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Abstract

In quantitative susceptibility mapping (QSM), the background field removal is an essential data
acquisition step because it has a significant effect on the restoration quality by generating a harmon-
ic incompatibility in the measured local field data. Even though the sparsity based first generation
harmonic incompatibility removal (1GHIRE) model has achieved the performance gain over the tra-
ditional approaches, the 1GHIRE model has to be further improved as there is a basis mismatch
underlying in numerically solving Poisson’s equation for the background removal. In this paper, we
propose the second generation harmonic incompatibility removal (2GHIRE) model to reduce a basis
mismatch, inspired by the balanced approach in the tight frame based image restoration. Experimen-
tal results shows the superiority of the proposed 2GHIRE model both in the restoration qualities and
the computational efficiency.

Mathematics subject classification: 35R30, 42B20, 45E10, 65K10, 68U10, 90C90, 92C55
Key words: Quantitative susceptibility mapping, magnetic resonance imaging, deconvolution, partial
differential equation, harmonic incompatibility removal, (tight) wavelet frames, sparse approximation

1. Introduction

Quantitative susceptibility mapping (QSM) [1] is a novel noninvasive imaging method which vi-
sualizes the magnetic susceptibility distribution of a human body from a given local field perturbation
data measured from the magnetic resonance imaging (MRI) signal. The magnetic susceptibility χ is a
physical property of a material which relates a magnetization M = (M1,M2,M3) and a magnetic field
H = (H1,H2,H3) through M = χH [2]. The physiological and/or pathological processes alter the scalar
tissue magnetic susceptibilities [2], whose visualization is becoming reasonably robust and accurate for
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Fig. 1.1. Schematic diagram of QSM reconstruction process. Dashed line indicates that the extracted ROI is used
for the background removal and/or the dipole inversion.

practical applications [3]. Consequently, QSM recently covers a various range of clinical application-
s such as demyelination, inflammation, and iron overload in multiple sclerosis [4], neurodegeneration
and iron overload in Alzheimer’s disease [5], Huntington’s disease [6], changes in metabolic oxygen
consumption [7], hemorrhage including microhemorrhage and blood degradation [8], bone mineraliza-
tion [9], and drug delivery using magnetic nanocarriers [10].

QSM is based on the post processing the phase data of a complex gradient echo (GRE) signal
because the magnetic susceptibility distribution in an MR scanner induces the total field which can
be captured by the phase shifts in the GRE signal [11, 12]. The post processing consists of the four
stages; the phase offset correction, the phase unwrapping, the background field removal, and the dipole
inversion; see Figure 1.1 for the brief overview of the process. Throughout this paper, we only focus
on the background field removal to estimate the local field induced by the susceptibility in the region of
interest (ROI)Ω ⊆ R3 which occupies the water and brain tissues, and the dipole inversion to reconstruct
and visualize the susceptibility distribution in the ROI Ω using the measured local field data. Interested
readers may refer to e.g. [12] and references therein for more details on the other QSM stages such as
the phase offset correction, the phase unwrapping, etc.

Given the local field f , the susceptibility reconstruction is based on solving the following convolu-
tion relation [13–15]:

f (x) = pv
∫
Ω

d(x − y)χ(y)dy, (1.1)

where pv denotes the principal value [16] of the singular integral with the kernel d:

d(x) =
2x2

3 − x2
1 − x2

2

4π|x|5 .

In the frequency domain, (1.1) reads

F( f )(ξ) = D(ξ)F(χ)(ξ) =
13 − ξ23|ξ|2

F(χ)(ξ) (1.2)

whereD = F(d) is the Fourier transform of d, and by the definition of pv,D(0) = 0 [1,17]. From (1.2),
we can easily see that the inverse problem is ill-posed as D(ξ) = 0 for ξ satisfying ξ21 + ξ

2
2 − 2ξ23 = 0;

whenever the measured local field data f contains the incompatibilities, the reconstructed susceptibility
image contains artifacts [18].
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1.1. Effects of background field removal on susceptibility restoration

In the literature, there have been extensive studies related to the noise (e.g. [19,20]), while the incom-
patibilities arising from the background removal have received little attention. In fact, the background
field removal is one of the most crucial data acquisition steps as the incompatibilities generated from
this step is different from the additive noise, which has a significant effect on the recovery unless it is
appropriately suppressed [21].

For the brief explanation on the background field removal, assume that the susceptibility χ is com-
pactly supported (not necessarily strictly supported in Ω) on R3. Then the induced total field b satisfies
the following partial differential equation (PDE):

−∆b = P(D)χ :=
−1

3
∆ +

∂2

∂x2
3

 χ. (1.3)

Interested readers may consult [21] and the references therein for the detailed derivation. Hence, b can
be expressed as the following Newtonian potential (e.g. [22]):

b(x) =
∫
R3
Φ(x − y)

−1
3
∆y +

∂2

∂y2
3

 χ(y)dy (1.4)

where Φ(x) = 1/ (4π|x|) is the fundamental solution of −∆.
Comparing (1.1) and (1.4), and together with [18, Proposition A.1], we can see that the goal of

background field removal is to reduce the domain of integration from R3 toΩ. Namely, given a (limited)
total field b, we may obtain the local field data f by solving

−∆ f = 1Ω (−∆b) (1.5)

where 1Ω is the characteristic function of Ω. However, since (1.5) is underdetermined, we need addi-
tional information for the unique estimation [23]. One benchmark approach is imposing the following
Dirichlet boundary condition  −∆ f = −∆b in Ω

f = 0 on ∂Ω.
(1.6)

Even though (1.6) admits the unique solution, its solution is represented as the Green’s function G(x, y)
associated to Ω [24]. Recently, based on this fact, the authors in [21] show that the solution to (1.6) is
represented as

f (x) =
∫
Ω

Φ(x − y)
−1

3
∆y +

∂2

∂y2
3

χ(y)dy + v(x) (1.7)

where v satisfies ∫
R3

v(x) (−∆φ) (x)dx =
∫
∂Ω

[
∂vi

∂n
(x) − ∂ve

∂n
(x)
]
φ(x)dσ(x) (1.8)

for φ ∈ C∞0 (R3), and

∂vi

∂n
− ∂ve

∂n
, 0 almost everywhere on ∂Ω (1.9)
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whenever P(D)χ , 0 in Ω. Here, vi and ve are the restriction of v in Ω and R3 \ Ω respectively, n is
the outward unit normal vector of ∂Ω, and σ is the surface measure on ∂Ω. Note that vi and ve are the
solutions of

−∆vi = 0 in Ω (1.10)

−∆ve = 0 in R3 \Ω (1.11)

vi = ve = −b on ∂Ω, (1.12)

respectively, which shows that v is continuous on ∂Ω due to the common boundary condition (1.12).
This means that even in the noise-free case, the local field f obtained from (1.6) contains an incom-

patibility harmonic except on ∂Ω, which we shall call v the harmonic incompatibility in what follows.
Since v is smooth, analytic, and satisfies the mean value property except on ∂Ω [24], it has slow varia-
tions compared to the additive noise [21]. Hence, it mostly affects the low frequency components in f
while the noise mainly affects the high frequency components. Together with the ill-posedness of (1.1),
the incompatibility in low frequency components of f leads to the shadow artifacts in the reconstructed
image, while that in high frequency components leads to the streaking artifacts [21]. However, since
the traditional single system based regularization approaches cannot suppress both incompatibilities si-
multaneously, the unsuppressed incompatibility in turn leads to the erroneous susceptibility restoration
results.

1.2. Motivations and contributions of our approach

Recently, the authors in [21] further observed that −∆v is sparse in the discrete setting, and proposed
the following first generation harmonic incompatibility removal (1GHIRE) model for the susceptibility
reconstruction

min
χ,v

1
2
∥Aχ + v − f ∥2Ξ + λ ∥Lv∥1 + ∥γ ·Wχ∥1,2 (1.13)

where A denotes the discretization of the forward operator in (1.7), L is the discrete Laplacian, W is
a given wavelet frame transformation with L level of decomposition, and γ = {γl : l = 0, · · · , L − 1} is
a regularization parameter imposing different penalization on each level. (The detailed introductions
of the notation will be postponed until subsection 2.1). By imposing the sparse regularization of Lv,
1GHIRE model (1.13) adopts the idea of two system regularization [25, 26] so that the incompatibility
other than the additive noise can be taken into account.

Even though the above 1GHIRE model has achieved the susceptibility image reconstruction with
less artifacts compared to the traditional single system based regularization approaches, it has to be
further improved. It should be noted that the ℓ1 norm which promotes the sparsity of Lv in the entire
image domain may not be capable of fully reflecting the harmonic incompatibility v except on ∂Ω,
albeit it can be a way of relaxation when considering the error source of the forward model in QSM.
Since the measured data f can contain the outliers in Ω whose intensity is stronger than Lv [11], ∥Lv∥1
in (1.13) may capture such outliers, leading to the erroneous removal in the harmonic incompatibility.
Most importantly, since the discrete images and the ROI defined on the regular grids are available only,
there exists a basis mismatch arising from numerically solving (1.6); that is, a mismatch between the true
supports of −∆v in the continuous domain and those of Lv in the discrete setting. Such a basis mismatch
can degrade the sparsity of Lv, which may in turn lead to the degradation of restoration quality. Indeed,
even though we can consider the following variant model

min
χ,v

1
2
∥Aχ + v − f ∥2Ξ + λ ∥(Lv)Λc∥pp + ∥γ ·Wχ∥1,2 (1.14)
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where p = 1 or 2, and Λ is the estimated support of Lv, the underlying basis mismatch results in the
restoration result highly sensitive to the estimation of Λ.

In this paper, we improve the previous 1GHIRE model (1.13) to reduce the basis mismatch under-
lying in solving (1.6). The proposed second generation harmonic incompatibility removal (2GHIRE)
model is inspired by the balanced approach (e.g. [27–29]) in the tight frame based image restoration.
More specifically, since the basis mismatch hampers Lv from being sparse on the discrete grid, we
provide a flexibility in sparse approximation of Lv instead of directly enforcing the properties of −∆v
mentioned in subsection 1.1. Finally, experiments on both brain phantom and in-vivo MR data con-
sistently show that the proposed 2GHIRE model is robust to the estimation of Λ, achieving further
improvements over the previous 1GHIRE model and its variants.

1.3. Organization of paper

In section 2, we introduce the proposed 2GHIRE model to reduce a basis mismatch, followed by an
alternating minimization algorithm. In section 3, we present experimental results for both brain phantom
and in vivo MR data, and section 4 concludes this paper with some future directions.

2. Second generation harmonic incompatibility removal (2GHIRE) model

2.1. Proposed 2GHIRE susceptibility reconstruction model

We begin with introducing some notations. LetO = {0, · · · ,N1 − 1}×{0, · · · ,N2 − 1}×{0, · · · ,N3 − 1}
denote the set of indices of N1 × N2 × N3 grids, and let Ω ⊆ O denote the set of indices corresponding
to the ROI. Denote ∂Ω to be the set of indices where the boundary condition in (1.6) is active. Finally,
the space of real valued functions defined on O is denoted as I3 ≃ RN1×N2×N3 .

As in [21], we model the (noisy) measured local field data f ∈ I3 obtained from (1.6) (and satisfying
f = 0 in O \Ω) as

f = Aχ + v + η. (2.1)

Here, A = F−1DF denotes the discretization of the forward operator in (1.7), χ ∈ I3 denotes the
unknown true susceptibility image supported in Ω, v ∈ I3 is the incompatibility arising from solving
(1.6), and η is the additive noise.

In the ideal discrete setting where the boundary in the continuous domain is well aligned with the
discrete grid O, the properties of the harmonic incompatibility v read as follows: there exists w ∈ I3

such that

Lv = w and supp(w) = ∂Ω (2.2)

with the discrete Laplacian L, so that we have

∥Lv∥0 = |∂Ω| ≪ |O|. (2.3)

However, it is in general difficult to directly apply (2.2) into the susceptibility reconstruction model
because 1) the real MRI data may not exactly satisfy (2.2) due to the (possibly) anisotropic spatial
resolution [21]; 2) since the discrete magnitude and phase images are available only, it is inevitable
to have a basis mismatch [30, 31] between the true support of −∆v in the continuous domain and the
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discrete grid, which in turn leads to to the loss of (2.2) in the discrete setting. As a consequence, we
propose the second generation harmonic incompatibility removal (2GHIRE) model as follows:

min
χ,v,w

1
2
∥Aχ + v − f ∥2Ξ +

λ

2
∥Lv − w∥22 + ∥γ ·Wχ∥1,2

subject to PΛc w = 0 and ∥w∥0 ≤ r
(2.4)

whereΛ denotes the estimation of supp(Lv), r is an estimated model order, PA is the projection operator
onto a set A, and the ℓ0 norm constraint comes from the fact that the circulant lifting is diagonalized
by the unitary discrete Fourier transform (i.e. rank

(
Cŵ
)
= ∥w∥0). Here, ∥·∥2Ξ = ⟨Ξ·, ·⟩ where the SNR

weight Ξ is estimated from the MRI [14, 32], and ∥γ ·Wχ∥1,2 is the isotropic ℓ1 norm of the B-spline
wavelet frame coefficients defined as

∥γ ·Wχ∥1,2 :=
∑
k∈O

L−1∑
l=0

γl[k]

∑
α∈B

∣∣∣(Wl,αχ
)

[k]
∣∣∣21/2 (2.5)

where B = {0, 1, · · · ,m}3 \{0} denotes the framelet band [33]. Interested readers can refer to e.g. [33,34]
and the references therein for the introduction on the B-spline wavelet frames.

Note that numerous variational regularizations for the susceptibility reconstruction were already
proposed in the literature. The most widely used variational approaches include total variation [35],
total generalized variation [36], weighted total variation for morphological consistency [37], and so on.
However, sinceD(0) = 0, the χ subproblem in the alternating direction method of multipliers (ADMM)
for the variational susceptibility reconstruction models has a rank deficient system matrix. Hence, we
may need additional prior information such as the zero susceptibility value in the cerebrospinal fluid
region [38] for the stable reconstruction. In contrast, by using the tight frame regularization, the system
matrix of χ subproblem has a full column rank, which leads to the computational efficiency over the
existing variational methods [21].

In the 2GHIRE model (2.4), the first constraint (PΛc w = 0) reflects (2.2) so that we can prevent w
from capturing the outliers in Ω [11]. In addition, it is easy to see that the sparsity constraint (∥w∥0 ≤ r)
reflects (2.3). Finally, similar to the balanced approach (e.g. [27–29]) in the tight frame based image
restoration, the term ∥Lv − w∥22 balances the distance between Lv and w where w satisfies the aforemen-
tioned constraints. Obviously, if we set λ = ∞, then w = Lv, and (2.4) becomes

min
χ,v

1
2
∥Aχ + v − f ∥2Ξ + ∥γ ·Wχ∥1,2

subject to PΛc (Lv) = 0 and ∥Lv∥0 ≤ r.
(2.6)

For our purpose, the choice of (2.4) instead of (2.6) and the reasons are as follows: first of all, Lv may
not exactly satisfy (2.2) due to the basis mismatch arising in solving (1.6) numerically with a given
discrete total field data and a given discrete ROI. Since this basis mismatch degrades the sparsity of
Lv on O, the restoration result will be highly sensitive to the choice of Λ when we directly impose
(2.2) and (2.3). In addition, the local field f is in general dominated by the errors near the boundary
because the GRE signal lacks information outside the ROI [12]. This means that, the direct constraint
will in fact restore a harmonic incompatibility v induced by the errors near the boundary rather than by
information of (unknown) −Aχ on ∂Ω described in [21, Theorem 2.2]. This erroneous restoration of
v affects the low frequency components of f again, leading to the new shadow artifacts in the restored
images. In contrast, the proposed 2GHIRE model (2.4) does not strictly require that Lv satisfy the above
properties (2.2) and (2.3). By balancing the distance between Lv which does not satisfy the constraint
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in general and w which satisfies the constraints instead, we expect to achieve the better suppression of
incompatibilities as well as the restoration results more robust to the estimation of Λ than (2.6).

Finally, we mention that the proposed 2GHIRE model is not limited to (2.4). In fact, as mentioned

in [21], the nonlinear fidelity term 1
2

∥∥∥∥m (ei(Aχ+v)ω0B0T E − eiblω0 B0T E
)∥∥∥∥2

2
can be used to further compensate

the errors arising in the phase unwrapping, which will be more appropriate to the GRE signal model
[3, 19]. Indeed, it is also worth noting that (1.14) with p = 2 can be viewed as the linearized version of
the nonlinear model in [11]. Nonetheless, we forgo further discussions on the nonlinear variants as it is
beyond the scope of this paper.

2.2. Numerical algorithm

Overall alternating minimization algorithm is as follows: for n = 0, 1, · · · ,

(χn+1, vn+1) = argmin
χ,v

1
2
∥Aχ + v − f ∥2Ξ +

λ

2
∥Lv − wn∥22 + ∥γ ·Wχ∥1,2 (2.7)

wn+1 = argmin
PΛc w=0
∥w∥0≤r

∥w − Lvn+1∥22 (2.8)

i.e. we update (χ, v) and w alternatively.
To solve (2.7), we use the split Bregman algorithm given in [32] in the framework of alternating

direction method of multipliers (ADMM) [39]. For the completeness, we present the full details of the
split Bregman algorithm for solving (2.7): for m = 0, 1, · · · ,χm+1

vm+1

 = argmin
β

2
∥Aχ + v − em + ẽm∥22 +

β

2
∥Wχ − cm + c̃m∥22 +

λ

2
∥Lv − wn∥22 (2.9)

cm+1 = argmin ∥γ · c∥1,2 +
β

2
∥c −Wχm+1 − c̃m∥22 (2.10)

em+1 = argmin
1
2
∥e − f ∥2Ξ +

β

2
∥e − Aχm+1 − vm+1 − ẽm∥22 (2.11)

c̃m+1 = c̃m +Wχm+1 − cm+1 (2.12)

ẽm+1 = ẽm + Aχm+1 + vm+1 − em+1 (2.13)

where we omit the outer iteration subscript n for the notational simplicity.
Note that each subproblem has a closed form solution and it can be written asχm+1

vm+1

 = AT A + I AT

A I + λ/βLTL

−1 AT (em − ẽm) +WT (cm − c̃m)

em − ẽm + λ/βL
T wn

 (2.14)

cm+1 = Tγ/β (Wχm+1 + c̃m) (2.15)

em+1 = (Ξ + βI)−1 {Ξ f + β (Aχm+1 + vm+1 + ẽm)} (2.16)

c̃m+1 = c̃m +Wχm+1 − cm+1 (2.17)

ẽm+1 = ẽm + Aχm+1 + vm+1 − em+1. (2.18)

It is not hard to see that the system matrix in (2.14) is invertible, and the four submatrices can be
diagonalized by the fast Fourier transform. Hence, we can easily solve (2.14) by using the pointwise
Gaussian elimination or the pointwise Kramer’s rule in the frequency domain. For (2.15), Tγ is the
isotropic soft thresholding in [33]: given c defined as

c =
{
cl,α : (l,α) ∈ ({0, · · · , L − 1} × B) ∪ {(L − 1, 0)}}
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Algorithm 2.1 Numerical algorithm for the 2GHIRE model (2.4)
Initialization: χ0, v0, w0, c0, e0, c̃0, ẽ0

for n = 0, 1, 2, · · · do
Update χn+1

vn+1

 = AT A + I AT

A I + λ/βLTL

−1 AT (en − ẽn) +WT (cn − c̃n)

en − ẽn + λ/βL
T wn


cn+1 = Tγ/β (Wχn+1 + c̃n)

en+1 = (Ξ + βI)−1 {Ξ f + β (Aχn+1 + vn+1 + ẽn)}
c̃n+1 = c̃n +Wχm+1 − cn+1

ẽn+1 = ẽn + Aχn+1 + vn+1 − en+1

w̃n+1 = PΛ (Lvn+1)

wn+1 = PΛn+1 w̃n+1,

where Λn+1 is the set of indices corresponding to r largest absolute values in w̃n+1.
end for

and γ = {γl : l = 0, 1, · · · , L − 1} with γl ≥ 0, Tγ (c) is defined as

(
Tγ (c)

)
l,α

[k] =


cl,α[k], (l,α) = (L − 1, 0)

max (Rl[k] − γl[k], 0)
cl,α[k]
Rl[k]

, (l,α) ∈ {0, · · · , L − 1} × B

where Rl[k] =
(∑
α∈B
∣∣∣cl,α[k]

∣∣∣2)1/2 for k ∈ O. For (2.16), Ξ+ βI is simply a diagonal matrix and thus, no
matrix inversion is needed.

For (2.8), we apply the following alternating projection:

w̃n+1 = PΛ (Lvn+1) (2.19)

wn+1 = PΛn+1 w̃n+1 (2.20)

where Λn+1 is the set of indices corresponding to r largest absolute values in w̃n+1.
Finally, we mention that, to get an exact solution, we need to choose (χn+1, vn+1) = (χn,∞, vn,∞).

However, it would be too conservative to use infinite steps of inner iterations. The reason is that both
(χn, vn) and wn at each iteration step might not be accurate enough, and accuracy obtained by the infinite
loop will be wasted, which is typical in the split Bregman algorithm [40, 41]. Hence, we only need to
perform one iteration in (2.7) for computational efficiency, and we summarize the complete iteration
that will be used in our algorithm for solving the 2GHIRE model (2.4) in Algorithm 2.1. Unfortunately,
since the 2GHIRE model is nonconvex, the convergence of Algorithm 2.1 in theory keeps an open
issue [42, 43]. Nevertheless, we empirically observe that Algorithm 2.1 is fast convergent with the
smaller number of iterations than other models.

3. Experiments

In this section, we present some experimental results on brain phantom in [44] and the single echo
(SE) data used in the QSM 2016 reconstruction challenge [45], and the multi echo (ME) data in [18]
to compare the proposed 2GHIRE model (2.4) with other existing reconstruction methods. The brain
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phantom images are available on Cornell MRI Research Lab webpage1) , and the SE data are available
on Neuroimaging Research Unit-Medical University of Graz webpage2) . In the literature, the regular-
ization based approaches outperform the direct approaches including the truncated K-space division [46]
and the Tikhonov regularization [47]. In addition, since it is demonstrated in [21] that taking the har-
monic incompatibility v in the measured local field f into account leads to the performance gain over the
traditional single system based approaches such as the integral approach and the differential approaches,
we focus on the comparison of the 2GHIRE model (2.4) with the 1GHIRE model (1.13), its variants
(1.14) with both p = 1 and 2, and the model (2.6). All experiments are implemented on MATLAB
R2014a running on a laptop with 64GB RAM and Intel(R) Core(TM) CPU i7-8750H at 2.20GHz with
6 cores.

In all models, we choose W to be the tensor product Haar framelet transform with 1 level of de-
composition to avoid the memory storage problem (Note, however, that the decomposition level and the
choice of W will do affect the restoration results), and we use the standard centered difference for L.
Most importantly, to compare the effects of Λ on the restoration results, we estimate Λ from Ω using 1)
the finite difference L; and 2) the spherical mean value (SMV) filter [48] with radius 1.5mm, which will
be referred as “thin Λ” and “thick Λ” respectively. For the parameters, we choose γ in (2.5) of the form
γ =
{
ν2−l : l = 0, · · · , L− 1

}
with ν > 0, and the detailed choices are summarized in Table (3.1) for each

case and each model. Empirically, we observe that the reconstructed images contain more artifacts as ν
becomes smaller while the larger ν leads to the overly smoothed restoration results. In addition, when λ
is large, the estimated harmonic incompatibility v becomes smooth near the boundary of ROI. It is also
worth noting that the proposed 2GHIRE model is relatively insensitive to the choice of r. As a rule of a
thumb, it suffices to choose r to be 0.02 ∼ 0.025% of |O|. Based on this observation, the parameters are
chosen manually to balance indices and visual qualities. For the stopping criterion of Algorithm 2.1, we
use

∥χn+1 − χn∥2
∥χn+1∥2

≤ ε = 5 × 10−3. (3.1)

The models (1.13), (1.14), and (2.6) are solved using the split Bregman algorithm similar to our algo-
rithm with the same stopping criterion (3.1). In all cases, we set the maximum allowable number of
iterations to be 600, and all models are initialized with χ0 = v0 = w0 = 0. Finally, for the quantitative
comparison of each reconstruction model, we use the root mean square error (RMSE), the structural
similarity index map (SSIM) [49].

3.1. Brain phantom experiments

The brain phantom experiments is implemented by simulating the 12 equispaced multi echo GREs
at 3T with T E ranging from 2.5msec to 30msec, using the 256 × 256 × 98 image with spatial resolution
0.9375 × 0.9375 × 1.5mm3. More precisely, we synthesize the local field data f in Figure 3.1(f) as
follows. We first generate the true magnitude image m̃, and simulate the true total field b̃ by adding
four background susceptibility sources in the true susceptibility image to generate the background field.
Using m̃ and b̃, we generate the noisy multi echo complex GRE signal by

I[k, t] = m̃[k] exp
{ − ĩb[k]ω0B0T E[t]

}
+ η[k, t], k ∈ O, & t = 1, · · · , 12

where η is the complex white Gaussian noise whose standard deviation of both real and imaginary parts
are 0.04. Using this noisy multi echo GRE signal I, the magnitude image and phase data are estimated

1) http://www.weill.cornell.edu/mri/pages/qsm.html
2) http://www.neuroimaging.at/pages/qsm.php
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Table 3.1: Parameter selection for each dataset.

Dataset Model ν λ r β

Brain phantom

1GHIRE (1.13) 2 × 10−4 2.5 × 10−3 · 0.05
Model (1.14) p = 1 2 × 10−4 1 · 0.05
Model (1.14) p = 2 2 × 10−4 10 · 0.05

Model (2.6) 2 × 10−4 · 160564 0.05
2GHIRE (2.4) 2 × 10−4 50 160564 0.05

SE data

1GHIRE (1.13) 2.5 × 10−5 5 × 10−4 · 0.05
Model (1.14) p = 1 2.5 × 10−5 0.125 · 0.05
Model (1.14) p = 2 2.5 × 10−5 1.25 · 0.05

Model (2.6) 2.5 × 10−5 · 81920 0.05
2GHIRE (2.4) 2.5 × 10−5 6.25 81920 0.05

ME data

1GHIRE (1.13) 2.5 × 10−5 1.25 × 10−3 · 0.05
Model (1.14) p = 1 2.5 × 10−5 0.125 · 0.05
Model (1.14) p = 2 2.5 × 10−5 1.25 · 0.05

Model (2.6) 2.5 × 10−5 · 393216 0.05
2GHIRE (2.4) 2.5 × 10−5 6.25 393216 0.05

(a) True χ (b) Magnitude (c) ROI (d) Phase (e) Total field (f) Local field

Fig. 3.1. Images of synthesized datasets for the brain phantom experiments. The first row describes the sagittal
slice images and the second row depicts the axial slice images.

(a) Thin Λ (b) Thick Λ
Fig. 3.2. Images of estimated Λ for the brain phantom experiments. The first row describes the sagittal slice images
and the second row depicts the axial slice images.

by the method in [50], and the phase is further unwrapped by the method in [51] to obtain the noisy
and incomplete total field b. Then we solve the Poisson’s equation (1.6) using the method in [52] to
obtain the noisy local field data f (See Figure 3.1). Finally, for the comparison of the restored harmonic
incompatibility v, we also solve (1.6) using b̃ to obtain the true local field f̃ and the true harmonic
incompatibility ṽ (See Figure 3.3).

Table 3.2 summarizes the RMSE and the SSIM of (1.13), (1.14), (2.6), and (2.4) for each choice of
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(a) True χ (b) χ in O \Ω (c) True b̃ (d) True Aχ (e) True f̃ (f) True ṽ

Fig. 3.3. Reference noise-free datasets for the brain phantom experiments. The first row describes the sagittal slice
images and the second row depicts the axial slice images.

Λ, and Figures 3.4 and 3.6 present visual comparisons of the results. We also visualize RMSE versus
iteration number in Figure 3.9. We can see that, in any choice of Λ, the proposed 2GHIRE model
(2.4) consistently outperforms the other reconstruction models. This demonstrates that we can further
achieve better susceptibility reconstruction via better removal of the harmonic incompatibility, which
arises from the background field removal stage to solve the Poisson’s equation (1.6). Indeed, we can see
that the 2GHIRE model (2.4) restores v better than other models with less singularities in Ω, as shown
in Figures 3.5 and 3.7, leading to the improvements in both indices and visual quality. This means that
by balancing the distance between Lv which may not necessarily satisfy the constraint and w which
satisfies the constraint, we can prevent v from capturing the outliers in Ω, achieving the better harmonic
incompatibility removal. Indeed, since the ℓ1 norm may not necessarily reflect the locally supported
property of Lv, the 1GHIRE model in fact fails to remove the harmonic incompatibility in the local
field data, as shown in Figure 3.5(b). In addition, we can see that the models (1.14) and (2.6) can also
preserve where Lv has to be nonzero. However, since the direct penalization can make Lv capture the
Laplacian of noise as well, they restore v inferior to the 2GHIRE model, as shown in Figures 3.5(c),
3.5(e), 3.7(c), and 3.7(e).

In order to further see the effect of Λ on the restoration results, we also present the zoom-in views of
the axial slice images of Figures 3.4 and 3.6 in Figure 3.8. We can see that compared to the case of thin
Λ, the models (1.14) and (2.6) results in the loss of information in Λ, as shown in Figures 3.8(c), 3.8(d),
and 3.8(e), which agrees with the degradation of indices given in Table 3.2. In contrast, the 2GHIRE
model yields visually identical results regardless of the choice of Λ, as shown in Figure 3.8(f), which
again coincides the indices given in Table 3.2, thereby demonstrating the existence of basis mismatch
arising from solving (1.6) and the robustness of the proposed 2GHIRE model to the estimation of the
support of Lv.

Finally, we mention that compared to the other models, the 2GHIRE model requires approximately
50% of CPU times, as shown in Table 3.3. Most importantly, the iteration number of the 2GHIRE
model is approximately 40% of the other reconstruction models. Even though the further theoretical
convergence analysis will be needed, we can numerically observe that our proposed model reaches to a
(local) minimum of the energy functional faster than other models. Therefore, we can conclude that the
proposed 2GHIRE model (2.4) is able to achieve the better harmonic incompatibility removal robustly
to the choice of Λ, together with the computational efficiency over the other models (1.13), (1.14), and
(2.6).



12 C. Bao, J. F. Cai, J. K. Choi, D. Bin, AND K. Wei

Table 3.2: Comparison of relative error, and structural similarity index map for the brain phantom experiments

Λ Indices 1GHIRE (1.14) p = 1 (1.14) p = 2 (2.6) 2GHIRE

Thin
RMSE 0.4480 0.4403 0.4465 0.4403 0.4281
SSIM 0.7436 0.7512 0.7494 0.7512 0.7605

Thick
RMSE 0.4480 0.4639 0.4699 0.4639 0.4287
SSIM 0.7436 0.7450 0.7425 0.7450 0.7600

(a) True χ (b) 1GHIRE (c) (1.14) p = 1 (d) (1.14) p = 2 (e) Model (2.6) (f) 2GHIRE

Fig. 3.4. Images comparing QSM reconstruction methods for the brain phantom experiments with thin Λ. The first
row describes the sagittal slice images, and the second row depicts the axial slice images. All sagittal slice images
of brain phantom experimental results are displayed in the window level [−0.03, 0.07], and the axial slice images
of brain phantom experimental results are displayed in the window level [−0.03, 0.19] for the fair comparison.

(a) True ṽ (b) 1GHIRE (c) (1.14) p = 1 (d) (1.14) p = 2 (e) Model (2.6) (f) 2GHIRE
Fig. 3.5. Images of v for the brain phantom experiments with thin Λ. The first row describes the sagittal slice
images and the second row depicts the axial slice images. The images of v for the brain phantom experiments are
displayed in the window level [−0.025, 0.025] for the fair comparison.

(a) True χ (b) 1GHIRE (c) (1.14) p = 1 (d) (1.14) p = 2 (e) Model (2.6) (f) 2GHIRE

Fig. 3.6. Images comparing QSM reconstruction methods for the brain phantom experiments with thick Λ. The
first row describes the sagittal slice images and the second row depicts the axial slice images.

3.2. Single echo MR data experiments

The SE data experiments are conducted using 160×160×160 image with spatial resolution 1.0625×
1.0625 × 1.0714mm3, which is obtained from a 3T MR system and which can be downloaded on Neu-
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(a) True ṽ (b) 1GHIRE (c) (1.14) p = 1 (d) (1.14) p = 2 (e) Model (2.6) (f) 2GHIRE

Fig. 3.7. Images of v for the brain phantom experiments with thick Λ. The first row describes the sagittal slice
images and the second row depicts the axial slice images.

(a) True χ (b) 1GHIRE

(c) (1.14) p = 1 (d) (1.14) p = 2 (e) (2.6) (f) (2.4)

Fig. 3.8. Comparison of Figures 3.4 and 3.6. The first row uses thin Λ, and the second row uses the thick Λ. The
yellow arrows indicate the regions worth noticing.
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Fig. 3.9. RMSE versus iteration number for the brain phantom experiments.

roimaging Research Unit-Medical University of Graz webpage. We unwrap the phase in Figure 3.10(d)
using the Laplacian based phase unwrapping in [48] to obtain the total field data in Figure 3.10(e). Then
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Table 3.3: Comparison of the number of iterations and the CPU time for the brain phantom experiments
Λ Indices 1GHIRE (1.14) p = 1 (1.14) p = 2 (2.6) 2GHIRE

Thin
# of Iter 105 107 101 107 43

CPU Time 400.83 409.22 386.08 471.47 191.36

Thick
# of Iter 105 105 99 107 43

CPU Time 400.83 405.33 380.49 465.99 192.56

(a) Ground truth (b) Magnitude (c) ROI (d) Phase (e) Total field (f) Local field
Fig. 3.10. Images of single echo datasets. The first row describes the sagittal slice images and the second row
depicts the axial slice images.

(a) Thin Λ (b) Thick Λ
Fig. 3.11. Images of estimated Λ for the SE data experiments. The first row describes the sagittal slice images and
the second row depicts the axial slice images.

we solve the Poisson’s equation (1.6) by the method in [52] to further obtain the measured local field
data f in Figure 3.10(f). Here, the ground truth image in Figure 3.10(a) is obtained by the calculation of
susceptibility using multiple orientation sampling (COSMOS) method in [15] using the 12 orientation
data.

Table 3.4 summarizes the RMSE and the SSIM of (1.13),(1.14) with both p = 1 and p = 2, (2.6)
and (2.4) for each choice of Λ, Figures 3.12 and 3.14 present visual comparisons of the results, and
RMSE versus iteration number is given in Figure 3.16. The number of iterations and the CPU times are
given in Table 3.5 as well. We can see that the overall results are almost similar to the brain phantom
experiments, including the robustness to the choice of Λ as well as the computational efficiency. It is
also worth noting that the 2GHIRE model can reduce the shadow artifacts in all directions, as shown
in Figures 3.12(f) and 3.14(f). Indeed, as we can see from Figure 3.12(b), even though the previous
1GHIRE removes the shadow artifacts along the sagittal slice direction, the axial slice images have a
degradation in the contrasts as shown in Figure 3.12(b). In addition, even though the models (1.14)



2GHIRE via Reduction of Basis Mismatch 15

Table 3.4: Comparison of relative error, and structural similarity index map for the SE data experiments
Λ Indices 1GHIRE (1.14) p = 1 (1.14) p = 2 (2.6) 2GHIRE

Thin
RMSE 0.8025 0.8141 0.7538 0.8141 0.6995
SSIM 0.8085 0.8298 0.8248 0.8298 0.8289

Thick
RMSE 0.8025 0.8077 0.7530 0.8074 0.7004
SSIM 0.8085 0.8213 0.8236 0.8213 0.8288

(a) Ground truth (b) 1GHIRE (c) (1.14) p = 1 (d) (1.14) p = 2 (e) Model (2.6) (f) 2GHIRE

Fig. 3.12. Images comparing QSM reconstruction methods for the SE data experiments with thin Λ. The first row
describes the sagittal slice images and the second row depicts the axial slice images. All reconstructed images of
SE data experiments are displayed in the window level [−0.1, 0.1].

Table 3.5: Comparison of the number of iterations and the CPU time for the SE data experiments
Λ Indices 1GHIRE (1.14) p = 1 (1.14) p = 2 (2.6) 2GHIRE

Thin
# of Iter 80 152 86 152 59

CPU Time 238.07 449.73 253.66 506.03 200.76

Thick
# of Iter 80 152 87 152 59

CPU Time 238.07 448.38 252.84 500.69 200.03

and (2.6) restore the sagittal slice images with better contrast, the sagittal slice images contain shadow
artifacts as shown in Figures 3.12(c), 3.14(c), 3.12(d), 3.14(d), 3.12(e) , and 3.14(e). In contrast, the
2GHIRE model (2.4) can achieve the better artifact removal together with less degradation in contrasts,
leading to the performance gain.

We also compare the harmonic incompatibilities restored by each model in Figures 3.13 and 3.15.
Compared to the 1GHIRE (1.13), it seems that the 2GHIRE (2.4) as well as (1.14) and (2.6) better
restore v in the interior of Ω. However, we can also see that the models (1.14) and (2.6) restore v
which is discontinuous across the interface between Ω and O \Ω, as shown in Figures 3.13(b), 3.15(b),
3.13(c), 3.15(c), 3.13(d), and 3.15(d), while the 2GHIRE model restores v which is continuous along the
interface (Figures 3.13(e) and 3.15(e)). As already mentioned in subsection 1.1, the harmonic incom-
patibility v (in the continuous domain) satisfies (1.10), (1.11), and (1.12). Hence, it has to be continuous
on ∂Ω. In addition, since the discrete HIRE models are based on the characterizations of v in continuous
domain, the restoration results are desired to be mostly coincident with the theoretical discoveries as
well. However, since both (1.14) and (2.6) fail to reconstruct v which agrees with our theoretical dis-
covery, such an erroneous restoration of v in turn leads to another shadow artifacts in the reconstructed
susceptibility image. Hence, in the SE data experiments, we can arrive at the similar conclusion to the
brain phantom experiments.
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(a) 1GHIRE (b) (1.14) p = 1 (c) (1.14) p = 2 (d) Model (2.6) (e) 2GHIRE

Fig. 3.13. Images of v for the single echo MR data experiments with thin Λ. The first row describes the sagittal
slice images and the second row depicts the axial slice images. The images of v for the SE data experiments are
displayed in the window level [−0.025, 0.025] for the fair comparison.

(a) Ground truth (b) 1GHIRE (c) (1.14) p = 1 (d) (1.14) p = 2 (e) Model (2.6) (f) 2GHIRE

Fig. 3.14. Images comparing QSM reconstruction methods for the single echo MR data experiments with thick Λ.
The first row describes the sagittal slice images and the second row depicts the axial slice images.

(a) 1GHIRE (b) (1.14) p = 1 (c) (1.14) p = 2 (d) Model (2.6) (e) 2GHIRE

Fig. 3.15. Images of v for the single echo MR data experiments with thick Λ. The first row describes the sagittal
slice images and the second row depicts the axial slice images.

3.3. Multi echo MR data experiments

The ME data experiments are conducted using 512 × 512 × 200 image with spatial resolution
0.46875 × 0.46875 × 0.7mm3, which is obtained from a 3T MR system. More precisely, 12 equis-
paced multi echo GRE sequences with T E ranging from 3.8msec to 48.9msec and time of relaxation



2GHIRE via Reduction of Basis Mismatch 17

0 20 40 60 80 100 120 140 160
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration number

R
M

S
E

 

 

1GHIRE

(1.14) p=1

(1.14) p=2

(2.6)

2GHIRE

(a) Thin Λ

0 20 40 60 80 100 120 140 160
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration number

R
M

S
E

 

 

1GHIRE

(1.14) p=1

(1.14) p=2

(2.6)

2GHIRE

(b) Thick Λ

Fig. 3.16. RMSE versus iteration number for the single echo MR data experiments.

(a) Magnitude (b) ROI (c) Phase (d) Total field (e) Local field
Fig. 3.17. Images of ME datasets. The first row describes the sagittal slice images and the second row depicts the
axial slice images.

(a) Thin Λ (b) Thick Λ
Fig. 3.18. Images of estimated Λ for the ME data experiments. The first row describes the sagittal slice images and
the second row depicts the axial slice images.

53.2msec. We first unwrap the phase data in Figure 3.17(c) to obtain total field data in Figure 3.17(d),
and then we solve the Poisson’s equation (1.6) using the method in [52] to obtain the local field data f
in Figure 3.17(e).

Figures 3.19 and 3.21 display the visual comparisons of (1.13),(1.14) with both p = 1 and p = 2,
(2.6) and (2.4) for each choice of Λ. Since the reference image is not available for in the ME data, it is
in general more difficult to provide quantitative evaluations than the previous two cases. Nonetheless,
we can see from the viewpoint of visual comparison that the pros and cons are almost the same as the
numerical brain phantom experiments and the SE data experiments. We also compare the harmonic
incompatibilities reconstructed by each model with different choice of Λ in Figures 3.20 and 3.22. It
is worth noting that compared to other reconstruction models, the 2GHIRE model reconstructs v less
containing the outliers in Λ. As previously mentioned in [21, Theorem 2.2], the harmonic incompati-
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(a) 1GHIRE (b) (1.14) p = 1 (c) (1.14) p = 2 (d) Model (2.6) (e) 2GHIRE
Fig. 3.19. Images comparing QSM reconstruction methods for the ME data experiments with thin Λ. The first row
describes the sagittal slice images and the second row depicts the axial slice images. All reconstructed images for
ME data experiments are displayed in the window level [−0.5, 0.5].

(a) 1GHIRE (b) (1.14) p = 1 (c) (1.14) p = 2 (d) Model (2.6) (e) 2GHIRE
Fig. 3.20. Images of v for the ME data experiments with thin Λ. The first row describes the sagittal slice images
and the second row depicts the axial slice images. The images of v for the ME data experiments are displayed in
the window level [−0.15, 0.15] for the fair comparison.

bility v is induced by the Dirichlet boundary condition of (1.6), i.e. by information of (unknown) −Aχ
on ∂Ω. However, since the models (1.14) and (2.6) restore a harmonic function induced by the outliers,
such an erroneous reconstruction of v eventually generates another incompatibility in the low frequency
components of f , leading to the shadow artifacts in the reconstructed image. In contrast, since the term
∥Lv − w∥22 keeps the distance between Lv and w (containing the Laplacian of outliers), the 2GHIRE
model is likely to make v on the boundary closer to Aχ, leading to the better harmonic incompatibility
removal.

We further mention that compared to the noticeable differences in v among the reconstruction model-
s, the differences in the reconstructed susceptibility images are relatively marginal. One possible reason
would be the outliers in the measured local field data lying in the ROI Ω. As mentioned in [12], the
local field data is prone to outliers where the MRI image has a low SNR. Moreover, in the region where
the MRI image contains outliers, the phase unwrapping stage may introduce outliers in the total field
data in the same region [19]. In any case, the forward model (2.1) does not hold in that region any more,
so the susceptibility reconstruction model will need improving so that such outliers can be suppressed
at the same time. Moreover, it is known in the literature that the susceptibility of the white matter is
anisotropic, i.e. χ is a 3 × 3 symmetric tensor in the white matter [44]. Since (2.1) does not hold in this
case either, we may need to remove the effect of anisotropic susceptibility for the better susceptibility
reconstruction as a future work. Finally, compared to the smallest number of iterations, the CPU time
for the 2GHIRE model is relatively long. This indicates that the implementation of Algorithm 2.1 has
to be further improved so that the application to the high resolution MR data is also available with high
computational efficiency.
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(a) 1GHIRE (b) (1.14) p = 1 (c) (1.14) p = 2 (d) Model (2.6) (e) 2GHIRE
Fig. 3.21. Images comparing QSM reconstruction methods for the ME data experiments with thick Λ. The first row
describes the sagittal slice images and the second row depicts the axial slice images.

(a) 1GHIRE (b) (1.14) p = 1 (c) (1.14) p = 2 (d) Model (2.6) (e) 2GHIRE
Fig. 3.22. Images of v for the ME data experiments with thick Λ. The first row describes the sagittal slice images
and the second row depicts the axial slice images.

Table 3.6: Comparison of the number of iterations and the CPU time for the ME data experiments.
Λ Indices 1GHIRE (1.14) p = 1 (1.14) p = 2 (2.6) 2GHIRE

Thin
# of Iter 90 107 85 107 75

CPU Time 3038.80 3619.58 3105.35 4635.73 3286.33

Thick
# of Iter 90 105 85 105 75

CPU Time 3038.80 4042.78 3173.09 4440.30 3204.26

4. Conclusion and future directions

In this paper, we proposed a new harmonic incompatibility removal model for the susceptibility
imaging. The proposed 2GHIRE model is inspired by the balanced approach in the wavelet frame image
restoration which provides a flexibility in the sparse representation and the regularity of an image. More
precisely, since the discrete grid and the discrete data are available only, the basis mismatch arising from
solving (1.6) numerically is inevitable. However, by promoting a flexibility between the Lv and w which
satisfies (2.2) and (2.3), we can achieve the better artifact suppression in the reconstructed susceptibility
image as well as the robustness to the estimation of supp(Lv). Finally, the experimental results show
that the proposed approach (2.4) outperforms the previous 1GHIRE model (1.13) in [21] as well as its
variants in both brain phantom and in vivo MR data.

For the future work, we will consider taking the anisotropic susceptibility (i.e. 3 × 3 symmetric
susceptibility tensor) in the white matter into account for the better coincidence with the real cases.
Since such an anisotropic susceptibility already destroys the forward model of QSM, it is necessary
to consider the anisotropy correction to overcome the bottleneck in restoration performance. It would
be also interesting to apply the idea of harmonic incompatibility removal into the susceptibility tensor
imaging [44], which aims to reconstruct a 3 × 3 symmetric susceptibility tensor image.



20 C. Bao, J. F. Cai, J. K. Choi, D. Bin, AND K. Wei

Acknowledgments

The authors would like to thank the authors in [12, 18, 44, 45] for providing the in vivo MR datasets
and the MATLAB toolbox so that the experiments can be implemented. The authors also thank the
anonymous reviewers for their constructive suggestions and comments that helped tremendously with
improving the presentation of this paper.

References

[1] L.de Rochefort, T. Liu, B. Kressler, J. Liu, P. Spincemaille, V. Lebon, J. Wu and Y. Wang, Quantitative sus-
ceptibility map reconstruction from MR phase data using Bayesian regularization: validation and application
to brain imaging, Magn. Reson. Med., 63:1 (2010), 194–206.

[2] J.K. Seo, E.J. Woo, U. Katscher and Y. Wang, Electro-Magnetic Tissue Properties MRI, Imperial College
Press, London, 1st edition, 2014.

[3] Y. Kee, Z. Liu, L. Zhou, A. Dimov, J. Cho, L.de Rochefort, J.K. Seo and Y. Wang, Quantitative suscepti-
bility mapping (QSM) algorithms: mathematical rationale and computational implementations, IEEE Trans.
Biomed. Eng., 64:11 (2017), 2531–2545.

[4] W. Chen, S.A. Gauthier, A. Gupta, J. Comunale, T. Liu, S. Wang, M. Pei, D. Pitt and Y. Wang, Quantitative
susceptibility mapping of multiple sclerosis lesions at various ages, Radiology, 271:1 (2014), 183–192,
PMID: 24475808.

[5] J. Acosta-Cabronero, G.B. Williams, A. Cardenas-Blanco, R.J. Arnold, V. Lupson and P.J. Nestor, In vivo
quantitative susceptibility mapping (QSM) in Alzheimer’s disease, PloS one, 8:11 (2013), e81093.

[6] J.M.G.van Bergen, J. Hua, P.G. Unschuld, I.A.L. Lim, C.K. Jones, R.L. Margolis, C.A. Ross, P.C.M.van Zijl
and X. Li, Quantitative susceptibility mapping suggests altered brain iron in premanifest Huntington disease,
Amer. J. Neuroradiol, 37:5 (2016), 789–796.

[7] E.M. Haacke, J. Tang, J. Neelavalli and Y.C.N. Cheng, Susceptibility mapping as a means to visualize veins
and quantify oxygen saturation, J. Magn. Reson. Imag., 32:3 (2010), 663–676.

[8] J. Klohs, A. Deistung, F. Schweser, J. Grandjean, M. Dominietto, C. Waschkies, R.M. Nitsch, I. Knuesel,
J.R. Reichenbach and M. Rudin, Detection of cerebral microbleeds with quantitative susceptibility mapping
in the arcabeta mouse model of cerebral amyloidosis, J. Cerebr. Blood F. Met., 31:12 (2011), 2282–2292,
PMID: 21847134.

[9] A.V. Dimov, Z. Liu, P. Spincemaille, M.R. Prince, J. Du and Y. Wang, Bone quantitative susceptibility
mapping using a chemical species? Specific r2* signal model with ultrashort and conventional echo data,
Magn. Reson. Med., 79:1 (2018), 121–128.

[10] T. Liu, P. Spincemaille, L.de Rochefort, R. Wong, M. Prince and Y. Wang, Unambiguous identification of
superparamagnetic iron oxide particles through quantitative susceptibility mapping of the nonlinear response
to magnetic fields, Magn. Reson. Imaging, 28:9 (2010), 1383 – 1389.

[11] C. Milovic, B. Bilgic, B. Zhao, C. Langkammer, C. Tejos and J. Acosta-Cabronero, Weak-harmonic regular-
ization for quantitative susceptibility mapping, Magn. Reson. Med., 81:2 (2019), 1399–1411.

[12] Y. Wang and T. Liu, Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic
biomarker, Magn. Reson. Med., 73:1 (2015), 82–101.

[13] T. Liu, I. Khalidov, L.de Rochefort, P. Spincemaille, J. Liu, A.J. Tsiouris and Y. Wang, A novel background
field removal method for MRI using projection onto dipole fields (PDF), NMR Biomed, 24:9 (2011), 1129–
1136.

[14] T. Liu, J. Liu, L.de Rochefort, P. Spincemaille, I. Khalidov, J.R. Ledoux and Y. Wang, Morphology en-
abled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain
imaging, Magn. Reson. Med., 66:3 (2011), 777–783.

[15] T. Liu, P. Spincemaille, L.de Rochefort, B. Kressler and Y. Wang, Calculation of susceptibility through
multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured
magnetic field map to susceptibility source image in MRI, Magn. Reson. Med., 61:1 (2009), 196–204.



2GHIRE via Reduction of Basis Mismatch 21

[16] E.M. Stein and R. Shakarchi, Functional Analysis. Introduction to Further Topics in Analysis, volume 4 of
Princeton Lect. Anal., Princeton University Press, Princeton, NJ, 2011.

[17] E.M. Haacke, S. Liu, S. Buch, W. Zheng, D. Wu and Y. Ye, Quantitative susceptibility mapping: current
status and future directions, Magn. Reson. Imaging, 33:1 (2015), 1 – 25.

[18] J.K. Choi, H.S. Park, S. Wang, Y. Wang and J.K. Seo, Inverse problem in quantitative susceptibility mapping,
SIAM J. Imaging Sci., 7:3 (2014), 1669–1689.

[19] T. Liu, C. Wisnieff, M. Lou, W. Chen, P. Spincemaille and Y. Wang, Nonlinear formulation of the magnetic
field to source relationship for robust quantitative susceptibility mapping, Magn. Reson. Med., 69:2 (2013),
467–476.

[20] S. Wang, T. Liu, W. Chen, P. Spincemaille, C. Wisnieff, A.J. Tsiouris, W. Zhu, C. Pan, L. Zhao and
Y. Wang, Noise effects in various quantitative susceptibility mapping methods, IEEE Trans. Biomed. En-
g., 60:12 (2013), 3441–3448.

[21] C. Bao, J. Choi and B. Dong, Whole brain susceptibility mapping using harmonic incompatibility removal,
SIAM J. Imaging Sci., 12:1 (2019), 492–520.
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