e.g. that ∆ωi,v−1ωi
6= 0 follows from Proposition 9.17 and the fact

that B−vB−v
−1 ⊂ G0.

(2) is a restatement of Theorem 9.5, where the parameters a, t1, ..., tN can be
expressed in terms of minors from F (i).

Lemma 9.35. (3) The rational functions ∆′(`; i) := φ(x′`) are regular, i.e. be-
longs to C[Gu,v]
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(4) The map Gu,v −→ Cr+l(u)+l(v) defined by g 7→ (∆(g))∆∈F`(i) restricts to a

biregular isomorphism U`(i) −→ Cr+l(u)+l(v)
6=0 where

F`(i) := F (i)− {∆(`; i)} ∪ {∆′(`; i}

and
U`(i) := {g ∈ Gu,v : ∆(g) 6= 0, ∀∆ ∈ F`(i)}

Proof. This follows from hard calculations involving identities between the gener-
alized minors developed in [Z, Section 4], see the proof of Lemma 2.12 in [FZ]. Let
us outline a special case:

We have the following identity for the generalized minors: if l(usi) = l(u) + 1
and l(vsi) = l(v) + 1, then

∆uωi,vωi∆usiωi,vsiωi −∆usiωi,vωi∆uωi,vsiωi =
∏
j 6=i

∆−cjiuωj ,vωj

which follows from the case for u = v = e.
Recall in our example for SLw0,w0

3 , we have

x2x
′
2 = x−2x3x5 + x1x4

which translates to

∆12,12∆′ =∆12,23∆23,12∆1,1 + ∆1,2∆2,1

=∆12,23∆23,12(∆12,12∆13,13 −∆13,12∆12,13)

+ (∆12,12∆13,23 −∆13,12∆12,23)(∆12,12∆23,13 −∆23,12∆12,13)

=∆12,12 det

 ∆12,23 ∆12,13 ∆12,12

∆13,23 ∆13,13 ∆13,12

0 ∆23,13 ∆23,12


Hence ∆′ is a regular function on Gu,v.

Fact 9.36. Let X be normal variety and Y ⊂ X a subvariety of codimension at
least 2. Then any rational function on X regular on X − Y extends to a regular
function on X.

Lemma 9.37. Let
U := U(i) ∪

⋃
`∈e(i)

U`(i)

The complement Gu,v − U has complex codimension at least 2 in Gu,v.

Proof. Let x ∈ Gu,v − U . Since x /∈ U(i), ∆(k; i) = 0 for some k ∈ e(i). Since
x /∈ Uk(i), either ∆(l; i) = 0 for some l ∈ e(i), or ∆′(k; i) = 0. Hence Gu,v − U
is the union of finitely many subvarieties, each given by two distinct irreducible
equations.
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Let x̃` = x̃− {x`} ∪ {x′`}. We have

A(i)C = C[x̃±] ∩
⋂
`∈e(i)

C[x̃±` ]

Hence we only need to show C = C[Gu,v] where

C = φ(C[x̃±]) ∩
⋂
`∈e(i)

φ(C[x̃±` ])

By Lemma (2) and (4) we have

φ(C[x̃±]) = C[U(i)], φ(C[x̃±` ]) = C[U`(i)]

so C consists of rational functions on Gu,v that is regular on U . By Lemma 9.37,
these are functions regular on the whole double cell Gu,v.
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