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ABSTRACT

Dictionary learning for sparse representation has been an ac-
tive topic in the field of image processing. Most existing dic-
tionary learning schemes focus on the representation ability
of the learned dictionary. However, according to the theory
of compressive sensing, the mutual incoherence of the dictio-
nary is of crucial role in the sparse coding. Thus incoherent
dictionary is desirable to improve the performance of sparse
representation based image restoration. In this paper, we pro-
pose a new incoherent dictionary learning model that mini-
mizes the representation error and the mutual incoherence by
incorporating the constraint of mutual incoherence into the
dictionary update model. The optimal incoherent dictionary
is achieved by seeking an optimization solution. An efficient
algorithm is developed to solve the optimization problem iter-
atively. Experimental results on image denoising demonstrate
that the proposed scheme achieves better recovery quality and
converges faster than K-SVD while keeping lower computa-
tion complexity.

Index Terms— Dictionary learning, incoherent, sparse
representation, image denoising

1. INTRODUCTION

According to the sparse representation theory[1], a signal can
be represented by the linear combination of a few typical
atoms. The signal can be precisely represented by seeking
the most sparse linear representation with a pre-specified dic-
tionary. Such superiority made it widely applied in the area
of image restoration and processing such as denoising[2],
super-resolution[3], inpainting[4]. As the basis of sparse rep-
resentation, the choice of dictionary plays an crucial role in
the sparse representation problems. Many research has been
made to learn a data adapted dictionary to make the signal
well presented. [5] first introduces the dictionary learn-
ing problem and suggests the basis atoms in the dictionary
are comparable with known image filters. [6] develops the
first approach to learn an overcomplete dictionary by using
probabilistic model of training data. [7] proposes a frame
design technique called method of optimal directions(MOD)

and [8] presents the K-SVD algorithm which generalized
the K-means clustering process. These methods share the
same general idea of iterative alternations between sparse
coding and dictionary update. Other related works include
[9, 10, 11].

Most existing work on dictionary learning focus on the
representation ability of the learned dictionary such as multi-
scale representation and adaptation to the data. However, ac-
cording to the research of [12, 13], the intrinsic property of a
dictionary such as coherence has a direct influence on its per-
formance. Thus incoherent dictionary is desirable to improve
the performance of sparse representation. Most incoherent
dictionary learning scheme attempt to decrease the coherence
of current dictionary atoms in the dictionary update step or
impose a new step. [14] proposes a scheme to enhance the
mutual and cumulative coherence of learned dictionary with
the Gram matrix norm in the modified dictionary update step.
[15] develops the INK-SVD algorithm by adding a decorrela-
tion step to the existing K-SVD iterative scheme. By decorre-
lating pairs of atoms in a dictionary in a greedy way, the de-
sired mutual coherence is achieved. [16] improves the work
in [15] by incorporating a decorrelation step and a dictionary
rotation step into the update step. The target mutual coher-
ence is reached by iterative projection and rotation of the dic-
tionary. Different from the above methods, [17] proposes a
sparsity-based orthogonal dictionary learning method to learn
an orthogonal dictionary to minimize the mutual incoherence.
The scheme greatly simplifies both the sparse coding and dic-
tionary update step with comparable performance in image
restoration tasks.

In this paper, we propose an incoherent dictionary learn-
ing scheme, which is desirable for sparse representation
model of image. Existing incoherent dictionary learning
schemes achieve the low mutual incoherence by adding an
extra update step to the learned dictionary. Naturally we
propose to incorporate the constraint on mutual coherence
into the dictionary learning model to learn an incoherent dic-
tionary more efficiently. We introduce a new representation
model that minimizes both the representation error and the
mutual incoherence. The optimal incoherent dictionary is



achieved by seeking an optimization solution. A Split Breg-
man and Augmented Lagrangian Method based algorithm
is developed to efficiently solve the optimization problem
iteratively. Experimental results on the image restoration ap-
plications like image denoising demonstrate that the proposed
scheme achieves better recovery quality and converges faster
than K-SVD while keeping lower computation complexity.

The rest of this paper is organized as follows. Section 2
describes the problem and introduces the optimization model.
Section 3 presents the proposed numerical algorithm. Section
4 describes the application of proposed scheme in the image
restoration task of image denoising. Implementation details
and experimental results are shown in Section 5. Section 6
concludes this paper.

2. PROBLEM FORMULATION

Suppose Y = {y1, - ,yn} € R™*" denotes the training
image set, and each column of Y represents the vector form
one image patch in the training set. ® € R™*F is the dic-
tionary to be learned, X € R¥*™ is the matrix of sparse co-
efficient with each column x; denoting the sparse coefficient
for one sample image patch y;. The dictionary learning for
sparse representation is usually expressed as:

in||Y — ®X||%, s.t.Vi, ||z;|lo < T 1
gl)l{l” ||F,StVZ,H$Z||0_ 0 ()

where Ty is the threshold of sparse coefficients. The com-
monly applied strategy to solve this problem is to start with
an initial dictionary and alternate between the following two
stages until convergence: sparse coding stage where the
sparse coefficient X is calculated with a given dictionary Y’
and dictionary update stage where the dictionary is updated
to minimize the overall representation error with given X. In
the following sections, we’ll follow this commonly deployed
method by applying a standard sparse coding step and focus
on the dictionary update step.

The mutual coherence p(®) measures the correlation of
different atoms in a dictionary, which is defined as[18]:

u(®) =max| < i d; > |, [|fsllz =15 =1,k (2)
where < ¢;,¢; > is the inner product of two normalized
vectors ¢; and ¢; . Rather than adding a decorrelation step to
the update step in the previous work, we incorporate the mu-
tual incoherence into the objective function as a constraint in
the dictionary update step. The optimal dictionary is achieved
by seeking an optimization solution that both minimize the
representation error and the mutual incoherence. The Gram
matrix G = ®T® is introduced, as the mutual incoher-
ence p(®) can also be defined as the maximal off-diagonal
amplitude:y = max;-; |G;;|. Thus the absolute value of
matrix element G';; represents the coherence between the
i¢p, and jyp, columns of dictionary @, then the constraint on
mutual incoherence of ® can be imposed on the matrix G as

|Gij| < p,i # j and diag(G) = 1. It can be reformed as
B < G < A, where B and A are the lower bound and upper
bound for G respectively. The matrix G should be low rank
and semi positive definite as G = &7 ®, which leads to the
following optimization model:

minal|Gl. + 8Y"Y - X" GX][}, 3)
st B<G<AG=0

where [|[YTY — XTGX||% is the data fidelity term, notice
the term is equivalent to ||Y — ® X ||%. Once G is obtained,
® can be solved by decomposition of G.

3. NUMERICAL ALGORITHM

As we’ve mentioned in the previous section, the commonly
applied alternative iterate scheme is adopted and the standard
sparse coding step is applied. To solve the problem (3), aux-
iliary variables P and @ are introduced:
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The Augmented Lagrangian function of (4) is:
Zuin of |Gl + |G - Pllp+ <85,G - P>
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And (5) can be solved by the following iterations:
min oG +m|lG—-P|2+<8,G-P>
+BIIYTY - XTGX|[h + pa2l |G- QIfF (6)
+<T,G-Q >
min |G — P|3+<S8,G-P>stB<P<A (7
min |G = Qi+ <T.G-Q>5tQ=0 @
Sk4+1 =Sk + ul(G — P) )
Tip1 =Tk + p2(G — Q) (10)

(6) can be solved by splitting, after introducing auxiliary vari-
able IV it can be expressed as:

min of [N ||, + |G - Pllp+ < §,G - P>
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which can be splitted into the following two sub-problems:
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Algorithm 1 INCOHERENT DICTIONARY UPDATE
Input: Training image data Y and sparse coefficients X.
Output: Learned dictionary ®.
1: Initialization:S; T'; N; L;P; Q; o; 55 p1; po; ps; €, k = 0.
2: while 1Gk1=Cklle go

3 Gl F
Gry1 = ménﬁ”YTYfXTGXH%+p1|\G7PH%
+<8,G—-P>+u|G-Q|%
+<T,G-Q>+us||G— (N +L)||%
4:
s, N1 =m]$nozHNH*+usllG—(N+L)H%
. Ly =L, —(G—-N)
P = m}inu1||G—P||%+ <8,G-P>stB<P<A
7:
Qi1 =minjiz|G — Ql[p+ < T,G —Q >,5.Q = 0
8:
o Sky1 = Skt1 =Sk + 11 (G — P)

Tir1 = Thpr = Ti + p2(G - Q)

10: end while
12: Decomposition of G:®7® = G.
W = min||Y - WeX||3 st W'W =1

13: Post processing: & = W®.

m}\i}naHNH*Jrﬂ?)HG*(N+L)H% (13)

And Lk+1 = Lk - (G - N)

Since the objective function of (12) is strict convex, the
global optimum of G can be achieved by taking the deriva-
tive and setting it as zero. And the low rank recovery problem
(13) can be efficiently solved by the singular value threshold-
ing algorithm[19]. (7) can be transformed into a quadratic
program (QP) which can be solved with a standard QP solver.
(8) is equivalent to the following problem:

min f2[|G = Q +1/(2422) Tl[7,5:.Q =0 (14)
which can be solved by thresholding the eigenvalue of matrix
G + 1/(2p2)T and keeping the positive ones.

When the Gram matrix G is obtained, ® can be got by ap-
plying matrix decomposition to G. Since the decomposition
is not unique, a post processing step is introduced as called
rotation in [16]. Denote W' as an orthogonal matrix, we have
(W®)'(W®) = ®T® = G. Thus an orthogonal matrix
W can be applied on ® to minimize the representation error,
which can be represented as:

min ||Y - WeX|% st WIW =1 (15)
where I is a identity matrix. And W can be solved by us-
ing SVD on ®XY7, that is XY7 = UXV7, and the
orthogonal matrix to minimize (15) is W = VU?T. And
the whole algorithm is as described in algorithm 1. To ac-
celerate the convergence, a continuation strategy is applied:

Wik+1 = p * Ui, where p is a pre-defined constant. Thus the
whole incoherent dictionary update can be solved with mainly
several SVD operations and one EVD operation. It’s more ef-
ficient than K-SVD, which requires an SVD operation when
update each column of the dictionary, and SVD operation is
time consuming especially for large scale matrix. So the pro-
posed scheme is more computational efficient than K-SVD,
especially for large scale dictionary learning problems.

4. APPLICATION IN IMAGE DENOISING

To evaluate the performance of the learned incoherent dic-
tionary for sparse representation based image restoration, the
incoherent dictionary learning scheme is applied in image de-
noising. As indicated in [2], the dictionary can be learned
from noisy images by extracting overlapping image patches
with size /m X /m uniformly at random as training data Y.
Applying the Algorithm 1 on the training data will produce
an incoherent dictionary ® of size m x k, with which the
noiseless version of each noisy image patch p can be sparsely
represented. For a noisy patch p, the sparse coefficient & can
be obtained by solving a [y minimization problem. Many ex-
isting algorithms can be used to solve the sparse coding prob-
lem. The corresponding clean patch can be represented as:
p = ®a. And the final denoised image can be reconstructed
by averaging the overlapping patches to avoid visual artifacts
on block boundaries. See Algorithm 2 for more details.

Algorithm 2 DENOISING VIA LEARNED DICTIONARY
Input: Noisy image I with additive Gaussian white noise, standard
deviation o of noise, patch Asize n.

Output: Denoised image I.

1: Initialization: extract image patches to form training data Y in
Algorithm 1, error term ¢ = Co,
2: Learn a incoherent dictionary ® using Algorithm 1 with Y.
a: Denoise each patch p in I:
& = min||afo 5.t.[| B — pl[3 < ¢

5. Denoised patch p = ®a. R
6: Averaging overlapping patches to synthesize denoised image I.

5. EXPERIMENTAL RESULTS

Extensive experiments have been carried out to test the per-
formance of the incoherent dictionary learning scheme on a
set of standard test images as shown in Fig.1. In our imple-
mentation, the image patches for training are of size 8 x 8.
About 6 x 10* patches are extracted from a 512 x 512 image
uniformly at random as training data. The DCT transform is
adopted as the initial dictionary. For the sparse coding prob-
lem both in dictionary update and image denoising as in Al-
gorithm 1 and Algorithm 2, the orthonormal matching pur-
suit (OMP) [20] is applied for its efficiency. The error term
€ in Algorithm 2 depends on the standard deviation of noise,



Table 1. PSNR values comparison of denoised images with different methods

Noise Level Methods Barbara Lena House Peppers | Fingerprint Boat Average

Overcomplete DCT 33.99 35.29 35.43 3391 32.15 33.45 34.04

o =10 Global trained dictionary 33.08 35.42 35.66 34.33 32.26 33.54 34.05
K-SVD 8 x 8 34.48 35.52 35.99 34.27 32.33 33.67 34.38

Proposed 8 x 8 34.59 35.59 36.19 34.49 32.36 33.74 34.49

Overcomplete DCT 29.95 31.99 32.20 30.15 28.01 29.87 30.36

o = 20 Global trained dictionary 28.88 32.26 3291 30.86 28.22 30.21 30.56
K-SVD 8 x 8 30.89 32.45 33.40 30.84 28.49 30.37 31.07

Proposed 8 x 8 30.94 32.47 33.50 30.95 28.50 30.42 31.13

Overcomplete DCT 27.51 30.04 30.18 27.96 25.51 2791 28.19

o =30 Global trained dictionary 26.49 30.39 31.05 28.84 25.88 28.32 28.50
K-SVD 8 x 8 28.51 30.57 31.56 28.91 26.37 28.50 29.07

Proposed 8 x 8 28.56 30.61 31.62 28.95 26.38 28.54 29.11

Overcomplete DCT 25.98 28.50 28.7 26.38 23.53 26.54 26.61

o — 40 Global trained dictionary 25.10 28.87 29.37 27.27 24.11 26.92 26.94
K-SVD 8 x 8 26.93 28.97 29.63 27.37 24.73 27.06 27.45

Proposed 8 x 8 26.97 29.01 29.66 27.41 24.76 27.10 27.49

Overcomplete DCT 24.74 27.50 27.53 25.35 22.04 25.60 25.46

o = 50 Global trained dictionary 24.09 27.82 28.05 26.19 22.72 25.92 25.80
K-SVD 8 x 8 25.42 27.89 28.09 26.07 23.31 26.02 26.13

Proposed 8 x 8 25.49 27.91 28.10 26.10 23.34 26.06 26.17

which can be described as ¢ = Co. And C' is empirically
chosen to be 1.15 as in [2]. The dictionary size is 64 x 256
in our experiments to handle the 8 x 8 image patch. The pa-
rameters in Algorithem 1 are empirically chosen as a = 0.02,
B =02, u1 = 0.1, u2 = 0.1 and p3 = 0.1. Different levels
of white Gaussian noise with standard deviation o is added
to the test images, and the denoised result of our scheme is
compared with other schemes based on overcomplete DCT,
a global trained dictionary and K-SVD. The iteration number
is 15 as more iterations won’t improve the PSNR value. The
PSNR values is listed in Table 1. Also the convergence speed
is compared between our scheme and K-SVD. As shown in
Fig.2, our scheme converges much faster than K-SVD, espe-
cially at the beginning of iterations.

Fig. 1. Test image set

6. CONCLUSION

In this paper, we propose a new incoherent dictionary learn-
ing scheme for sparse representation based image restoration.
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Fig. 2. Convergence speed comparison between our scheme
and K-SVD (Barbara, o = 20)

A new representation model is introduced by incorporating
the constraint on mutual incoherence into the dictionary up-
date. And an efficient algorithm is developed to solve this
optimization problem. The evaluation of its application in
image denoising validate its efficiency. Experimental results
on the standard test images demonstrate that the proposed
scheme has better recovery quality than K-SVD while have
lower computation complexity, which is desirable in sparse
representation based image restoration applications.
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