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Abstract

One promising approach to remove motion deblurring

is to recover one clear image using an image pair. Exist-

ing dual-image methods require an accurate image align-

ment between the image pair, which could be very challeng-

ing even with the help of user interactions. Based on the

observation that typical motion-blur kernels will have an

extremely sparse representation in the redundant curvelet

system, we propose a new minimization model to recover a

clear image from the blurred image pair by enhancing the

sparsity of blur kernels in the curvelet system. The spar-

sity prior on the motion-blur kernels improves the robust-

ness of our algorithm to image alignment errors and image

formation noise. Also, a numerical method is presented to

efficiently solve the resulted minimization problem. The ex-

periments showed that our proposed algorithm is capable

of accurately estimating the blur kernels of complex cam-

era motions with low requirement on the accuracy of image

alignment, which in turn led to a high-quality recovered im-

age from the blurred image pair.

1. Introduction

When there is a relative motion between the camera and

the scene during exposure, the resulted image will appear

blurry. This is known as motion blurring in digital imag-

ing. The motion blurring can be modeled by a convolution

process:

f = g ∗ p+ n, (1)

where ∗ is the convolution operator, g is the clear image to

recover, f is the observed blurred image, p is the blur kernel,

and n is the noise. When both g and p are unknowns, how

to recover the clear image g from the blurred image is so-

called blind deconvolution problem. Blind deconvolution is

well known as a challenging ill-posed problem, because it

is a heavily under-constrained problem with many solutions

and it is also sensitive to the noise.

1.1. Previous work

Many research works on general motion deblurring use

only a single blurred image. Earlier methods usually (See

[18] for more details) require a prior parametric knowledge

of the blur kernel p such that the blur kernel can be ob-

tained by only estimating a few parameters. These methods

usually only work well on linear motion blur kernels. To

remove more complicated blurring from images, a popular

approach is to consider a joint minimization model to simul-

taneously estimate both the blur kernel and the clear image.

To overcome the inherent ambiguities between the blur ker-

nel and the clear image, certain regularization terms on both

the kernel and the image have to be added in the minimiza-

tion, e.g., Tikhonov regularization, TV regularization and

its variation (e.g. [10, 25, 1, 24]). Another interesting ap-

proach is to use some probabilistic priors on the image’s

edge distribution to derive the blur kernel ([15, 19, 17]).

In recent years, many researchers have been working on

high-quality motion deblurring using multiple images. Mul-

tiple images provide more information of the scene, which

can reduce the ill-posedness and the ambiguity of blind mo-

tion deblurring. There are two types of multi-image ap-

proaches. One is the active approach (computational pho-

tography), which actively controls the capturing process us-

ing specific hardware to obtain two or more images on the

scene for reconstructing the clear image (e.g. [2, 27, 23])

Another type of dual-image approach just takes a image pair

with different blur kernels or more images as the input:

f1 = g ∗ p1 + n1; f2 = g ∗ p2 + n2, (2)

where f1 and f2 are the observed image pair with the blur

kernels p1 and p2 respectively. Based on the multi-channel

observation framework, the deblurred result is significantly

better than that in the single-channel case (e.g. [26, 22]) or

more sophisticated tasks are allowed ([14, 13]). Similar to

single-image deblurring, the optimization-based approach

is also proposed to estimate a clear image and two motion-

blur kernels from an aligned image pair by solving the fol-
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lowing minimization:

E(g, p1, p2) = min
g,p1,p2

2∑

i=1

‖fi−pi∗g‖2
2+

2∑

i=1

E1(pi)+E2(g),

(3)

where E1(·) is the regularization term on the kernels pi and

E2(·) is the regularization term on the clear image g. In

[11], two images are first aligned manually by the user in

Photoshop. Then the minimization problem (3) is formu-

lated in [11] using a regularization term E1 on the kernel

which combining a sparse constraint on pi and a continuous

constraint on the support of the kernel functions pi.

Impressive results have been shown in [11]. How-

ever it requires an accurate image alignment during pre-

processing, which is done manually by the user. In practice,

the automatic alignment of two blurred images is very chal-

lenging, because the appearances of the image can be quite

different when it is blurred by different kernels. Even intro-

ducing user interactions sometimes is not useful as the ge-

ometrical transform between two images can be more com-

plicated than often-used affine transforms. Furthermore,

there is still room for further improvements when recov-

ering natural images of complex structures.

1.2. Motivation

The pre-processing of accurate image alignment is very

important when our inputs are multiple images taken by a

hand-held camera, as the viewpoint always changes when

we take pictures. Thus the more realistic model for a blurred

image pair (f1, f2) is as follows:

f1 = g(h1(·)) ∗ p1 + n1, f2 = g(h2(·)) ∗ p2 + n2,

where h1 and h2 is the spatial geometric transform from g
to fi. However, it is observed ([20]) that the alignment error

will seriously impact the performance of the blind deblur-

ring, as a small perturbation on the image alignment could

bring significant distortions on the estimated blur kernels.

An interesting experiment is done in [20] to show the

high sensitivity of the blur kernel estimation to the align-

ment error in the case of non-blind deconvolution. In the

experiment, the clear image g is shown in Fig. 1 (a); and its

blurred version f shown in Fig. 1 (b) with the blur kernel p
shown in the top right. Then the simulated blurred images

used for estimating the blur kernel is obtained by applying

a similarity transform on Fig. 1 (b) with different rotations,

scales (θ, s)

h :

(
x
y

)
−→ s

(
cos θ sin θ
− sin θ cos θ

) (
x
y

)
(4)

Then the blur kernel p̃ under such an alignment error is es-

timated by solving the following equation

f̃ = g ∗ p̃, where (f̃) = g(h(·)) ∗ p

(a) clear image (b) blurred image

Figure 1. (a) is the clear image; (b) is the blurred image without

alignment perturbation, the blur kernel shown in the top rightmost.

[−1.4◦, 0.98] [−0.7◦, 0.99] [0◦, 1.00] [0.7◦, 0.99] [1.4◦, 0.98]

Figure 2. The images in the top row are the blur kernel estimated

using the blurred image (b) and a number of clear images (a) after

a small alignment perturbation of different rotation and scale. Two

numbers in brackets under each kernel are the rotation angle and

scale value (θ, s). All images are from [20].

using a least squares minimization with Tikhonov regular-

ization. It is noted that the multi-image blind blurring is

not sensitive to small translations between two images, as

the translation between two images only results in a shift on

the estimated kernel. Fig 2 showed that the blur kernel is

very sensitive to even a small alignment error for the case

of non-blind deblurring. As a more ill-posed problem, blind

motion deblurring is even more sensitive to the alignment

error. The experiment above clearly indicated the impor-

tance of the robustness to the alignment error when devel-

oping dual-image blind motion deblurring techniques.

2. Our work

The goal of this paper is to develop an efficient numeri-

cal algorithm to recover a high-quality clear image from an

image pair, which are very robust to the alignment error be-

tween the image pair. It is noted that our approach does not

address the problem of image alignment for blurred images.

Instead, our work focuses on alleviating the alignment error

and other model errors by using good prior information on

the motion-blur kernels. By greatly lowering the require-

ment on the image alignment, our work can also be applied

on removing motion blurring in videos. In other words, we

take the image pair {f̃1, f̃2} without accurate image align-

ment as the input:

f̃1(~r) = f1(~r + ǫ1(~r)), f̃2(~r) = f1(~r + ǫ2(~r)), (5)

where f1 and f2 are defined in (2), ~r is the image co-

ordinates, and ǫ1(~r) and ǫ2(~r) are the image alignment er-

rors. The goal is to develop a numerical algorithm to esti-

mate g and pi, which are robust to both alignment error ∇hi



and image formation noise ni. As the blind motion deblur-

ring is an ill-posed problem, some prior on the kernel has to

be imposed for a better constraint. A typical motion blur p
can be expressed as

p = v(x, y)|Ω, (6)

where v is the speed and Ω is the motion path. In other

words, the blur kernel is a smooth (or piecewise smooth)

function with the support of a smooth curve in R
2.

Inspired by the recent progress in sparse approximation

using redundant systems, we believe that the sparsity of the

kernel function under certain redundant domains is a very

powerful constraint on the blur kernel. Our study shows that

the motion-blur kernel of type (6) in the redundant curvelet

system ([8]) will have an extremely sparse representation.

Thus, we propose a sparsity constraint on the kernel, which

is based on the ℓ1 norm of the curvelet coefficients of the

function. Moreover, the curvelet system is also a tight frame

system ([12]) which allows the perfect reconstruction from

the curvelet coefficients of the function to the original func-

tion. The perfect reconstruction property of the curvelet

system allows the applications of some new numerical al-

gorithms to efficiently solve the resulting minimization.

The sparsity constraint on the blur kernel is not a com-

pletely new idea. [15] used an approximate ℓ0 norm on the

function values of the blur kernel as the measurement on the

sparsity of the kernel. Such a sparsity constraint could pre-

vent the support of the kernel from being too large. How-

ever, it does not characterize the continuous “curvy” geo-

metrical property of the support Ω of the blur kernel, which

could leads to too sparse solution of only a few isolation

dots ([11]). [11] addressed this issue by adding an ad-hoc

anisotropic diffusion procedure when estimating the blur

kernel to avoid the solution with a discontinuous support.

Our curvelet-based sparsity constraint has a couple of ad-

vantages over these regularization models.

1. Under the curvelet system, the blur kernel of type (6)

has the sparsest solution among all known representa-

tions ([8]). The resulting minimization benefits greatly

from such an optimal sparsity, as it increases the ro-

bustness to the noise and on the alignment error.

2. Our sparsity constraint is based on the ℓ1 norm of the

kernel in the curvelet domain. Because the curvelet

system is a tight frame system with the property of

perfect reconstruction, a new minimization technique

called linearized Bregman iteration ([6]) is applicable

to the resulting minimization problem, which is empir-

ically much faster than other standard non-linear tech-

niques (e.g. interior point method) do ([5]), especially

when solving large-scale ℓ1 norm related minimization

problems.

The rest of the paper is organized as follows. In Section

3, we formulate our minimization strategy and explain its

underlying motivation. In Section 4, we present the numer-

ical algorithm to solve the proposed minimization problem.

Section 5 is devoted to the experimental evaluation and the

discussion.

3. Problem formulation and its analysis

In our formulation, we take the following two mis-

aligned blurred images {f̃1, f̃2} as the input:

f̃1(~r) = g(~r+ǫ1(~r))∗p1+n1, f̃2(~r) = g(~r+ǫ2(~r)))∗p2+n2,
(7)

where g is the clear image, ~r and ǫ(~r) are the image co-

ordinates and the alignment error respectively, p1 and p2

are the blur kernels, and n1 and n2 are the image noises.

We propose an alternative minimization method to simul-

taneously estimating the blur kernels p1, p2 and the clear

image g. Before we introduce our formalization on the new

minimization model, we give a brief review of the curvelet.

More details can be found in [8, 7, 9].

3.1. Curvelet system and the blur kernel

The curvelet system can be viewed as the generalization

of the wavelet system to better characterize the discontinu-

ities across the curves in R
2. The curvelet system is de-

signed to represent smooth curves by a small number of

coefficients, as the basic elements in the curvelet system

exhibit high directional sensitivity and high anisotropy.

Let us define a set of generator functions which are mul-

tiple rotated versions of a given function ψ:

Ψ := {ψℓ,j,k1,k2
= ψ(2jRθℓ

((x, y)T − xℓ,j,k1,k2
))} (8)

Then the curvelet system is defined as the collection of the

dilations and shifts of Ψ:

xℓ,j,k1,k2
= R−1

θℓ
(2−jk1, 2

−j/2k2)
T , j, k1, k2 ∈ Z,

where θℓ = 2π2⌊j⌋ℓ is the equi-spaced sequence of rotation

angles such that 0 ≤ θℓ < 2π, Rθ is the rotation by θ
radians and R−1

θ its inverse. See Fig. 3 for the illustration

of the curvelets and a two-level decomposition.

It is noted that the scaling in the curvelet system is a

parabolic scaling such that the system is well localized in

space and obeys approximately the relationships: length ≈
2−j , width ≈ 2−2j . Therefore, the length and the width

of a curvelet obey the anisotropic scaling relation: width ≈
length2.Moreover, the curvelets are directional sensitive as

they are oriented in the co-direction θJ = πℓ2−j with the

scale 2−2j ; that is, # orientations = 1/
√

scale. The combi-

nation of the parabolic scaling and the directional sensitivity

give a very sparse presentation for singularities along curves

or hypersurfaces in the image.



(a) (b) (c)

Figure 3. (a) The two-level decomposition. (b) One curvelet. (c) A

bandpass curve fragment together with three curvelets. All images

are from [7].

The curvelet system is also a tight frame in L2(R
2)

which allows a perfect reconstruction:

f =
∑

ℓ,j,k1,k2

〈f, ψℓ,j,k1,k2
〉ψℓ,j,k1,k2

, ∀f ∈ L2(R), (9)

where 〈·, ·〉 is the inner product of L2(R). The set of all

inner products {vℓ,j,k1,k2
= 〈f, ψℓ,j,k1,k2

〉} with ψℓ,j,k1,k2

defined in (8) are called thecurvelet coefficients of f . An

orthonormal basis is a tight frame, hence a tight frame is

a generalization of an orthonormal basis. However, tight

frames sacrifice the orthogonality and the linear indepen-

dence of the system in order to get more flexibility. Tight

frames can be redundant.

In the 2D discrete case, the discrete curvelet transform is

a linear transform on the given discrete input, by thinking of

the output as a collection of coefficients obtained from the

digital analog to the inner product in (9). We denote an n×n
image f as a vector f ∈ R

N , N = n2 by concatenating all

columns of the image. Then, the discrete version of the

curvelet transform is

v = Af ,

where A ∈ R
K×N . The discrete version of the perfect re-

construction formula (9) can be expressed as

f = AT v.

It is equivalent to say that, in matrix form, A is a tight frame

if and only if ATA = I (See [4] for more details). Unlike

the orthonormal case, we emphasize that AAT 6= I in gen-

eral. In the implementation, there exist efficient algorithms

for the curvelet decomposition and reconstruction ([7]).

3.2. Joint minimization using sparsity priors

Let f1, f2 ∈ R
n2

denote a pair of blurred images f1, f2
after column concatenation. In our implementation of Algo-

rithm 1, we assume that the support of the blur kernel is also

of size no larger than n × n and let p1,p2 ∈ R
n2

denote

the two blur kernel functions p1, p2 after column concate-

nation. Let “⊗” denote the convolution operator of p and f
after concatenating operation:

p ∗ f = p ⊗ f .

Let vi = Api, i = 1, 2 denote the curvelet coefficients of

the two blur kernels p1,p2. we formulate the dual-image

blind motion deblurring problem as

argmin
g,v1,v2

2∑

i=1

‖g⊗ (AT vi)− fi‖2 + λ1

2∑

i=1

‖vi‖1 + λ2E(g)

(10)

where λ1, λ2 are some regularization parameters, E(g) is

the image regularization term which we will give more de-

tails in the later discussion.

In the optimization formulation (10), besides the regu-

larization term of the image and the fidelity term between

the yielded solution and the observed image, the objective

function (10) is to minimize the ℓ1 norm of the curvelet co-

efficients of two blur kernels, which equivalently is to maxi-

mize the sparsity of two blur kernels under the curvelet sys-

tem. In summary, our optimization strategy is among all

solutions which have a reasonable good ℓ2 norm approxi-

mation to the given blurred images, we are seeking for the

sparsest solution of two blur kernels in the curvelet domain.

The regularization term E(g) in (10) allows to vary in

our approach. In most iterations in our solver, we use an

ℓ2 norm on the image derivatives E(g) = ‖∇g‖2
2, instead

of using TV regularization E(g) = ‖∇g‖1. The main rea-

son is for the efficiency of solving the resulting minimiza-

tion. It is known that the ℓ1 norm regularization is much

more computationally expensive than the ℓ2 norm regular-

ization. Meanwhile, it is observed in our study that before

the two estimated blur kernels begin to approximate the true

solution quite well, there is essentially no difference be-

tween using ℓ1 norm and using ℓ2 norm on the image gra-

dients. In other words, there are not much benefits of using

ℓ1 norm before obtaining accurate blur kernels. Therefore,

when we iteratively solve the minimization (10), we use

E(g) = ‖∇g‖2
2. After stopping the iteration, we switch

to more advanced non-blind technique to recover the clear

image using estimated blur kernels.

In a quick glance, the minimization (10) is a very chal-

lenging large-scale minimization problem. However, there

exists a newest technique which can be applied to solve

our proposed minimization problem This new technique is

called linearized Bregman iteration ([5, 6]). It is observed

in many applications that the linearized Bregman iteration

is much more efficient than other popular non-linear mini-

mization techniques (e.g. interior point method) when solv-

ing large-scale ℓ1 norm related minimization problems with

millions of unknowns. In the next section, we will develop

an efficient numerical scheme based on this new technique.

4. Numerical algorithm

The minimization problem (10) is a joint minimization

problem on the curvelet coefficients v1,v2 and the image g.



In practice, the alignment error and image noise may lead to

a solution which is against the basic rules of the image and

the kernel. In order to obtain a sound solution, we chose to

impose the non-negative constraint on the image g,pi and

normalization constraint on pi:
{

pi ≥ 0,
∑

j pi(j) = 1, i = 1, 2.

g ≥ 0.
(11)

We need to solve p1,p2 and g from the joint minimiza-

tion problem (10). (10) is known as a very challenging min-

imization problem. The commonly used heuristic method

for solving such a minimization problem is the alternative

minimization approach; see [10] for instance. Let [p]∗ de-

note the matrix form of convolution operator by the kernel

p. Algorithm 1 outlines the alternative minimization algo-

rithm for (10).

There are only two non-trivial steps in Algorithm 1. One

is solving (14). The direct solution of (14) is given by

( 2∑

i=1

λi[p
(k)
i ]T∗ [p

(k)
i ]∗ + ∆

)−1( 2∑

i=1

λi[p
(k)
i ]T∗ fi

)
(12)

for some parameter λi, and ∆ is the Laplacian. (12) can

be efficiently calculated by using DCT ([21]). Therefore,

in Algorithm 1, the only challenging task is to solve (13),

which could be very computationally expensive. In the next

section, we will present an efficient algorithm to solve this

minimization problem.

Based on the linearized Bregman iteration technique

([6]), an efficient solver is available to find a good approxi-

mate solution to (13) during each iteration of Algorithm 1.

See Algorithm 2 for the detailed description on our solver

for the minimization problem (13).

It was proved in [5] that w(l) generated by (15) con-

verges to the unique solution of

min
v

‖v‖1 + 1
2µν ‖v‖2

2

subject to [g(k+1)]∗(AT v) = fi.
(18)

Though (18) is not exactly (13), it was shown in [5] that

w(l) of the iteration (15) leads to a good approximation of a

solution of (13), if we choose a sufficiently large µ and stop

(15) early whenever

‖[g(k+1)]∗(AT w(l)) − fi‖2 ≤ δ.

Usually, it takes only a few iterations for (15) to get an ap-

proximate solution of (13).

5. Experimental Evaluation and discussion

Through all our experiments, λ2 in (14) is set as 0.001
and λ in (17) is set as 0.001. The initial g(0) is either f1 or

f2. The parameters in (15) is chosen as µ = 0.2 and ν = 1.

We found empirically that only 1 iteration of Algorithm 2 is

needed to give very good sparse kernels, and 200 iterations

are done in Algorithm 1 before it stops.

Algorithm 1 Alternative minimization algorithm

1. Let g(0) be the initial guess.

2. Iterate on k until convergence.

(a) Given the image g(k), solve (10) with respect to

p1 and p2, i.e., for each pi, i=1,2, set v
(k+1)
i be

a solution of

min
vi

‖[g(k)]∗(AT vi) − fi‖2 + λ1‖vi‖1 (13)

Then impose the physical constraint:

p
(k+1/2)
i =

{
AT v

(k+1)
i (j), if AT v

(k+1)
i (j) ≥ 0,

0, otherwise,

followed by the normalization

p
(k+1)
i := p

(k+1/2)
i /‖p(k+1/2)

i ‖1.

(b) Given the blur kernels p
(k+1)
1 and p

(k+1)
2 , solve

(10) with respect to g, i.e., set g(k+1/2) be a so-

lution of

min
g

2∑

i=1

‖[p(k+1)
i ]∗g − fi‖2 + λ2‖∇g‖2

2 (14)

Then enhancing the physical constraint:

g(k+1)(j) =

{
g(k+1/2)(j), if g(k+1/2)(j) ≥ 0
0, otherwise.

3. Given the two kernels p∗
1 and p∗

2 from Step 2, recover

the ultimate clear image g∗ by the non-blind deconvo-

lution technique provided in [5].

(a) (b) (c)

Figure 4. (a) The original clear image. (b) One blurred image. (c)

Another blurred image. The corresponding blur kernels are shown

on the top left of the images respectively.

5.1. Simulated images

In the first experiment, we would like to see how ro-

bust the estimation of motion blur kernels in our proposed

method is to the alignment error. The images used in this

experiment are synthesized as follows. Two blurred images



Algorithm 2 Algorithm for solving (13)

1. Define w(0) = u(0) = 0,

2. Iterate on ℓ = 0, 1, · · · , until ‖[g(k)]∗AT w(ℓ) − fi‖ ≤
δ:




u(l+1) = u(l) −AG(k)

[g(k)]T∗

(
[g(k)]∗(AT w(l)) − fi

)
,

w(l+1) = νTµ(ul+1),

(15)

where Tµ is the soft-thresholding operator defined by

Tµ(u) = [tµ(u1), tµ(u2), . . .],
with tµ(ui) = sign(ui) max(|ui| − µ, 0),

(16)

and G(k) is a preconditioning matrix

G(k) =
(
[g(k)]T∗ [g(k)]∗ + λ∆

)−1
. (17)

3. v
(k+1)
i = wℓ from Step 2.

(Fig. 4 (b) and (c)) are generated by applying two different

blur kernels on the original image (Fig. 4 (a)) respectively.

The alignment error is simulated by applying a similarity

transform (4) on Fig. 4 (c) with different rotations and scales

(θ, s) and the same translation. The values of the transla-

tion is set to (5, 5) pixels in the experiment. Our proposed

method is applied on each pair of the blurred image in Fig. 4

(b) and transformed blurred images from Fig. 4 (c) without

any image alignment. Fig. 5 (a) show the estimated mo-

tion blur kernels from our method with respect to different

alignment errors.

The results shown in Fig. 5 (a) clearly demonstrated that

our method is capable of finding complicated blur kernels

and is robust to the alignment error. For the comparison, we

also estimated the blur kernels by least squares minimiza-

tion with Tikhonov regularization. Fig. 5 (b) showed that

the routine approach cannot identify the motion blur kernel

even there is little alignment error.

Fig. 6 (b)-(d) show the deblurred images using our

method with various alignment errors. As the comparison,

Fig. 6 (a) showed the deblurred image by using Tikhonov

regularization in the case of no image alignment error.

In the second experiment, we would like to evaluate the

robustness of our method to image noise. All blurred im-

ages in this experiment are generated by applying two blur

kernels on the original image, subsequently contaminated

by zero mean white noise with different noise levels. Thirty

two random samples are generated for each noise level. The

noise level is measure by the so-called SNR (signal to noise

0◦ 1◦ 2◦ 3◦ 4◦

1.000

0.990

0.983

0.965

0.948

(a)

(0◦, 1.000) (1◦, 0.990) (2◦, 0.983) (3◦, 0.965) (4◦, 0.948)

(b)

Figure 5. (a) The kernels of the images in Fig. 4 (b)-(c) estimated

by our method. The horizontal vector on the top is the rotation

angle θ, and the vertical vector on the left is the scales s with re-

spect to applied spatial transforms. (b) The kernels of the images

in Fig. 4 (b)-(c) estimated by Tikhonov regularization. Two num-

bers in brackets above each pair of kernels are the rotation angle

and scale of the corresponding spatial transform.

(0◦, 1) (0◦, 1) (2◦, 0.98) (4◦, 0.96)

(a) (b) (c) (d)

Figure 6. (a) the deblurred image by the kernel estimated from

Tikhonov regularization. Two numbers in brackets on the top of

each deblurred image are the rotation angle and scale. (b)-(d) are

the deblurred images using estimated kernels from our approach.

ratio) of the noised image Ĩ to the clean image I defined as

SNR(Ĩ) = 20 log10 ‖I‖2/‖I − Ĩ‖2.

Fig. 7 shows that the estimation of the blur kernel by our

method is also very robust to the image noise. From the

experiments, we also see that the alignment error is far more

38 34 30 26

(a) (b)

Figure 7. (a) The estimated kernels of Fig. 4 (b)–(c) for various

noise levels. The vector on the top is the value of SNRs. (b) The

de-blurred image from noisy images with SNR= 26dB.



(a) (b) (c) (d) (e)

Figure 8. (a)–(b): two blurred images; (c): the deblurred image using Fergus et al.’s method ([15]); (d): the deblurred image using Chen et

al.’s method ([11]); (e): the deblurred image using our method.

(a) (b) (c) (d) (e)

Figure 9. (a)–(b): two blurred images; (c): the deblurred image of (a) using Fergus et al.’s method ([15]); (d): the deblurred image using

Chen et al.’s method ([11]); (e): the deblurred image using our method.

(a) (b) (c)

(d) (e) (f)

Figure 11. (a)–(c): a region of Fig. 8 (d)–Fig. 10 (d) by Chen et

al.’s method ([11]); (d)–(f): a region of Fig. 8 (e)–Fig. 10 (e) by

Our method.

(a) (b) (c) (d) (e) (f)

Figure 12. The estimated blur kernels for blurred image pairs in

Fig. 8–10 using our algorithm. (a)–(b): the kernels for Fig. 8 (a)–

(b); (c)–(d): the kernels for Fig. 9 (a)–(b); (e)–(f): the kernels for

Fig. 10 (a)–(b).

serious than image formation noise.

5.2. Real images

We also tested our method on real images. All images

are taken by a hand-held commodity video camera. The

images are first automatically aligned by using the conven-

tional method from [3] before applying our method. The

tested images are restored by our proposed method and

are compared against the results from the method of Fer-

gus et al. [15] and of Chen et al. [11]. Fig. 8–9 show that

the blurred image pair and the results from all three meth-

ods. Clearly, the methods using an image pair are superior

than the single-image method. The visual quality of recov-

ered images using our method and the method of Chen et

al. [11] are much better than that of using the method of

Fergus et al. [15]. The performance gap between Chen et

al.’s method and ours is smaller. However, the improve-

ment of our method is still noticeable. See Fig. 11 for the

comparison between our results and theirs after zooming in.

5.3. Conclusion

Using a pair of images of the same scene greatly im-

proves the visual quality of the recovered clear image.

Based on the extremely sparse representation of the motion-

blur kernel function using the redundant curvelet system,

we propose a new sparsity regularization strategy on the

blur kernel such that the resulting minimization model is

robust to image noise and, more importantly, to the image

alignment error. Moreover, the perfect reconstruction prop-

erty of the curvelet system gives a fast algorithm to solve



(a) (b) (c) (d) (e)

Figure 10. (a)–(b): two blurred images; (c): the deblurred image of (a) using Fergus et al.’s method ([15]); (d): the deblurred image using

Chen et al.’s method ([11]); (e): the deblurred image using our method.

the resulting minimization efficiently. Our experiments on

both synthesized images and real images showed that our

method can recover a high-quality image from a blurred im-

age pair with minimal requirement on the image alignment

pre-processing.
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