
Inpainting for Compressed Images

Jian-Feng Caia, Hui Ji∗,b, Fuchun Shangc, Zuowei Shenb

aDepartment of Mathematics, University of California, Los Angeles, CA 90095
bDepartment of Mathematics, National University of Singapore, Singapore 117543
cTemasek Laboratories and Center for Wavelets, Approximation and Information

Processing, National University of Singapore, Singapore 117543

Abstract

Motivated by the recent work on image inpainting in pixel domain using tight
frame in [3], we propose a unified iterative frame-based algorithm for inpaint-
ing compressed images to recover missing bits or missing coefficients during the
compression process. Such an inpainting algorithm could be applied to any
image compression scheme based on coefficients thresholding and quantization
in some transform domain as a post-process to effectively remove compression
artifacts, or equivalently to improve the compression ratio. The convergence of
the iteration is proved and the resulted solution minimizes a special functional.
Numerical experiments on popular image compression schemes demonstrate the
effectiveness of our inpainting algorithm on improving the visual quality of com-
pressed images.

Key words: tight frame, inpainting, image compression

1. Introduction

A wide range of applications in visual communication requires efficient image
compression to fit a large amount of visual data into the narrow bandwidth of
communication channels while keeping the visual quality of images acceptable.
Usually part of image information has to be discarded during the compression
process to achieve high compression ratio, which leads to significant degradation
of visual quality of compressed images especially at a low bit rate. The visual
quality of images will be greatly improved if part of the missing information
during the compression process can be recovered. Such a recovery process can
be described as an inpainting process in either coefficient domain or bit domain
for compressed images.

In the digital world, the term “inpainting” ([1]) refers to recover lost or
corrupted part of images. In recent years, many inpainting techniques ([3, 4, 7,

∗Corresponding author
Email addresses: cai@math.ucla.edu (Jian-Feng Cai), matjh@nus.edu.sg (Hui Ji),

tslsfc@nus.edu.sg (Fuchun Shang), matzuows@nus.edu.sg (Zuowei Shen)

Preprint submitted to Elsevier January 13, 2010

8]) have been proposed to address various image restoration problems including
reverting deterioration (e.g. cracks in photographs), removing selected elements
(e.g. stamped date and text), or filling missing pieces. In this paper, we are
interested in the inpainting problem related to image compression, that is, how
to recover the missing information of images during compression process.

The mathematical model for such an inpainting problem is described as
follows. Let f ∈ RN denote the original image by concatenating all columns of
the image. Let W ∈ RN×N be the decomposition operator used in the image
encoder, and let W−1, the inverse of W , be the reconstruction operator in the
image decoder. A typical image compression process can then be described as

c = DW f , (1)

where D is a compressing operator. The compressed coefficient c is used in stor-
age and transmission. The decompressed image is obtained by reconstructing
the image from c:

fd = W−1c.

There are two types of widely used compressing operators. One is “thresholding”
operator Dt in coefficient domain defined by

DtW f [i] =

{
W f [i], if |W f [i]| ≥ t,
0, otherwise,

(2)

for some threshold t. After applying the thresholding operator Dt on W f , only
those coefficients larger than t are kept, and all other small coefficients are
missing. The other compressing operator is “quantization” operator Dq in bit
domain defined by

DqW f [i] = sgn(W f [i])2q
⌊
|W f [i]|

2q

⌋
(3)

for some integer q, where b·c is the floor operation. The parameter in (3) is in
the form of 2q since only binary-code finite decimal numbers are used in digital
systems. After applying the quantization operator on each coefficient, only bits
with order higher than q are kept, while the remaining lower bits are missing.1

In practice, these two compression operators play equally important roles in
optimizing the performance of image compression. It is noted that in practical
de-quantization implementation, half bit will be added back to all coefficients
in order to reduce reconstruction errors.

Since part of information of f is lost after applying the compressing operator
D on W f , the resulted decompressed image fd is then only an approximation

1We mean that, if the coefficient value is represented by bit (binary) format, after quan-
tization, bits (‘1’s or ‘0’s) in the positions higher than q-th order are kept intact, while bits
in the q-th and lower order are set to ‘0’s. For example, 148 in binary format is 10110100, if
q = 5, it becomes 10100000, i.e. the last 5 bits are set to ‘0’s.

2

to the original image f . The goal of inpainting for compressed images is to
reconstruct a better approximation fr out of DW f by recovering W f from DW f .
We propose two different inpainting processes in such a recovery process:

(i) Inpainting in bit domain: to re-fill the missing bits of all coefficients DqW f
with respect to W f .

(ii) Inpainting in coefficient domain: to recover the missing coefficients of W f
from DtW f .

Problem (i), inpainting in bit domain, is very interesting but also very chal-
lenging from three perspectives. First, the bit domain is the universal domain
for all data in the digital world, where a very large set of analytic real num-
bers are represented by a relative-small set of integer values. To best of our
knowledge, the mathematical study on such an important domain is very rare.
It is interesting to develop analytic algorithms directly working on a discrete
set. Secondly, since compressing schemes apply Dq on the bit representation
of each coefficient, as a result, the compressed image only has reliable bits, but
not accurate coefficients. Hence, it makes sense to recover the missing bits in
bit domain. In this paper, our main focus is on the inpainting in bit domain.
Finally, the inpainting process essentially is to retouch all coefficients such that
the quantization residual is removed, which can be defined as a very unique de-
noising process where the noise is deterministic and data dependent. Regarding
Problem (ii), the inpainting problem in coefficient domain, it is more or less
similar to those traditional image inpainting problems. They all attempt to
recover the missing pieces of data and the differences among these approaches
lie in the domain chosen to represent images.

Motivated by the idea in [3, 4] which recovers missing pixels in f by finding
a sparse approximation to f in the tight frame domain of images, we proposed
a unified iterative algorithm to solve both inpainting problems for compressed
images: inpainting in bit domain and inpainting in coefficient domain, or the
combination thereof. In other words, the missing bits in DqW f and the missing
coefficients in DtW f both can be recovered by our proposed algorithm. The
basic idea is to improve the “guess” of the missing information in each iteration
by utilizing the inherent sparseness of images in tight frame decomposition.
Furthermore, we showed that the proposed algorithm is actually an iterative
scheme which minimizes a special functional on the image in pixel domain to-
gether with a penalty term on the sparsity of the image in frame domain. With
such an interpretation, we established the convergence of the algorithm when
W is an orthonormal transform.

As one application of our inpainting algorithm in both bit domain and coeffi-
cient domain, we demonstrated how the recovered missing information from our
algorithm is adequate for removing many visual artifacts in compressed images.
The reduction of these artifacts results in a significant improvement on visual
quality of decompressed images, which equivalently increases the compression
ratio. Such a post-process on decompressed images could be very attractive in

3

practice as it can be easily incorporated into existing industry compression tech-
niques with few modifications. There are some post-process techniques for com-
pressed images proposed in past to alleviate the compression artifacts (ringing,
blocking, etc) for either DCT-based compression ([16, 19, 20, 21]) or Wavelet-
based compression ([17]). Unlike these ad-hoc techniques which are limited
to specific type of artifacts and specific compression schemes, the post-process
derived from our inpainting algorithm leads to a universal artifacts remover
regardless the choice of encoding schemes and the type of induced artifacts.

The paper is organized as follows. The unified iterative algorithm for inpaint-
ing in both bit domain and coefficient domain is given in Section 2. In Section
3, we establish the equivalence of our algorithm to a special minimization and
prove the convergence of the algorithm. In Section 4, we apply our algorithm
on sample images compressed by both DCT-based compression (JPEG) and
wavelet-based compression (JPEG2000) to evaluate the effectiveness of our in-
painting post-process on improving the visual quality of compressed images.

2. Inpainting in both bit domain and coefficient domain

In this section, we present our unified inpainting algorithm in both bit do-
main and coefficient domain by using tight frames. Recall that the reconstructed
image fd without inpainting is only an approximation to the original image f :

fd = W−1DW f .

Our goal is to get a better recovery fr than fd from the compressed coefficients
c := DW f . Since the transform W is invertible and its inverse W−1 is uniformly
bounded (e.g. wavelet transform). Recovering f is equivalent to recovering the
wavelet coefficients W f from c.

We first focus on solving the problem of inpainting in bit domain, where
D = Dq is the quantization operator defined in (3). Then we will show how
the inpainting algorithm in bit domain can be adapted to solve the inpainting
problem in coefficient domain with little modification. The goal of inpainting
in bit domain is to refill the missing lower order bits of all coefficients DqW f
with respect to W f .

Our algorithm is based on the tight frame systems. For a given matrix
A ∈ RK×N , its rows form a tight frame in RN if and only if the perfect re-
construction formula x =

∑
y∈A〈x,y〉y holds for all x ∈ RN , or equivalently,

for all x ∈ RN , ‖x‖2 =
∑

y∈A |〈x,y〉|2. Notice that all rows are normalized
in a tight frame system. In the matrix form, A is a tight frame if and only
if ATA = I. Unlike the orthonormal case, we emphasize that AAT 6= I in
general. The tight frame A (rows of A) used in our implementation is derived
from a tight framelet system with associated masks hi, i = 0, . . . , r derived the
unitary extension principle of [18]. The definition of the tight frame used here
is coincides with that of in literature, e.g. [12, 18]. The framelet decomposition
and reconstruction algorithm is described in detail in [12]. In fact, the matrix
A can also be viewed as the framelet decomposition operator in RN , and AT

4

is its corresponding reconstruction operator. We omit the detailed discussion
here, as the detailed discussions are given in several earlier papers, e.g. [3, 6, 9].
It is noted that the algorithm will work for tight frame systems as long as there
exists a sparse approximation of the underlying image in the chosen tight frame
system. One may use tight framelet or curvelet for sparse approximation of
piecewise smooth images and local DCT for sparse approximation of periodic
patten as pointed out in [13]. The framelet used in the implementation of this
paper is the tight framelet generated from cubic spline constructed by [18] via
the unitary extension principle of [18].

Motivated by the inpainting algorithm in pixel domain ([3]), we propose an
approach to do inpainting in bit domain by utilizing the sparseness of images in
tight framelet domain. Our proposed algorithm is to seek a recovered image fr

such that it meets the following two requirements:

(a) The sparsity of fr in tight frame domain. If real images have sparse ap-
proximations under tight frame A, the restored images fr will also have a
sparse approximation under A.

(b) The data fidelity of fr. If the original image f satisfies the model c =
DqW f , the restored image fr will do the same, i.e., DqW fr = c. This
assumption implies that W fr ∈ (Dq)−1c, where (Dq)−1c is pre-image of
c under the mapping Dq.

Let Λ0 = {i : c(i) = 0}, Λ− = {i : c(i) < 0}, and Λ+ = {i : c(i) > 0}. By the
definition of Dq, the pre-image Sq (the feasible set of W f) such that DqSq = c
is given by

Sq :=

c̃ ∈ RN : c̃(i) ∈


[−2q, 2q], if i ∈ Λ0,

[c(i), c(i) + 2q], if i ∈ Λ+,

[c(i)− 2q, c(i)], if i ∈ Λ−.

 .

We propose to use the following iterations:

fn+1 = W−1PSqWATTλAfn. (4)

to obtain fr. In the following discussion, we show that the iterations (4) will
converge to a solution fr which satisfies these two requirements (a) and (b).
The implementation of (4) includes the following two-step procedure:

1. Perform soft shrinkage on frame domain to satisfy (a). Let A be a tight
frame. We set

f̃n = ATTλAfn,

where Tλ is the soft-thresholding operator defined by

Tλ([β1, β2, . . . , βK]T) := [tλ1(β1), tλ2(β2), . . . , tλK
(βK)]T (5)

with λ = [λ1, λ2, . . . , λK]T , and tλi
(·) is the soft-thresholding function

tλi
(βi) :=

{
sgn(βi)(|βi| − λi), if |βi| > λi,

0, if |βi| ≤ λi.

5

Then f̃n is synthesized by a tight frame coefficient vector TλAfn. Notice
that TλAfn is a sparse vector based on the definition of Tλ. Thus, f̃n has
a sparse approximation under A.

2. Project the coefficient W f̃n on the feasible set Sq to satisfy (b). We set

fn+1 = W−1PSqW f̃n,

where the projection PSqW f̃n is defined by

PSqW f̃n = arg min
d∈Sq

{
1
2
‖d−W f̃n‖22

}
and has an explicit solution:

[PSqW f̃n](i) =


max

{
−2q,min

{
[W f̃n](i), 2q

}}
, if i ∈ Λ0,

max
{

c(i),min
{

[W f̃n](i), c(i) + 2q
}}

, if i ∈ Λ+,

max
{

c(i)− 2q,min
{

[W f̃n](i), c(i)
}}

, if i ∈ Λ−.
(6)

Since W is invertible, we have that W fn+1 = PSqW f̃n ∈ Sq. This means
that DqW fn+1 = c. Therefore, the given higher order bits are replaced
by the known data c, while the missing lower order bits are obtained from
the output of Step 1 with some constraints.

Here we give a brief explanation of the algorithm and the quantitative anal-
ysis will be given in the next section. It is seen that all available coefficients
c = DqW f of the image in coefficient domain are inaccurate due to quanti-
zation. Thus, the resulted image fd = W−1c in pixel domain is not accurate
either. By representing the resulted image fd using redundant tight frame, the
soft-shrinkage on the frame coefficients ATTλAfd leads to the perturbations
among frame coefficients. Indeed, AATTλAfd 6= TλAfd by AAT 6= I when the
rows of A form a truly redundant tight frame. Thus, AATTλAfd perturbs Afd.
On the contrary, if rows of A form an orthonormal basis, AATTλAfd = TλAfd.
Then the known coefficients do not “flow” to unknown coefficients. Therefore
the redundancy in tight frame system A is very important in this approach be-
cause only thresholding in a redundant system allows the perturbations among
coefficients. This explains why we need to use tight frame A to fill missing
information of images instead of directly working on the coefficient domain W
as rows of W form an orthonormal basis. Hence, Step 1 will introduce desired
perturbations which help refilling missing information based on available infor-
mation. Also, as pointed out in [3, 5], the redundancy of tight frames helps
removing artifacts in images due to the thresholding in coefficient domain.

Step 2 is to keep the original information of f untouched after introducing
perturbations in Step 1. For perturbed coefficients from Step 1, denoted by
d ∈ RN , PSqd is used as the input of the next iteration. By the definition of
PSq , we have that PSqd ∈ Sq. This, together with the definition of Sq, implies

6

that DqPSqd = c. Therefore, on the one hand, the higher order bits in d are
replaced by the given data c such that the original information of f is untouched.
On the other hand, the missing lower order bits are obtained from d with the
following strategy. If d(i) can be quantized to c(i), d(i) is likely to be a correct
restoration. Thus, we use the lower order bits of d(i) to fill the missing lower
order bits of Wf . If d(i) cannot be quantized to c(i), d(i) is unlikely to be
correct. Thus, we should not use the lower order bits of d(i) to fill the missing
lower order bits. Instead, we use the bits of all ones or all zeros to fill the missing
lower order bits such that [PSd](i) is as close to the d(i) as possible.

The algorithm for inpainting in bit domain can be modified to solve the in-
painting problem in coefficient domain. For the inpainting problem in coefficient
domain, the compressing operator D = Dt is the thresholding operator in (2).
The goal now is to recover the missing coefficients of W f from DtW f . By the
definition of Dt, the pre-image (Dt)−1c, or the feasible set of W f , becomes

St := (Dt)−1c =
{

c̃ ∈ RN : c̃(i) ∈
{
{c(i)}, if i ∈ Λ− ∪ Λ+,

[−t, t], if i ∈ Λ0.

}
.

The corresponding projection operator is

[PStW f̃n](i) =

{
c(i), if i ∈ Λ− ∪ Λ+,

max
{
−t,min

{
[W f̃n](i), t

}}
, if i ∈ Λ0.

(7)

Similar to (4), we use the iteration

fn+1 = W−1PStWATTλAfn (8)

for the inpainting in coefficient domain.
The main difference between (4) and (8) lies in the adoption of the different

projection operators. One is PSq in (6); the other is PSt in (7). However, the
underlying idea of PSt is similar to that of PSq . For any d ∈ RN , we have
PStd ∈ St, which implies that DtPStd = c. Therefore, the coefficients in
Λ+ ∪ Λ− are replaced by the given data c, while the missing small coefficients
are also obtained from d using the same strategy. If d(i) can be thresholded to
c(i), we use d(i) as the missing small coefficient. If d(i) cannot be thresholded
to c(i), which implies it is unreliable, we recover the missing small coefficient
by the one which can be thresholded to c(i) and is closest to d(i).

3. Analysis of the Algorithm

This section is devoted to the theoretical analysis of the algorithm presented
in the previous section. The algorithms in the previous section can be re-written
as

fn+1 = W−1PSWATTλAfn, (9)

where S = St for D = Dt and S = Sq for D = Dq. Define

αn = TλAfn. (10)

7

Then αn is the tight frame coefficient vector of the n-th iteration. Iteration (9)
can be rewritten via αn as the following:

αn+1 = TλAW
−1PSWATαn. (11)

Here we restrict our discussion to the case of W being an orthogonal trans-
form (e.g. a wavelet transform, or a discrete cosine transform), i.e., W−1 = WT .
In this case, since WATAWT = I, the row vectors of F := AWT form a tight
frame in RN . Then, (11) is similar to the pixel domain inpainting algorithm in
[3]:

αn+1 = TλA
(
PΛg + (I − PΛ)ATαn

)
, (12)

where g and Λ are the given pixels and their positions respectively, PΛ is a
linear project represented by a diagonal matrix with a diagonal entry 1 if the
corresponding index belongs to Λ, or 0 otherwise.

In a quick glance, it seems that there are not so many differences between
(11) and (12), except that the tight frame F = AWT in (11) is replaced by A
in (12) and the projection PS in (11) is replaced by PSΛ in (12):

PSΛd := PΛg + (I − PΛ)d.

However, there are very subtle differences between PS and PSΛ such that the
analytic analysis on (11) is no longer an easy generalization of the analysis on
(12) provided in [3].

It is seen that PS is nonlinear while PSΛ is affine. The two projections are
not working in the same manner. For any given d ∈ RN , if i ∈ Λ, i.e., the pixel
is known, then [PSΛd](i) = g(i), which means that the pixels of given positions
are replaced by the given data g. This functions the same as the projection
PS does. However, if i 6∈ Λ, i.e., the pixel is missing, then [PSΛd](i) = d(i).
This means that the missing pixel is replaced by d(i) without any constraint,
no matter what it is. This is the main difference between PSΛ and PS . And it
is the reason why the convergence theory of (12) cannot be easily applied on
(11). Furthermore, the problem of inpainting in pixel domain (12) is a linear
inverse problem, while the problem of inpainting in bit domain or in coefficient
domain (11) is a nonlinear one.

We will extend the theory in [3] to analyze the convergence of (11). In
particular, we will prove that αn by (11) converges to a solution of the following
minimization problem:

min
α

{
min
c̃∈S

{
1
2
‖c̃−WATα‖22

}
+

1
2
‖(I −AAT)α‖22 + ‖diag(λ)α‖1

}
. (13)

The role of each term in (13) is explained as follows. The first term is the dis-
tance from the recovered coefficient vector WATα to the feasible set S, hence
this term enforces the fidelity. The last term enforces the sparsity of the func-
tion in the tight frame decomposition. The middle term controls the distance
between the coefficients α and the range of A, i.e. the distance to the canonical

8

tight frame coefficients of f , such that the (weighted) `1 norm of α is approx-
imately linked to the Besov norm of the underlying function f ([2, 15, 14]).
Together with the last term, the middle term actually enforces the regularity of
the underlying function f . Therefore, we conclude that (13) balances the fidelity,
regularity of the function and sparsity of the function in frame decomposition,
which is exactly the minimization we are seeking for.

3.1. Proximal Forward-Backward Splitting
In this and the following subsections, we prove that αn in (11) converges to a

solution of (13). Our proof is based on the convergence theory for the proximal
forward-backward splitting (PFBS) in [11], which is also used in [3] does. The
purpose of the PFBS iteration is to find a solution for

min
x∈H

F (x), with F (x) = F1(x) + F2(x),

where H is a Hilbert space, F1(x) is a lower semi-continuous, convex and proper
function, and F2(x) is a convex, continuously differentiable function with a
Lipshitz continuous gradient, i.e.,

‖∇F2(x)−∇F2(y)‖H ≤
1
c
‖x− y‖H, ∀x, y ∈ H. (14)

The iteration is
xn+1 = proxdF1

(xn − d∇F2(xn)), (15)

where proxdF1
is the proximal operator defined by

proxdF1
(x) = arg min

y∈H

{
1
2
‖x− y‖2H + dF1(y)

}
. (16)

The following theorem from [11] is used to prove the convergence of the iteration
(15).

Theorem 1. Suppose that H is finite dimensional. Assume that F1(x) is a
lower semi-continuous, convex and proper function, and F2(x) is a convex, con-
tinuously differentiable function satisfying (14). Let d be 0 < d < 2c. Then the
iteration (15) converges to a minimizer of F (x) = F1(x) + F2(x) if it exists.

3.2. Convergence of the iteration (9)
In this subsection, we show that αn in (11) converges to a solution of (13)

when W is an orthonormal transform. The basic idea is to reformulate (11) into
(15), such that d = 1 and

F (α) = min
c̃∈S

{
1
2
‖c̃−WATα‖22

}
+

1
2
‖(I −AAT)α‖22 + ‖diag(λ)α‖1

with the splitting F (α) = F1(α) + F2(α) being

F1(α) = ‖diag(λ)‖1, F2(α) = min
c̃∈S

{
1
2
‖c̃−WATα‖22

}
+

1
2
‖(I −AAT)α‖22.

(17)

9

Lemma 2. The iteration (11) with W−1 = WT is the same as the iteration
(15) with d = 1 and F1 and F2 given in (17).

Proof. By Lemma 3.1 in [3], we have that

Tλα = arg min
β∈RK

{
1
2
‖α− β‖22 + ‖diag(λ)β‖1

}
. (18)

Together with the definitions of F1 and the proximity operator in (16), (18)
implies that Tλ = proxF1

. By directly comparing (11) and (15) with d = 1, it
is easy to see that we only need to show that

AW−1PSWATαn = αn −∇F2(αn). (19)

Indeed, let the indicator function of S be

ES(c̃) =

{
0, if c̃ ∈ S,
∞, if c̃ 6∈ S.

Let Moreau’s envelope for ES be

envES (d) = min
c̃∈RN

{
1
2
‖d− c̃‖22 + ES(c̃)

}
. (20)

By Lemma 2.5 in [11], we have

∂envES (d)
∂d

= d− proxES (d) = d− PSd. (21)

The last equality is from the definition of PS . By the definition of F2 and (20),
we have

F2(α) = envES (WATα) +
1
2
‖(I −AAT)α‖22.

This, together with (21) and the chain rule, leads to

∇F2(α) = AWT ∂envES (WATα)
∂WATα

+ (I −AAT)α

= AWT (WATα− PSWATα) + α−AATα
= α−AWTPSWATα. (22)

Since WT = W−1, we obtain (19). ♠

Combining Theorem 1 and Lemma 2, we now have the convergence theorem for
our algorithm with WT = W−1.

Theorem 3. Suppose that W is an orthonormal system. Then αn = TλAfn,
where fn is generated (9), converges to a solution of (13).

10

Proof. By Lemma 2, the remaining part of the proof is to check the conditions
in Theorem 1. It is obvious that F1 is proper, lower semi-continuous and convex.
By Lemma 2.5 in [11], F2 is convex and continuously differentiable, and its
gradient is given in (22). Since PS is a proximity operator, by Lemma 2.4 in
[11], the operator I − PS is non-expansive, i.e.,

‖(c̃− PS c̃)− (d− PSd)‖2 ≤ ‖c̃− d‖2, ∀ c̃,d.

Therefore, ∀α, β, we have

‖∇F2(α)−∇F2(β)‖22 = ‖(α−AWTPSWATα)− (β −AWTPSWATβ)‖22
= ‖(I −AAT)(α− β) +AWT

(
(WATα− PSWATα)− (WATβ − PSWATβ)

)
‖22

= ‖(I −AAT)(α− β)‖22 + ‖AWT
(
(WATα− PSWATα)− (WATβ − PSWATβ)

)
‖22

≤ ‖(I −AAT)(α− β)‖22 + ‖AWT ‖22‖WAT (α− β)‖22
= ‖(I −AAT)(α− β)‖22 + ‖WAT (α− β)‖22
= ‖(I −AAT)(α− β)‖22 + ‖AWTWAT (α− β)‖22
= ‖(I −AAT)(α− β) +AAT (α− β)‖22
= ‖α− β‖22.

This means that F2 satisfies (14) with c = 1. Furthermore, it is clear that,
as ‖α‖2 → ∞, ‖diag(λ)α‖1 → ∞. Therefore, F is coercive hence has at least
one minimizer. This implies that (13) has at least one solution. Combining all
together, by Theorem 1, we obtain that αn converges to a solution of (13). ♠

Theorem 3 guarantees that our proposed iterative algorithm will converge
for inpainting problems in coefficient domain and in bit domain. The resulted
solution is minimizing a special functional on the image f with desired proper-
ties.

4. Experiments

In this section, we evaluate the performance of our inpainting algorithm on
removing artifacts of compressed images. In the experiments, two most popular
compression schemes are chosen in the experiments: DCT-based compression
and wavelet-based compression. The framelets chosen in our implementation
of tight frame system is the piecewise cubic framelets (See Fig. 1) for its good
balance between the support and the smoothness of its wavelet functions. More
details can be found in [3]. Four levels are used in framelet decomposition. We
empirically choose the threshloding parameters λ in (5) to be

λ = 3 · ω,

where ω is the vector of undecimated frame normalization factors and has the
value ωi = 2−`(i) with `(i) being the level of the index i. See [3, 18] for details. It
takes about 18 seconds each iteration for a 512× 512 image in Matlab platform
on a PC with a 2.4 GHz Intel Core 2 CPU. Depending on the compression ratio,
the number of iterations ranges from 3 to 10.

11

ψ
2 ψ

4
ψ

1 ψ
3φ

Figure 1: Piecewise cubic framelets.

(a) (b)

Figure 2: Two sample images (a) “Lena” and (b) “Pepper” used in the experiments

12

0 50 100 150 200 250 300
20

22

24

26

28

30

32

34

36

38

40

Compression Ratio

P
S

N
R

(d
B

)

Without Inpainting
Frame Inpainting

0 50 100 150 200 250 300
20

22

24

26

28

30

32

34

36

38

Compression Ratio

P
S

N
R

(d
B

)

Without Inpainting
Frame Inpainting

(a) DCT on “Lena” (b) DCT on “Pepper”

0 100 200 300 400 500 600 700 800
20

22

24

26

28

30

32

34

36

38

40

Compression Ratio

P
S

N
R

(d
B

)

Without Inpainting
Frame Inpainting

0 100 200 300 400 500 600 700 800
20

22

24

26

28

30

32

34

36

38

Compression Ratio

P
S

N
R

(d
B

)

Without Inpainting
Frame Inpainting

(c) Bi-wavelet “9/7” on “Lena” (d) Bi-wavelet “9/7” on “Pepper”

Figure 3: The comparison of PSNR values of decompressed images with and without in-
painting. x-axis denotes the compression ratio and y-axis denotes the PSNR of decompressed
images in dB. Two compression schemes: DCT transform, and bi-orthogonal wavelet systems
“9/7”, are tested on two sample images “Lena” and “Pepper” shown in Fig. 2.

We consider two different compression transforms W when compressing
images. One is the discrete cosine transform (DCT); the other is the bi-
orthonormal wavelet transform using 9/7 bi-orthogonal wavelet. Though com-
pression operation Dt in the coefficient domain is theoretical sound, the remain-
ing coefficients after thresholding are infinite decimal, which must be quantized
so as to achieve the compression effect. Therefore, in practice, both thresholding
operation Dt in the coefficient domain and quantization operation Dq in the bit
domain are used for compressing images. During de-quantization process, half
bit will be added to reduce the reconstruction error, which is a common post-
processing technique used in standard compression systems. We will compare
the post-process based on our inpainting algorithm in joint domain against this
widely used post-process technique.

Firstly, we want to see how the numerical measurements of decompressed
images can be improved by our inpainting post-process. The quality of decom-

13

pressed image is measured by its peak signal-to-noise ratio (PSNR) against the
original image:

PSNR(fr) = 10 log10

2552

‖f − fr‖22
.

Two sample images shown in Fig. 2 are used in this experiment. Fig. 3 shows the
comparison of PSNR values of decompressed images with and without inpainting
processing, with respect to different compression ratios. The compression ratio
is defined as the ratio between the number of bits used before compression and
after quantization for non-zero coefficients.

Fig. 3 shows that our inpainting process steadily improves the PSNR val-
ues of images compressed by both DCT and bi-orthogonal wavelet transforms.
In particular, there are significant improvements on the PSNR values of de-
compressed images at low bit rate (high compression ratio) when applying our
inpainting algorithm on images compressed by DCT.

Fig. 4 and Fig. 5 show decompressed sample images with and without in-
painting post-process for two compression schemes. It is seen that there are
“block” effects and “ring” effects existing in the decompressed images without
inpainting post-processing, such as the regions of girl’s shoulder and the wear-
ing hat and the body of the peppers. Most of these “block” artifacts are gone
after applying our inpainting algorithm. Also, the decompressed images with
inpainting process show sharper edges and visually less noisy. Such a gain in vi-
sual quality is consistent with the improvement of PSNR values of decompressed
images with inpainting post-process.

In the second experiment, the frame-based inpainting method is compared
against the TV (total variation) method (Model I) in [10]. The process is
similar except that frame representation is replaced by TV model. Fig. 6 shows
the results for images compressed by wavelet transform. It is seen that when
the compression ratio is high, our method noticeably outperforms TV method.
However, when the compression ratio is low, TV method is slightly better. For
the DCT-based compression, TV method is not a suitable method to remove
block effects in compressed images, because the TV method tends to yield stair
artifacts along those block artifacts in compressed images. As a comparison,
our proposed framelet-based inpainting process is very effective on removing
artifacts in images compressed by DCT transform. This is another advantage
of our framelet method over the TV method: the framelet-based inpainting
post-process can be used for both DCT based compression and wavelet based
compression while the TV-based inpainting method cannot remove block effects
of image compressed by DCT.

In the third experiments, the results from the frame-based inpainting method
are visually compared against that from three existing methods. See Fig. 7 and
8 for the illustration on both “lena” and “pepper” images compressed by two
methods. In additional to the TV method, we also run the method from [21]
and the commercial software Topaz Vivacity ([22]) on the same tested images.
The method from [21] performs the filtering along the block boundaries while
preserving image edges in an over-complete wavelet domain. Though it is origi-

14

(a) w/o inpainting (b) w/o inpainting

(c) w/ inpainting (d) w/ inpainting

(e) zoom in (a) (left) and (c) (right) (f) zoom in (b) (left) and (d) (right)

Figure 4: The visual comparison of decompressed images compressed by DCT with and with-
out inpainting post-process. The compression ratios are (a) 55 and (b) 54. The PSNRs of
images are (a) 31.74 dB, (b) 31.48 dB, (c) 32.40 dB and (d) 32.22 dB.

15

(a) w/o inpainting (b) w/o inpainting

(c) w/ inpainting (d) w/ inpainting

(e) zoom in (a) (left) and (c) (right) (f) zoom in (b) (left) and (d) (right)

Figure 5: The visual comparison of decompressed images compressed by bi-orthogonal
wavelets 9/7 with and without inpainting post-process. The compression ratios are (a) 319
and (b) 304. The PSNRs of images are (a) 26.04 dB, (b) 26.00 dB, (c) 26.60 dB and (d) 26.59
dB.

16

0 100 200 300 400 500 600 700 800
20

22

24

26

28

30

32

34

36

38

40

Compression Ratio

P
S

N
R

(d
B

)

Without Inpainting
Frame Inpainting
TV Inpainting

0 100 200 300 400 500 600 700 800
20

22

24

26

28

30

32

34

36

38

Compression Ratio

P
S

N
R

(d
B

)

Without Inpainting
Frame Inpainting
TV Inpainting

(a) Lena (b) Pepper

Figure 6: Comparison of inpainting post-process based on total variation (TV) and frame for
“Lena” and “Pepper”.

nally proposed only for de-blocking images compressed by JPEG, we find it can
also be used for removing ‘ring’ artifacts in images compressed by wavelet-based
method. It is noted that the threshold estimated in [21] does not provide opti-
mal result. Thus, we optimized the result in terms of PSNR value by adopting
the threshold T as the three times of estimated threshold for images compressed
by DCT-based compression and 800 for images by wavelet-based compression.
The commercial softwares from Topaz Vivacity ([22]) has two modules: Topaz
DeJPEG for JPEG and Topaz DeJPEG2000 for JPEG2000. Topaz DeJPEG
aims at eliminate JPEG artifacts (such as ‘blockiness’ and ‘fringes’) and enhance
the clarity and details of the image at the same time. Topaz DeJPEG2000 aims
at reducing artifacts caused by JPEG 2000 and other wavelet based image com-
pression. The optimal result from Topaz software in terms of PSNR value is
obtained by setting “suppression” parameter 76 for DeJPEG and 100 for De-
JPEG2000 and choosing “best quality but slow processing” option in the soft-
ware. Clearly, the results from the frame-based inpainting algorithm produces
most visually pleasant results which is also consistent with the improvement in
terms of PSNR values.

5. Conclusion

In this paper, the idea of image inpainting in pixel domain using tight frame
decomposition in [3, 4] is generalized to the inpainting technique in either bit
domain or coefficient domain. The convergence of the algorithm is also estab-
lished in this paper and it is shown that the solution of the iteration minimizes
a special functional with desired properties.

We would like to point out that the idea of inpainting in bit domain could
possibly be foreseen a wide range of applications. Any data in digital world
unavoidably suffers from the quantization error. The inpainting in bit domain

17

(a) Original image (b) Compressed image by DCT

(c) Deblocking by overcomplete wavelet (d) Topaz DeJPEG

(e) TV-based inpainting (f) Frame-based inpainting

Figure 7: The visual results of image ‘Lena’ compressed by DCT-based method and post-
processed by frame-based inpainting and other artifacts removal methods. The PSNRs of
images are (b) 31.74 dB, (c)32.36 dB, (d) 32.11dB, (e)31.82 dB and (f) 32.40 dB respectively.

18

(a) Original image (b) Compressed by wavelet

(c) Deringing by overcomplete wavelet (d) Topaz DeJPEG2000

(e) TV-based inpainting (f) Frame-based inpainting

Figure 8: The visual results of image ‘Pepper’ compressed by wavelet-based method and
post-processed by frame-based inpainting and other artifacts removal methods. The PSNRs
of images are (b) 26.00 dB, (c) 26.23 dB and (d) 26.27 dB, (e) 26.40 dB and (f) 26.59 dB
respectively

19

provides a universal approach to improve the accuracy of the digitized data with
respect to the original data. Many applications could benefit from such an accu-
racy gain. As one application, our proposed inpainting technique could act as a
post-process on any given compression scheme to remove annoying compression
artifacts, which equivalently improves the compression ratio. The experiments
on two most widely used compression schemes (wavelet-based compression and
DCT-based compression) justified the effectiveness of our proposed inpainting
technique on improving the visual quality of compressed images.

References

[1] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image
inpainting, SIGGRAPH, 34, pp. 417-424, 2000.

[2] L. Borup, R. Gribonval, and M. Nielsen, Bi-framelet systems with
few vanishing moments characterize Besov spaces, Appl. Comput. Harmon.
Anal., 17, pp. 3–28, 2004.

[3] J.-F. Cai, R. H. Chan, and Z. Shen, A framelet-based image inpainting
algorithm, Appl. Comput. Harmon. Anal., 24, pp. 131–149, 2008.

[4] J.-F. Cai, R. Chan, L. Shen and Z. Shen, Restoration of chopped and
nodded images by framelets, SIAM Journal on Scientific Computing, 30,
pp. 1205–1227, 2008.

[5] J.-F. Cai, R. Chan, L. Shen and Z. Shen, Convergence Analysis of Tight
Framelet Approach for Missing Data Recovery, Advances in Computational
Mathematics, 31(1–3), pp. 87–113, 2009.

[6] R. Chan, S. D. Riemenschneider, L. Shen, and Z. Shen, Tight frame:
The efficient way for high-resolution image reconstruction, Applied and
Computational Harmonic Analysis, 17 (2004), pp. 91–115.

[7] T. Chan and J. Shen, Mathematical models for local non-texture inpaint-
ing, SIAM Journal on Applied Mathematics, 62, pp. 1019–1043, 2001.

[8] T. Chan and J. Shen, Variational image inpainting, Communications on
Pure and Applied Mathematics, 58, pp 579-619, 2005.

[9] R. H. Chan, Z. Shen, and T. Xia, A framelet algorithm for enhancing
video stills, Appl. Comput. Harmon. Anal., 23 (2007), 153–170.

[10] T. F. Chan, J. Shen and H.-M. Zhou, Total variation wavelet inpaint-
ing, Journal of Mathematical Imaging and Vision, 25, pp. 107–125, 2006.

[11] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-
backward splitting, Multiscale Model. Simul., 4 (2005), pp. 1168–1200.

20

[12] I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets:MRA-based con-
structions of wavelet frames, Applied and Computational Harmonic Analy-
sis, 14, pp. 1-46, 2003.

[13] M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho, Simulta-
neous cartoon and texture image inpainting using morphological component
analysis (MCA), Appl. Comput. Harmon. Anal., 19 (2005), pp. 340–358.

[14] B. Han, Z. Shen, Dual Wavelet Frames and Riesz Bases in Sobolev
Spaces, Constructive Approximation, 29(3), pp. 369–406, 2009.

[15] Y. Hur and A. Ron, Caplets: wavelet representations without wavelets,
2005. preprint.

[16] J. Luo, C. W. Chen, K. J. Parker and T. Huang, Artifacts reduction
in low bit rate DCT-based image compression, IEEE Trans. Circuits System
Video Technol., 5 (9), pp. 1363–1368, 1996.

[17] A. Nosratinia, Postprocessing of JPEG-2000 images to remove compres-
sion artifacts, 10 (10), pp. 296–299, 2003.

[18] A. Ron and Z. Shen, Affine system in L2(Rd): the analysis of the analysis
operator, Journal of Functional Analysis, 148 (1997), pp. 408–447.

[19] S. Wu and A. Gersho, Improved decoder for transform coding with appli-
cation to the JPEG baseline system, IEEE Trans. Commun. 40, pp. 251–254,
1992.

[20] Y. Yang, N. Galasanos and A. K. Katsaggelos, Projection-based
spatially adaptive reconstruction of block-transform compressed images,
IEEE Trans. Image Process. 4 (7), pp. 896–908, 1995.

[21] Z. Xiong, M. Orchard and Y. Zhang, A deblocking algorithm for
JPEG compressed images using overcomplete wavelet representations, IEEE
Trans. Circuits System Video Technol., 7 (4), pp. 433–437, 1997.

[22] http://www.topazlabs.com/topazlabs/03products/topaz vivacity/more
information/56tutorial remove jpeg artifacts/index.html

21

