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Abstract

Sparsity based regularization methods for image restoration assume that the
underlying image has a good sparse approximation under a certain system. Such
a system can be a basis, a frame, or a general over-complete dictionary. One
widely used class of such systems in image restoration are wavelet tight frames.
There have been enduring efforts on seeking wavelet tight frames under which
a certain class of functions or images can have a good sparse approximation.
However, the structure of images varies greatly in practice and a system working
well for one type of images may not work for another. This paper presents a
method that derives a discrete tight frame system from the input image itself
to provide a better sparse approximation to the input image. Such an adaptive
tight frame construction scheme is applied to image denoising by constructing a
tight frame tailored to the given noisy data. The experiments showed that the
proposed approach performs better in image denoising than those wavelet tight
frames designed for a class of images. Moreover, by ensuring that the system
derived from our approach is always a tight frame, our approach also runs much
faster than other over-complete dictionary based approaches with comparable
performance on denoising.

Key words: tight frame, image de-noising, wavelet thresholding, sparse
approximation

1. Introduction

In the past decades, sparse approximation played a fundamental role in many
signal processing areas, such as compression, data analysis, and signal restora-
tion. Sparse approximation is about keeping most information of the given
data with a linear combination of a small number of atoms of some system.
Among many different systems, orthonormal wavelet bases [1] have been very
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successful in signal processing as they can approximate piecewise smooth 1D
signals very efficiently with only few non-zero wavelet coefficients. In recent
years, over-complete systems have become more and more recognized and used
in signal processing. Over-complete systems have several advantages over or-
thonormal bases for sparsely approximating signals, as signals are more likely to
have a good sparse approximation under a redundant system. Also, they offer
more flexibility and convenience in the filter design. One representative class of
over-complete systems are the so-called wavelet tight frames derived from exten-
sion principles of [2, 3, 4], which are now widespread in many signal processing
tasks. Wavelet tight frames sacrifice the orthonormality and linear indepen-
dence of orthonormal bases while still enjoying the same efficient decomposition
and reconstruction schemes as orthonormal wavelet bases.

Most wavelets used in image processing are separable wavelet bases defined
from tensor products of 1D wavelet bases. Despite their successes in 1D signal
processing, tensor wavelets are much less efficient when approximating images
since tensor wavelets focus mostly on horizontal and vertical discontinuities
of images. When discontinuities of the target image have complex geometric
properties, the sparsity of a good approximation under tensor wavelets is not
satisfying. In recent years, many tight frames have been proposed to more effi-
ciently represent natural images, including ridgelets [5], curvelets [6, 7], bandlets
[8], shearlets [9], and many others. However, the efficiency of these redundant
systems heavily relies on certain functional assumptions of natural images, e.g.
isolated objects with C2 singularities assumed by curvelets. Such an assump-
tion is applicable to cartoon-type images but not to textured images. Natural
images vary greatly in terms of geometrical structure, and often they contain a
significant percentage of irregular textures with fractal structures. A tight frame
designed for efficiently representing one type of continuum may not provide a
good sparse approximation to the input image. A better approach is to develop
a tight frame system that is specifically optimized for the given image. In other
words, the design of a tight frame system should be driven by the input data in
order to achieve better performance in terms of sparse approximation.

The concept of “adaptivity” has been explored in recent years by the so-
called learning approaches (e.g., [10, 11, 12, 13, 14, 15]). Learning approaches
learn an over-complete dictionary from the input image itself to achieve bet-
ter sparsity of the input image over the learned dictionary. The basic idea of
most existing approaches is to first partition images into small image patches
and then to find a set of atoms of the dictionary such that each image patch
can be approximated by a sparse linear combination of atoms in the dictionary.
The adaptively learned over-complete dictionaries derived by these approaches
are very effective on sparsely approximating natural images with rich textures.
As a result, these adaptive over-complete dictionary based approaches tend to
outperform the sparsity-based wavelet thresholding methods in image denois-
ing. Despite the success of these adaptively learning methods, the resulting
over-complete dictionaries lack several properties desired for image restoration.
One is the so-called perfect reconstruction property which ensures that the given
signal can be perfectly represented by its canonical expansion in a manner sim-
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ilar to orthonormal bases. Also, finding an optimal over-complete system often
leads to a severely under-constrained ill-posed problem owing to the redundancy
of the over-complete system. It remains a challenging task to develop fast and
stable numerical methods for estimating an optimal over-complete system.

In this paper, we aim at developing a new approach to construct discrete
tight frames that are adaptive to input images. The adaptively learned tight
frame in our proposed approach is more likely to give a highly sparse approxima-
tion of the input image than existing wavelet tight frames. Contrast to general
over-complete dictionaries, tight frames satisfy the perfect reconstruction prop-
erty, which is appealing to many image restoration tasks. Also, the sparsity of
the canonical frame coefficients of an image is closely related the regularity of
the image, which is assumed by many image restoration approaches to obtain
the results with less artifacts. Moreover, as we will show later, the minimization
problems arising in the construction of tight frames are better conditioned than
those of generic over-complete dictionaries, owing to the Parseval identity for
tight frames. Thus, by considering a class of tight frames with certain special
properties, a fast numerical method is available to construct data-driven tight
frames.

To illustrate the benefits of adaptively constructed tight frames from the
data itself, we derive an adaptive tight frame denoising method based on a data-
driven tight frame construction scheme. The experiments show that our adap-
tive tight frame denoising technique significantly outperforms standard wavelet
thresholding approaches on images of rich textures. Also, it is much faster than
some over-complete dictionary based approaches (e.g. the K-SVD method [12])
with comparable performance. The rest of the paper is organized as follows. In
Section 2, we first give a brief introduction to wavelet tight frames. Then, in
Section 3, we introduce the proposed minimization model and the corresponding
numerical method. Section 4 is devoted to the experimental evaluation of the
proposed method and discussions.

2. Preliminaries and previous work

2.1. Wavelet and tight frame

In this section, we give a brief introduction to tight frames and wavelet tight
frames for image processing. Interested readers are referred to [2, 4, 16, 17] for
more details. Let H be a Hilbert space. A sequence {xn} ⊂ H is a tight frame
for H if

‖x‖2 =
∑
n

|〈x, xn〉|2, for any x ∈ H.

There are two associated operators. One is the analysis operator W defined by

W : x ∈ H −→ {〈x, xn〉} ∈ `2(N)

and the other is its adjoint operator W> called the synthesis operator:

W> : {an} ∈ `2(N) −→
∑
n

anxn ∈ H.
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Then, the sequence {xn} ⊂ H is a tight frame if and only if W>W = I, where
I : H −→ H is the identical operator. In other words, given a tight frame {xn},
we have the following canonical expansion:

x =
∑
n

〈x, xn〉xn, for any x ∈ H.

The sequence Wx := {〈x, xn〉} is called the canonical tight frame coefficient
sequence. Thus, tight frames are often viewed as generalizations of orthonormal
bases. In fact, a tight frame {xn} is an orthonormal basis for H if and only if
‖xn‖ = 1 for all xn.

One widely used class of tight frames in image processing is the discrete
wavelet tight frame generated by a set of filters {ai}mi=1. In this section, we
will only discuss the un-decimal wavelet tight frames, as they are known to
perform better than the un-decimal systems in most image restoration tasks
(see e.g. [18, 16]). Given a filter a ∈ `2(Z), define the linear convolution
operator Sa : `2(Z)→ `2(Z) by

[Sav](n) := [a ∗ v](n) =
∑
k∈Z

a(n− k)v(k), ∀ v ∈ `2(Z). (1)

For a set of filters {ai}mi=1 ⊂ `2(Z), we define its analysis operator W by

W = [S>a1(−·),S
>
a2(−·), . . . ,S

>
am(−·)]

>. (2)

Its synthesis operator is defined as the transpose of W :

W> = [Sa1 ,Sa2 , . . . ,Sam ]. (3)

The rows of W forms a tight frame for `2(Z) if and only if W>W = I. To
construct such tight frames, one may use simplified Unitary Extension Principle
(UEP) condition in [2]. For our setting, the UEP condition can be simplified to

m∑
i=1

∑
n∈Z2

ai(k + n)ai(n) = δk, for any k ∈ Z2, (4)

which is equivalent to W>W = I as shown in [19]. Here we remark that the UEP
conditions (4) are only one part of the full UEP conditions ([2, 19]). The unitary
extension principle in [2] says that as long as the filters satisfy the full UEP
conditions, the wavelet system generated by the framelets corresponding to these
filters form a wavelet tight frame in function space L2(R). Interested readers
are also referred to [20, 21, 22, 23] for related works. As an example, the often
used wavelet tight frame system of linear B-splines constructed by the unitary
extension principle of [2] in many image restoration tasks (e.g. [24, 25, 26]) are
generated by the following three filters:

a1 =
1

4
(1, 2, 1)>; a2 =

√
2

4
(1, 0,−1)>; a3 =

1

4
(−1, 2,−1)>, (5)
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which also satisfy (4).
Once the 1D framelet filter set {ai}mi=1 for generating a tight frame for `2(Z)

is constructed, one way to generate a 2D tight frame for `2(Z2) is to use the
2D framelet filters {ai ⊗ aj}mi,j=1 constructed via the tensor product of the 1D

framelet filters. A digital image can be viewed as a vector in RN by placing the
second column of the digital image below the first, the third below the second,
and so on. For a given filter with finite support, the operator Sa ∈ RN×N
becomes a block-wise Toeplitz matrix under Neumann boundary conditions.
Given a set of filters {ai}mi=1 ⊂ RN satisfying the UEP condition (4), similarly,
we define the analysis operator W ∈ RmN×N by (2) and the synthesis operator
W> ∈ RN×mN by (3). The rows of W form a tight frame for RN , i.e. W>W =
IN . Interesting readers are referred to [25, 16] for more details.

2.2. Previous work on adaptively learning over-complete dictionaries

Several approaches have been proposed to learn an over-complete dictionary
from a signal/image such that the sparsity of the target signal/image under
the learned over-complete dictionary is optimized, e.g., [27, 10, 11, 12, 13, 14].
Earlier works are based on probabilistic reasoning. For example, the maximum
likelihood method is used in [27, 10] and the maximum A-posteriori probability
approach is used in [11] to construct over-complete dictionaries. In recent years,
there has been steady progress on the development of deterministic approaches
of learning an over-complete dictionary from an image (e.g. [12, 13, 14]). Repre-
sentative along this direction is the so-called K-SVD method [12], which presents
a minimization model to learn a dictionary from the input image and use the
learned dictionary to denoise images. Since our work also belongs to this cate-
gory, we only give a brief review on the K-SVD method.

Let f, g denote the vector forms of a noisy image f and its noise-free version g.
Let D ∈ Rm,p denote the dictionary whose column vectors denote the dictionary
atoms. Partitioning the image into ` image patches of m pixels with overlaps.
Let Pj denote the projection operator that maps the image to its j-th patch for
j = 1, 2, . . . , `. Then the K-SVD method is to denoise the image by solving the
following minimization:

min
g,c,D

1

2
‖f − g‖22 +

∑
j

µj‖cj‖0 + λ
∑
j

‖Dcj − Pjg‖22, (6)

where c = (c1, c2, . . . , c`) ∈ Rp,` is the matrix whose j-th column vector cj
denotes the expansion coefficient vector of j-th image patch over the dictionary
D. Here and throughout the paper, we denote ‖v‖0 the so-called `0 norm of v,
i.e., ‖v‖0 stands for the cardinality of the set {k : v[k] 6= 0}. The K-SVD method
showed better performance than the standard wavelet thresholding method in
the application of image denoising. Such an improvement comes from the fact
that the repeating texture elements are likely to be captured as atoms in the
system learned by the method.
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Despite the impressive performance of the K-SVD method in image denois-
ing, how to efficiently solve the minimization (6) with satisfactory stability re-
mains a challenging task, as the minimization (6) is a very challenging ill-posed
minimization problem. An alternating iterative method implemented in [12]
is to alternatively update the estimations of c, g and D during each iteration.
Under such an scheme, there are two challenging sub-problems to solve during
each iteration. One is how to estimate the dictionary D given the current esti-
mations on c and g, which is a severely under-constrained problem owing to the
redundancy of D (p� m). A heuristic method is proposed in [12] to update the
atoms of the dictionary one by one in a greedy manner, which lacks the rigorous
treatment on the stability and optimality. This step is time-consuming as the
updating of each atom needs one SVD. Another one is how to find a sparse coef-
ficient vector c given an over-complete dictionary D could be a computationally
expensive process. The orthogonal matching pursuit is used in [12] to find a
sparse coefficient vector c during each iteration, which is also a computationally
expensive process.

3. Minimization model and numerical method

In this section, we present a new minimization model for constructing an
adaptive discrete tight frame for a given image. An efficient numerical solver
for the proposed minimization model is also provided.

3.1. Basic idea

It is known that in many image restoration tasks, an un-decimal system is
more effective in reducing artifacts than a decimal system (see e.g. [18, 16]).
Thus, the tight frame constructed in our approach will be an un-decimal system.
In other words, the tight frame constructed in our approach are the rows of a
matrix W as in (2). Let W (a1, a2, . . . , am) denote the analysis operator asso-
ciated with the tight frame generated by the filters a1, a2, . . . , am. We will not
make a distinction between W and W (a1, a2, . . . , am) if there is no ambiguity.

Let g denote an input image. Notice that constructing a wavelet tight frame
is equivalent to finding filters {ai}mi=1, which satisfies W>W = I, under suit-
able constraints. We propose to construct a wavelet tight frame with filters
(a1, . . . , am) by solving the following minimization problem:

min
v,{ai}mi=1

‖v −W (a1, a2, . . . , am)g‖22 + λ2‖v‖0, subject to W>W = I. (7)

There are two unknowns in (7). One is the coefficient vector v which sparsely
approximates the canonical tight frame coefficients Wg, and the other is the set
of filters {ai}mi=1 that generates a tight frame as in (2) and (3). The first term
‖v −Wg‖22 of (7) is to make sure that v is close to the canonical coefficients of
g under the analysis of W ; the second term ‖v‖0 is to enforce the coefficient is
sparse; the constraint WTW = I is to guarantee W is a tight frame. We take
an iterative scheme to alternatively update the estimation of the coefficient
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vector v and the estimation of {ai}mi=1. More specifically, let {a(0)i }mi=1 be the
set of the initial filters to start with, e.g. linear spline framelet filters. Then for
k = 0, 1, . . .,K − 1:

1. Given the frame filters {a(k)i }mi=1, we solve (7) with respect to v only to

get the sparse coefficient vector v(k). Define W (k) = W (a
(k)
1 , . . . , a

(k)
m ) as

in (2). Then, we have

v(k) := argminv‖v −W (k)g‖22 + λ2‖v‖0. (8)

2. Given the sparse frame coefficient vector v(k), update the frame filters

{a(k+1)
i }mi=1 by solving (7) with respect to {ai}mi=1 only, i.e.,

{a(k+1)
i }mi=1 := argmin{ai}mi=1

‖v(k) −W (a1, a2, . . . , am)g‖22 (9)

subject to W>W = IN , where W = W (a1, . . . , am) as in (2).

After K iterations, the tight frame adaptive to the image g is defined as

W>(a
(K)
1 , a

(K)
2 , . . . , a(K)

m ).

Next, we will give a more detailed discussion on the model (7) and present an
efficient numerical solver.

Since (8) and (9) is an alternating minimization procedure for solving (7), the
objective function in (7) decreases monotonically. Furthermore, the sequences

{v(k)}k and {{a(k)i }mi=1}k are bounded. As a result, there exists convergent

subsequences of {v(k)}k and {{a(k)i }mi=1}k. The boundedness of {{a(k)i }mi=1}k is
obvious because (W (k))>W (k) = I. The boundedness of {v(k)}k follows, since
the objective function is monotonically decreasing. Indeed

‖v(k) −W (k)g‖22 ≤ ‖v(k) −W (k)g‖22 + λ2‖v(k)‖0 ≤ ‖v(0) −W (0)g‖22 + λ2‖v(0)‖0,

and therefore

‖v(k)‖2 ≤ (‖v(0) −W (0)g‖22 + λ2‖v(0)‖0)1/2 + ‖W (k)g‖2
= (‖v(0) −W (0)g‖22 + λ2‖v(0)‖0)1/2 + ‖g‖2.

3.2. Minimization (8) and its implications

Let Tλ : RNm → RNm denote the hard thresholding operator defined by

[Tλv](n) =

{
v(n) if |v(n)| > λ;
0 otherwise.

(10)

Then it is known that the minimization (8) has a unique solution v̄ given by
applying a hard thresholding operator on the canonical frame coefficient vector
W (k)g:

v̄ := Tλ(W (k)g). (11)
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Proposition 1. For any given W ∈ RmN×N and g ∈ RN , the minimization
problem given by

minv∈RmN ‖v −Wg‖22 + λ2‖v‖0 (12)

has a unique solution v̄ := Tλ(Wg). Moreover, for any v ∈ RmN satisfying
‖v‖0 ≤ ‖v̄‖0,

‖v −Wg‖2 ≥ ‖v̄ −Wg‖2. (13)

Proof. Let u = Wg. Re-writing the objective functional in (8) as

‖v − u‖22 + λ2‖v‖0 =

mN∑
n=1

[(v(n)− u(n))2 + λ2 · |v(n)|0],

where |x|0 = 0 if x = 0 and |x|0 = 1 otherwise. We have

minv∈RmN ‖v −Wg‖22 + λ2‖v‖0 =

mN∑
n=1

minv(n)∈R[(v(n)− u(n))2 + λ2|v(n)|0].

For any u(n), we have

E(v(n)) = (v(n)− u(n))2 + λ2|v(n)|0 =

{
u(n)2, if v(n) = 0,

(v(n)− u(n))2 + λ2, if v(n) 6= 0.

Thus,

min
v(n)

E(v(n)) = min{(u(n))2, λ2} =

{
u(n)2 if |u(n)| ≤ λ,
λ2 if |u(n)| ≥ λ.

The corresponding minimizer is v̄(n) = 0 if |u(n)| ≤ λ and v̄(n) = u(n) other-
wise. In other words, Tλ(u) is the unique solution of (12).

For any v ∈ RNm, by the definition of v̄, we have

‖v −Wg‖22 + λ2‖v‖0 ≥ ‖v̄ −Wg‖22 + λ2‖v̄‖0.

Thus
‖v −Wg‖22 − ‖v̄ −Wg‖22 = λ2(‖v̄‖0 − ‖v‖0) ≥ 0.

Proposition 1 states that v̄ = Tλ(Wg) is the best approximation to the
canonical frame coefficient vector Wg among all sparse vectors whose cardinality
no greater than the cardinality of v̄. Using the coefficient vector v̄, we can
reconstruct a signal ḡ defined by

ḡ = W>v̄ = W>(Tλ(Wg)).

When the rows of W form a redundant tight frame, the approximation error
between reconstruction ḡ and g is bounded by ‖v̄ −Wg‖2. However, ḡ is not
necessarily the best approximation to the signal g.

The minimization (8) can be considered as a balanced approach. For this,
we introduce the following result:
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Proposition 2. Let W denote the tight frame satisfying W>W = I. Then

‖g −W>v‖22 + ‖(I −WW>)v‖22 = ‖v −Wg‖22. (14)

Proof. By the fact that W>W = I, we have

‖g −W>v‖22 + ‖(I −WW>)v‖22
= g>g − 2g>W>v + v>WW>v + v>(I −WW>)(I −WW>)v
= g>g − 2g>W>v + v>WW>v + v>(I −WW>)v
= g>g − 2g>W>v + v>v
= g>W>Wg − 2g>W>v + v>v
= ‖v −Wg‖22.

(15)

Eq. (14) implies that the reconstruction ḡ from the coefficients v̄ obtained
via (8) indeed minimizes the following objective function:

‖g −W>v‖22 + ‖(I −WW>)v‖22 + λ2‖v‖0. (16)

The minimization (16) is actually the so-called balanced approach for sparsity-
based regularizations (see more details in [16]). Next, we give a brief discussion
on such a balanced approach. Given a signal f and a tight frame system W ,
there exist several regularizations to find a sparse approximation to f , which
may have different outcomes. Suppose we are using the `1 norm as a convex
replacement of the `0 norm to prompt sparsity. Most existing regularization
methods of finding a sparse approximation ḡ to the signal g are done via solving
the following minimization:

ḡ := W>v̄; v̄ := argminv‖g −W>v‖22 + τ‖(I −WW>)v‖22 + 2λ‖v‖1, (17)

Based on different values of τ , the minimization (17) can be classified into three
categories. When τ = 0, the model (17) is called the synthesis based approach
(e.g. [28, 26]). When τ =∞, the minimization (17) can be rewritten as

ḡ := argminf‖g − f‖22 + 2λ‖Wg‖1 (18)

since v ∈ range(W ). This is called the analysis based approach (e.g. [29, 30]).
When 0 < τ <∞, the model (17) is called a balanced approach (e.g. [31, 24, 25]).

The main difference among the three methods lies in how much the sec-
ond term ‖(I −WW>)v‖22 contributes to the objective function. By rewriting
‖(I −WW>)v‖22 as ‖v −W (W>v)‖22, we see that it measures the distance be-
tween the coefficient vector v and the canonical coefficients of its corresponding
reconstructed signal W>v. Since the magnitude of the canonical coefficients
reflects the regularity of the reconstructed signal under some mild conditions on
the tight frame W (see [32] fore more details), this distance is closely related to
the regularity of the reconstructed signal. The smaller ‖(I −WW>)v‖22 is , the
more accurately the corresponding coefficient vector v reflects the regularity of
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the underlying signal. Thus, the synthesis based approach emphasizes the spar-
sity of the coefficient vector v̄, but the decay of v̄ does not reflect the regularity
of the resulting reconstruction W>v̄. In contrast, the analysis based approach
emphasizes the sparsity of the canonical coefficient vector Wḡ which leads to
a more regular approximation. Indeed, it is shown in [33] that, by choosing
parameters properly, the analysis based approach can be seen as sophisticated
discretization of minimizations involving the widely used total variation penalty
[34] and its variations (e.g. [35, 36, 37]). Notice that the coefficient vector
v̄ obtained from the synthesis based approach will be much sparser than the
canonical coefficient vector Wḡ obtained by the analysis-based approach. The
balanced approach yields a result which balances the sparsity of the coefficient
vector and the regularity of the reconstructed signal.

Each approach has its advantages and disadvantages. The choice of the
approach depends on the nature of the targeted application. It is empirically
observed that for image restoration, the reconstructed image obtained by the
synthesis-based approach tends to have some visually unpleasant artifacts. In
contrast, the results from the analysis-based approach and the balanced ap-
proach usually have less artifacts as they ensure certain regularities along image
edges. For our purpose, choose the balanced approach and the reason is two-
fold. First, our goal is to construct a tight frame that works better for image
restoration than existing ones. Thus, we are not seeking for the tight frame that
maximizes the sparsity of the coefficients. Second, the minimization model (18)
resulting from the analysis-based approach requires an iterative solver, which is
too expensive for our purpose as the minimization (18) will be called for many
times in our approach. Therefore, we take an balanced approach where the
result W>(Tλ(Wg) seeks the balance between the regularity of the result and
the sparsity of its associated tight frame coefficients.

3.3. The modification of model (9) and its numerical solver

The minimization model (9) is a constrained minimization with the quadratic
constraints W>W = I. Recall that the UEP condition for ensuring W>W =
I requires the set of the 2D filters {ai}m

2

i=1 to satisfy the following quadratic
constraints:

m2∑
i=1

∑
n∈Z2

ai(k + n)ai(n) = δk, k ∈ Z2. (19)

In general, the model (9) is rather complex and solving it could be computa-
tionally demanding. In this section, we propose to construct a tight frame with
certain special structure such that the corresponding quadratic constraints (19)
are greatly simplified. Indeed, the minimization problem (9) has an explicit so-
lution using the wavelet tight frame filters specified in the following proposition.

Proposition 3. Let {ai}r
2

i=1 be r2 real-valued filters with support on Z2 ∩ [1, r]2

for some positive integer r. Then the filters {ai}r
2

i=1 satisfy the UEP conditions
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(19) as long as they satisfy the following orthogonality constraints:

〈ai, aj〉 =
∑

k∈[1,r]2∩Z2

ai(k)aj(k) =
1

r2
δi−j , 1 ≤ i, j ≤ r2.

Proof. For each ai, let ~ai denote its column vector form by concatenating all its
columns. Define the matrix A ∈ Rr2×r2 by

A = [~a1,~a2, . . . ,~ar2 ]. (20)

Then

(A>A)(i, j) = ~a>i ~aj =
1

r2
δi−j , 1 ≤ i, j ≤ r2.

Thus we have A>A = 1
r2 I which implies AA> = 1

r2 I. Notice that

(AA>)(k, `) =

r2∑
i=1

~ai(k)~ai(`) =
1

r2
δk−`, 1 ≤ k, ` ≤ r2,

which gives
∑r2

i=1 ai(m)ai(n) = 1
r2 δm−n,m, n ∈ Z2. Then we have

r2∑
i=1

∑
n∈Z2

ai(k + n)ai(n) =
∑
n∈Z2

r2∑
i=1

ai(k + n)ai(n)

=

{
r2

r2 = 1, k = 0;
0, otherwise.

By considering the frame filters {ai}r
2

i=1 with a special structure proposed

in Proposition 3, we greatly simplified the quadratic constraints on {ai}r
2

i=1 to
ensure that W>W = I. The minimization (9) is now simplified to

{a(k+1)
i }r

2

i=1 := argmin{ai}r2i=1
‖v(k) −W (a1, a2, . . . , ar2)g‖2 (21)

subject to 〈ai, aj〉 = 1
r2 δi−j , 1 ≤ i, j ≤ r2, where W is the analysis operator

associated with filters {ai}r
2

i=1.
In the next, we derive the explicit analytic solution to the constrained mini-

mization problem (21). We sequentially partition the coefficient vector v(k) into
r2 vectors, denoted by v(k),i ∈ RN×1, i = 1, 2 . . . , r2. Then we can rewrite the
objective function of (21) as follows,

‖v(k) −Wg‖22 =

r2∑
i=1

‖v(k),i − Sai(−·)g‖
2
2

=

r2∑
i=1

N∑
n=1

‖v(k),i(n)− [Sai(−·)g](n)‖22

=

N∑
n=1

r2∑
i=1

‖v(k),i(n)− [Sai(−·)g](n)‖22.

11



In the following, we write an image patch or a 2D filter as a column vector by
placing the second column below the first, the third below the second and so on.
We denote this operation by placing the vector sign over the symbol denoting
the matrix. For example, we denote ~ai the vector form of ai by concatenating
all its columns. Since the convolution is commutative, for i = 1, 2, . . . , r2, we
have

[Sai(−·)g](n) = [Sg(−·)~ai](n) = ~g>n ~ai = ~a>i ~gn, 1 ≤ n ≤ N,

where ~gn denotes the transpose of the n-th row of Sg(−·). Here gn, n = 1, . . . , N ,
are all r × r patches from the input image g. Let

~vn =
(
v(k),1(n), v(k),2(n), . . . , v(k),r

2

(n)
)>
, 1 ≤ n ≤ N,

and define 
V = (~v1, ~v2, . . . , ~vN ) ∈ Rr2×N

G = (~g1, ~g2, . . . , ~gN ) ∈ Rr2×N

A = (~a1,~a2, . . . ,~ar2) ∈ Rr2×r2 .
(22)

Then we have

‖v(k) −W>g‖22 =

N∑
n=1

‖~vn −A>~gn‖22

=

N∑
n=1

~v>n ~vn + ~g>nAA
>~gn − 2~v>nA

>~gn

=

N∑
n=1

~v>n ~vn +
1

r2
~g>n ~gn − 2(A~vn)>~gn

= Tr(V >V ) +
1

r2
Tr(G>G)− 2Tr(AV G>)

where Tr(·) denotes the trace of a matrix. Since the first two terms are constants,
the minimization (21) can be rewritten as follows,

max
A

Tr(AV G>) s.t. A>A =
1

r2
Ir2 . (23)

The following theorem gives an explicit solution to the above minimization (23).

Theorem 4. [38] Let B and C be m×r matrices where B has rank r. Consider
the constrained maximization problem:

B∗ = argmaxBTr(B>C), s.t. B>B = Ir,

Suppose that the single value decomposition (SVD) of C is C = UDX>. Then
B∗ = UX>.

12



By Theorem 4, we obtain the solution of (23):

A∗ =
1

r
(UX>)> =

1

r
XU>, (24)

where U and X are the SVD decomposition of V G> such that

V G> = UDX>.

In other words, the vector form of the filters a
(k+1)
i defined by the minimizer of

(21) is exactly the i-th column vector of the matrix A∗ given by (24).
In summary, the ultimate minimization model we proposed for constructing

a tight frame adaptive to the input image is as follows,

{a∗i }r
2

i=1 := argmin
v,{ai}r

2
i=1
‖v −W (a1, . . . , ar2)g‖22 + λ2‖v‖0 (25)

subject to 〈ai, aj〉 = 1
r2 δi−j , 1 ≤ i, j ≤ r2, where W is the analysis operator

defined by W = [S>a1(−·),S
>
a2(−·), . . . ,S

>
ar(−·)]

>. The complete description of the

numerical solver for solving (25) is given in Algorithm 1. Notice that there
are two steps during each iteration and each involves solving one minimization
problem. The first is simply done by applying a hard thresholding operator on

tight frame coefficients W (a
(k)
1 , . . . , a

(k)
r2 )g, and the second can be obtained by

the single value decomposition of the matrix V G>. Thus, the computation cost
for each iteration is very low.

Algorithm 1 Construction of an un-decimal tight frame adaptive to an image

Input: an image g (clean or noisy)

Output: an un-decimal discrete tight frame W> defined by filters {a(K)
i }r2i=1

Main procedure:

(I) Initialize tight frame filters {a(0)i }r
2

i=1 of size at most r × r using some
existing tight frame.

(II) For k = 0, 1, 2, . . . ,K − 1 do

(1) define W (k) from {a(k)i }r
2

i=1 by (2);

(2) set v(k) = Tλ(W (k)g), where Tλ is the hard thresholding operator
defined in (11);

(3) construct matrices V,G by (22);

(4) run the SVD decomposition on V G> s.t. V G> = UDX>;

(5) set a
(k+1)
i to be the i-th column vector of the matrix A(k+1) = 1

rXU
>

for i = 1, . . . , r2.

(III) Output {a(K)
i }r2i=1.

13



3.4. Experiments on real images

To illustrate the tight frame constructed from Algorithm 1, the proposed
algorithm is tested on some real images which contain both cartoon-type regions
and texture regions. As we discussed in Section 3.2, neither Algorithm 1 is
seeking for the tight frame which maximizes the sparsity of the canonical tight
frame coefficients, nor it is seeking for the tight frame in which the signal can
be approximated by a optimally sparse coefficient vector. Instead, Algorithm 1
seeks for the tight frame system whose resulting approximation balances the
sparsity of the tight frame coefficients and the regularity of the reconstruction.
Nevertheless, the tight frame reconstructed by Algorithm 1 is still much more
effective on sparsifying the canonical tight frame coefficients than the existing
non-adaptive ones. In the experiments, we measure the effectiveness of such a
sparsification as follows. Given a tight frame W and an image g, let Γα% denote
the hard thresholding operator which keeps α% of the largest frame coefficients
in absolute value and set all other coefficients to zero. Then we calculate the
PSNR value of W>(Γα%(Wg)) to measure the quality of the reconstructed
image by only using α% of frame coefficients. When the same percentage of
canonical frame coefficients is used, a larger PSNR value of the reconstruction
implies that the tight frame sparsifies the canonical coefficients of the input
image more effectively. For an image x, the peak signal to noise ratio (PSNR)
of its estimate x̂ is defined as

PSNR(x̂,x) = 10 log10

2552

1
LM

∑L
i=1

∑M
j=1(x̂(i, j)− x(i, j))2

where L and M are the dimensions of the image x, and x(i, j), x̂(i, j) are the
pixel values of the input and the estimate images at the pixel location (i, j).

In the experiments, Algorithm 1 is applied to two images “Barbara” and
“Lena” shown in Fig. 2 (a) with two different initializations. The filters of one
initialization are the 2-level tensor Haar wavelet filters with totally 16 filters

a
(0)
ij = 1

4aia
>
j for i, j = 1, . . . , 4, where

a1 =
1

2


1
1
1
1

 , a2 =
1

2


1
1
−1
−1

 , a3 =
1√
2


1
−1
0
0

 , a4 =
1√
2


0
0
1
−1

 .

The filters of the other initialization is the tensor linear spline framelets [4] with
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(a) (b)

Figure 1: Comparison of the PSNR values of the reconstructions using only a portion of the
tight frame coefficients under different tight frame systems. The x-axis denotes the percentage
of the tight frame coefficients used in the reconstruction and the y-axis denotes the PSNR value
of the reconstruction. (a) Comparison between the 5-level un-decimal Haar wavelet system
and the tight frame systems obtained by Algorithm 1 taking as input the Haar wavelet filters.
Both system have 16 filters in total. (b) Comparison between the 6-level un-decimal linear
spline framelet system and the tight frame systems obtained by Algorithm 1 taking as input
the linear framelet filters. Both systems have 49 filters in total.
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Figure 2: Illustration of the data-driven tight frame filters constructed by Algorithm 1. (a)
Two tested images “Barbara” and “Lena”; (b): filters associated with the multi-level Haar
wavelets (on the top) and the filters associated with the multi-level linear spline framelet (on
the bottom); (c) corresponding adaptive tight frame filters constructed by Algorithm 1 using
the filters in (b) as the input. One small block of the images shown in (b) and (c) represents
one filter.
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totally 49 filters a
(0)
ij = 1

7aia
T
j for i, j = 1, . . . , 7, where

a1 = 1
16
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In Figure 1, the PSNR values of the reconstruction using different percent-
ages of tight frame coefficients are plotted with respect to different images and
different tight frame systems. Clearly, the tight frames constructed by Algo-
rithm 1 are more effective on sparsifying the canonical tight frame coefficients
of the input images than the Haar wavelets and linear framelets, as the PSNR
values of the reconstructed images are significantly higher using the same per-
centage of canonical frame coefficients. Such an effectiveness comes from the
fact that the tight frame constructed by Algorithm 1 can efficiently capture the
repeating complex texture patterns of two input images while the two exist-
ing frame systems can not. See Fig. 2 for an illustration of the filters of the
tight frames constructed by Algorithm 1 with respect to two different initial-
izations and two different images. It can be seen that the filters constructed by
Algorithm 1 tend to fit the repeating patterns in the images.

4. Adaptive tight frame image denoising method

Algorithm 1 can easily be extended to an adaptive tight frame denoising
method as follows. The proposed construction scheme of an adaptive tight
frame is first applied to a noisy input and then the obtained tight frame is used
for noise removal. Let f = g + n denote some noisy observation of g where
n denotes the i.i.d. Gaussian white noise. Then the first two steps in (II) of
Algorithm 1 can be viewed as a thresholding denoising method under a tight
frame. The intermediate denoising result during each iteration is

g(k) = W (k)>(Tλ(W (k)f))

with W (k) = W (a
(k)
1 , . . . , a

(k)
r2 ), where λ is the threshold whose value depends

on both the noise level and the desired sparsity degree of the image. After
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Algorithm 1 is terminated, the resulting tight frame W (K) = W (a
(K)
1 , . . . , a

(K)
r2 )

can be used to denoise the image

g(K) = W (K)>(Tλ̃(W (K)f)), (26)

where λ̃ is the threshold only determined by the noise level. Thus, the value of
λ should be set larger than the value of λ̃. It can be empirically observed that
λ ≈ 2λ̃ is a good choice. Notice that the tight frame constructed during each
iteration is directly estimated from the noisy data f instead of the noise-free
image g.

The above adaptive tight frame denoising method is evaluated on several
test images with different configurations. Through all experiments, all noisy
images degraded by i.i.d. Gaussian white noise are synthesized as follows:

f = g + ε(σ),

where ε(σ) is the i.i.d Gaussian noise with zero mean and standard deviation
σ. Besides visual inspection, the PSNR measurement is used to quantitatively
evaluate the quality of the de-noised results. There are only two parameters
in our adaptive tight frame denoising method, namely λ in Algorithm 1 and
λ̃ in (26). Both of them are closely related to the noise variance σ and the
redundancy degree of the used tight frame system. Through all experiments,
we uniformly set λ = 5.1σ and λ̃ = 2.6σ. These parameters have been chosen
empirically to achieve the best average PSNR value of the results for many real
images.

4.1. Performance of the proposed method with respect to different filter sizes
and different initializations

In this experiment, we would like to see how the performance of the pro-
posed method is influenced by certain settings, including the filter size and the
initialization of tight frame. Three different types of initialized tight frames: un-
decimal local discrete cosine transform (DCT), un-decimal Haar wavelets [1] and
un-decimal linear framelet [16], are tested on the image “Barbara” with different
filter sizes. The filters for DCT are the tensor products of columns of the r × r
DCT-IV transform matrix [39] defined by D(k, n) = w(k) cos

(
π(2n−1)(k−1)

2r

)
,

where w(k) = 1√
r

for k = 1 and w(k) =
√

2
r for k = 2, . . . , r. The Haar wavelet

filters of size 2 × 2, 4 × 4, 8 × 8 and 16 × 16 are corresponding to the filters
associated with the 1, 2, 3, 4-level un-decimal wavelet decompositions and recon-
structions respectively. The linear tight frame filters of size 3× 3, 7× 7, 15× 15
are corresponding to the filters associated with the 1, 2, 3-level framelet decom-
positions and reconstructions respectively. Table 1 lists the PSNR values of the
results from our approach after 25 iterations, using different initializations on
tight frame of different filter sizes. It can be seen from Table 1 that the choice
of tight frame used for initialization does not matter much. The PSNR values
of the results for the three different types of tight frames are nearly the same.
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initial tight frame filter size hard thresholding Algorithm 1

local DCT

2×2 26.90 26.32
4×4 28.60 28.96
8×8 30.08 30.47
9×9 30.21 30.64

16×16 30.45 30.93

Haar Wavelet

2×2 26.82 26.34
4×4 27.59 29.91
8×8 27.99 30.46

16×16 28.05 30.95

linear framelet
3×3 27.52 28.14
7×7 28.70 30.22

15×15 28.95 30.86

Table 1: Comparison of the PSNR values (dB) of the de-noised results by the wavelet thresh-
olding denoising method and by Algorithm 1 with respect to different initializations on tight
frames and different filter sizes.

However, the performance of our method varies significantly with respect to
different filter sizes. It can be seen that the larger the filter size is, or equiva-
lently the more filters are used, the higher the PSNR values of the results will
be. It is not surprising as the larger the filter size is and the more filters are
used, which makes the learned tight frame filters are more likely to capture the
special structures of the input image. At last, the learned adaptive tight frame
filters after 25 iterations are shown in Fig. 2 (a), in comparison with the initial
inputed 4-level Haar wavelet filters shown in Fig. 2 (b).

4.2. Computational efficiency

To evaluate the computational efficiency of Algorithm 1, we conduct all ex-
periments under MATALB R2011b (64 bit) on a PC workstation with a 6 core
INTEL Xeon CPU (2.4 Ghz) and 48 GB memory. Table 2 lists the PSNR val-
ues of the results for the image “Barbara” of size 512 × 512 by Algorithm 1
with different maximum iteration numbers. The tight frame is initialized by 64
3-level Harr wavelet filters. It can be seen from Table 2 that after 50 iterations,
there is little improvement on the PSNR values of the results. In other words,
50 iterations seem to be adequate to yield a good discrete tight frame for image
denoising. Therefore, through all experiments conducted in this section, the
maximum iteration number of Algorithm 1 is set to 50. Under the same hard-
ware and software environment, the running time of Algorithm 1 is compared
against that of the most related dictionary learning based method, the K-SVD
method [12].

The MATLAB implementation of the K-SVD method used for comparison
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comes from its original authors1 and is available online. There are two stages
during each iteration of the K-SVD method: sparse coding and dictionary up-
date. The sparse coding is to estimate a sparse coefficient vector under an
over-complete dictionary, which is done via orthogonal matching pursuit (OMP)
[40, 41]. The dictionary update in the K-SVD method is done via sequentially
updating each atom in the dictionary via SVD. For an image of size 512× 512,
the dimension of the learned dictionary is 256 when using patch size 8×8. Thus,
totally 256 SVD operations for matrices of size 256×N are needed when updat-
ing the dictionary, where N (about 6× 104) is the number of patches. Usually
15 iterations are needed for the K-SVD method to generate satisfactory results,
which leads to more than 3000 SVD operations during the computation.

Similarly, there are also two stages during each iteration of Algorithm 1:
hard thresholding and tight frame update. The hard thresholding is to set the
tight frame coefficients to zero if they are below the given threshold and do
nothing otherwise. In contrast to the K-SVD method, the tight frame update
in Algorithm 1 can update all elements of tight frame in one SVD operation for
a matrix of size 64× 64 when using filter size 8× 8. Overall 50 SVD operations
are needed for 50 iterations of Algorithm 1 to generate good results.

The most costly computation happens on the synthesis of the matrix V G>

for V,G ∈ Rr2,N in Step (II)-(4), where N is the number of image pixels. One
way to further speed up Algorithm 1 is to reduce the size of the matrices V
and G by down-sampling the columns. Such a down-sampling operation on V
and G can be viewed as using a decimal wavelet system in image domain when
learning a tight frame. For example, when down-sampling the columns of V
and G by 4, the computation time is reduced to 1/7 of the original one while
the loss on PSNR value is in general smaller than 0.2.

Table 2 lists the running times of the K-SVD method and Algorithm 1 for
the image ”Barbara” of size 512× 512 with noise of standard deviation σ = 20.
Notice that the running time is only dependent on the image size. Algorithm 1
is about 60 times faster than the K-SVD method when using patch size 8 × 8
and 30 times faster when using patch size 16 × 16. Table 4 shows detailed
information about the running time of each module in both the K-SVD method
and Algorithm 1. It can be seen that the sparse coding by OMP in the K-
SVD method accounts for most of the running time. In contrast, the hard
thresholding in Algorithm 1 runs much faster. Also, the tight frame update in
Algorithm 1 is much faster than the dictionary update in the K-SVD method,
since far less SVD operations (50 vs. 3000) are called in Algorithm 1.

4.3. Experiments on several sample images.

In this experiment, we test the proposed method with different filter sizes
on several images of different types, as shown in Fig. 3. The noisy inputs
are synthesized by adding i.i.d. Gaussian white noise with different standard
deviation σ to the original images. Two filter sizes are used in the experiments:

1http://www.cs.technion.ac.il/~elad/software/
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σ
K

input 0 5 15 25 50 100 200 K-SVD

5 34.14 36.47 37.84 38.16 38.23 38.32 38.35 38.37 38.14

10 28.13 31.71 33.34 34.49 34.63 34.69 34.73 34.73 34.43

15 24.59 28.96 31.00 31.89 32.35 32.51 32.55 32.57 32.42

20 22.11 27.11 28.07 30.69 30.87 30.95 30.99 31.00 30.93

25 20.18 25.68 27.38 29.62 29.76 29.80 29.81 29.82 29.76

Table 2: The PSNR values (dB) of the noisy image, denoised results by Algorithm 1 with
maximum iteration number K = 0, 5, 15, 25, 50, 100, 200 and de-noised results by the K-SVD
method with 15 iterations respectively, where σ denote the standard deviation of the image
noise. The support of the filters in Algorithm 1 is set to 8 × 8. The patch size is set to 8 × 8
in the K-SVD method.

patch / filter running time (sec.)
K-SVD Algorithm 1

size vs. PSNR (dB)

8× 8
time 1123.34 19.09

PSNR 30.89 30.51

16× 16
time 2984.02 102.63

PSNR 30.16 31.04

Table 3: Comparison of running time between the K-SVD method with 15 iterations and
Algorithm 1 with 50 iterations.

patch / filter
stage 8× 8 16× 16

size

K-SVD
dictionary update 6.80 20.77

sparse coding 54.44 145.30

Algorithm 1
tight frame update 0.07 0.89

thresholding 0.14 1.05

Table 4: Running time (in second) breakdown for one iteration of the K-SVD method and
two implementations of Algorithm 1 with patch size 8 × 8 and 16 × 16.
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Barbara Cameraman Boat Couple

Fingerprint Hill Lena Man

Figure 3: Visualization of 9 tested images.

8× 8 and 16× 16. The results generated by using 50 iterations of Algorithm 1
are compared against the results from the thresholding method by 3-level un-
decimal Haar wavelets, the K-SVD method with patch size 8×8 and the K-SVD
method with patch size 16 × 16. Table 5 summarizes the PSNR values of the
denoising results from these methods with different configurations.

As can be seen from Table 5, both the K-SVD method and our method per-
formed much better than the Haar wavelet thresholding method on all images.
In particular, there are significant improvements using the adaptive systems
on the images “Barbara”, “Fingerprint” and “Lena”. The main reason is that
these three images have some complex texture regions which the Haar wavelet
transform cannot effectively sparsify.

On the other hard, the performances of the K-SVD method and our ap-
proaches are in general comparable. There are images on which the K-SVD
method performed better and there are some on which our approaches per-
formed better. Overall, the performances of our proposed method and the
K-SVD method are comparable in terms of PSNR value, and so is the visual
quality. See Fig. 4 and Fig. 5 for visual inspection of the results for the image
“Barbara” by different methods.

5. Conclusion and future work

Finding a sparse approximation of a given image plays an important role in
many image restoration tasks. Wavelet tight frames have been successfully used
to restore the image of interest by utilizing its sparsity under the wavelet tight
frame, e.g, the framelets or un-decimal wavelets. However, due to the significant
variations of image structure, a pre-defined redundant system is not efficient
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(a) noisy image; 20.09 dB (b) wavelet thresholding; 27.98 dB

(c) K-SVD (8× 8); 30.93 dB (d) Algorithm 1 (8× 8); 30.42 dB

(e) K-SVD (16× 16); 30.16 dB (f) Algorithm 1 (16× 16); 31.01 dB

Figure 4: Visual comparison of denoising results. (a) Noisy image; (b) result by the hard-
thresholding method under 3-level un-decimal Haar wavelet system; (c) and (e): results by
he K-SVD method with patch size 8 × 8 and 16 × 16 respectively; (d) and (f): results by
Algorithm 1 with filter size 8 × 8 and 16 × 16 respectively.
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(a) noisy image (b) wavelet thresholding

(c) K-SVD (8× 8) (d) Algorithm 1 (8× 8)

(e) K-SVD (16× 16) (f) Algorithm 1 (16× 16)

Figure 5: Demonstration of one local region of the results shown in Fig. 4. (a) Noisy image;
(b) result by the hard-thresholding method under 3-level un-decimal Haar wavelet system; (c)
and (e): results by the K-SVD method with patch size 8× 8 and 16× 16 respectively; (d) and
(f): results by Algorithm 1 with filter size 8 × 8 and 16 × 16 respectively.
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noise Framelet K-SVD Algorithm 1
σ thresholding

patch/filter
3-level Haar 8 × 8 16 × 16 8 × 8 16 × 16

image
size

Barbara

10 32.08 34.52 34.11 34.36 34.63
20 27.98 30.88 30.26 30.60 31.07
30 25.76 28.58 27.82 28.42 29.07
40 24.25 26.96 26.16 26.88 27.60
50 23.18 25.43 24.68 25.67 26.48
60 22.32 24.32 23.55 24.72 25.64

Cameraman

10 32.93 33.83 32.84 33.62 33.29
20 28.98 29.97 29.06 29.80 29.67
30 26.69 28.10 27.22 27.66 27.71
40 25.11 26.94 25.89 26.26 26.34
50 23.57 25.71 25.05 25.04 25.33
60 22.53 24.74 24.05 23.96 24.44

Boat

10 32.80 33.63 33.03 33.62 33.59
20 29.36 30.39 29.51 30.38 30.41
30 27.25 28.44 27.38 28.39 28.45
40 25.74 27.09 25.90 27.06 27.18
50 24.48 25.96 24.86 25.99 26.08
60 23.51 24.92 23.99 25.02 25.37

Couple

10 33.06 33.54 32.88 33.63 33.55
20 29.42 30.06 29.15 30.09 30.19
30 27.24 27.95 26.96 28.16 28.27
40 25.60 26.42 25.17 26.72 26.95
50 24.39 25.37 24.13 25.68 25.87
60 23.36 24.49 23.26 24.80 25.04

Fingerprint

10 30.44 32.37 31.88 32.23 32.25
20 26.49 28.50 27.68 28.32 28.40
30 24.26 26.30 25.23 26.18 26.34
40 22.70 24.71 23.59 24.67 24.95
50 21.45 23.31 22.32 23.52 23.88
60 20.49 21.87 21.20 22.43 23.07

Hill

10 32.69 33.38 32.83 33.28 33.28
20 29.46 30.20 29.41 30.22 30.30
30 27.58 28.40 27.39 28.56 28.61
40 26.12 27.13 26.00 27.36 27.52
50 24.96 26.29 24.91 26.48 26.63
60 23.98 25.61 24.22 25.62 25.92

Lena

10 34.22 35.52 34.99 35.52 35.65
20 30.69 32.48 31.74 32.25 32.56
30 28.52 30.38 29.61 30.22 30.58
40 26.83 29.04 28.19 28.80 29.16
50 25.50 27.91 26.93 27.60 28.14
60 24.36 26.81 25.77 26.73 27.26

Man

10 32.76 33.59 32.76 33.57 33.51
20 29.17 30.18 29.15 30.07 30.01
30 27.14 28.31 27.16 28.20 28.24
40 25.79 27.07 25.90 27.00 26.99
50 24.63 26.08 24.79 26.11 26.13
60 23.67 25.29 24.05 25.25 25.38

Table 5: Comparison of the PSNR values (dB) of the results from Algorithm 1 and the K-SVD
method.
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when representing images of complex structures. In this paper, we developed an
iterative numerical scheme to construct a discrete tight frame that is adaptive to
the given image. Different from most existing learning based approaches which
learn an over-complete dictionary, the dictionary constructed in our approach is
always a tight frame during each iteration. Based on the proposed construction
scheme, the derived adaptive tight frame denoising method shows its advantage
over the traditional wavelet thresholding method. Also, our tight frame based
approach is much faster than the over-complete dictionary based approaches,
e.g., the K-SVD method.

The data-driven tight frame proposed in this paper can not only be used for
image denoising, but also for solving other image restoration tasks such as image
deconvolution. In near future, we would like to extend the concept of data-driven
tight frame construction to other image restoration applications. Moreover,
the sparsity prior explored in the existing wavelet frames and the proposed
data-driven tight frame only refers to the sparse nature of local variations of
the image intensity. In other words, such a sparsity prior is a local image
prior. Another promising image restoration approach emerging in recent years
is the non-local approach that is based on another often seen image prior: the
global self-recursive prior of small image structures. Examples are the non-local
mean introduced in [42] for image de-noising and the patch based BM3D image
denoising method [43]. In the future, we also would like to investigate how
to construct adaptive tight frame that not only utilize the local sparsity-based
image prior but also exploit the global self-recursion prior of image structures.
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