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Block Iterative Reweighted Algorithms for
Super-Resolution of Spectrally Sparse Signals

Myung Cho, Kumar Vijay Mishra, Jian-Feng Cai, and Weiyu Xu

Abstract—We propose novel algorithms that enhance the per-
formance of recovering unknown continuous-valued frequencies
from undersampled signals. Our iterative reweighted frequency
recovery algorithms employ the support knowledge gained from
earlier steps of our algorithms as block prior information to en-
hance frequency recovery. Our methods improve the performance
of the atomic norm minimization which is a useful heuristic
in recovering continuous-valued frequency contents. Numerical
results demonstrate that our block iterative reweighted methods
provide both better recovery performance and faster speed than
other known methods.

Index Terms—compressed sensing, block prior, iterative
reweighted, sparse signal, atomic norm

I. INTRODUCTION

Compressed sensing promises to perform signal recov-
ery using a smaller number of samples than required by
the Nyquist-Shannon sampling theorem. In the compressed
sensing framework, a sparse signal x is recovered from the
observation vector y even though the dimension of y is much
smaller than the dimension of x. Since compressed sensing
reduces the sampling rate in recovering sparse signals, it has
made great impacts in various signal processing areas [1].

Compressed sensing has also found application to the prob-
lem of line spectral estimation, which aims to estimate spectral
information from few observations. Early-stage compressed
sensing frameworks for spectral estimation [2, 3] assumed that
the frequencies of spectrally sparse signals were located on
discretized grid points in the frequency domain. However, in
practice, frequencies can take values in a continuous domain,
giving rise to the so-called basis mismatch problem [3] when
the discretization of the frequency domain is not fine enough.

The breakthrough theory of super-resolution [4] pro-
posed by Candès and Fernandez-Granda states that sparse
continuous-valued frequencies can be exactly recovered
through total variation minimization using a set of n uni-
formly spaced time samples, provided the minimum separation
between any two frequencies is 4/n. In order to recover
continuous-valued frequencies from few randomly chosen
nonuniformly-spaced time samples, Tang et al. proposed off-
the-grid compressed sensing that employs atomic norm mini-
mization for frequency recovery [5]. Later, it was shown that
the ℓ1 minimization over the fine discrete dictionary provides
an approximate solution to the atomic norm minimization [6].
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In this paper, we are interested in recovering spectrally
sparse signals with as few random time samples as possible.
It is then natural to ask whether there are efficient frequency
recovery algorithms that can further improve the performance
or relax the frequency separation conditions when compared
with the total variation minimization or atomic norm min-
imization. We propose new iterative algorithms to enhance
the performance of recovering continuous-valued frequency.
In our iterative algorithms, we estimate the frequency support
information from previous iterations, and use the support
information as block prior [7] for reweighted atomic norm
minimization in later iterations. Numerical results show that
we can improve recovery performance by exploiting the block
prior provided in earlier iterations.

We remark that there are quite a few works in the literature
[8–13] where iterative reweighted methods have been used to
improve sparse recovery performance in compressed sensing.
However, the sparse signal recovery is considered over a
finite discrete dictionary in [8–12]. Besides [13], only our
work considers recovering continuous-valued frequencies by
directly reweighting in the continuous dictionary through a
semi-definite program (SDP). Our work differs from [13] in
that we provide different reweighting schemes that lead to
improved signal recovery performance. In [13], the authors
set the reweighting weight w(f) for a frequency f ∈ [0,1]
according to correlations between frequency atoms (see e.g.
Theorem 3 of [13]). In contrast, our method allows w(f)
to take more general forms through the dual program of
weighted atomic minimization under general weights [14],
thereby lending more flexibility to incorporating external prior
information and prior information passed on from earlier
algorithm iterations. Numerical experiments show that our
iterative algorithms improve both the recovery performance
and the execution time, compared with [5] and [13].

II. BACKGROUND ON STANDARD AND WEIGHTED ATOMIC
NORM MINIMIZATION ALGORITHMS

In this paper, we denote the set of complex numbers, real
numbers, positive integers and natural numbers including 0
as C, R, Z+, and N respectively. We reserve calligraphic
uppercase letters for index sets. When we use an index set
K as the subscript of a vector x or a matrix F , i.e., xK or FK,
it represents the part of the vector x over index set K or the
columns of the matrix F over index set K respectively.

Let x⋆ be a spectrally sparse signal expressed as a sum of
k complex exponentials as follows:

x⋆l =
k

∑
j=1

c⋆j e
i2πf⋆j l =

k

∑
j=1
∣c⋆j ∣a(f⋆j , ϕ⋆j )l, l ∈ N , (II.1)
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where f⋆j ∈ [0,1] represents a frequency, c⋆j = ∣c⋆j ∣eiϕ
⋆
j is its

coefficient, and ϕ⋆j ∈ [0,2π] is its phase, N = {l ∶ 0 ≤ l ≤
n−1, l ∈ N} is the set of time indices. Here, a(f⋆j , ϕ⋆j ) ∈ C∣N ∣ is
a frequency-atom, with the l-th element given by a(f⋆j , ϕ⋆j )l =
ei(2πf

⋆
j l+ϕ

⋆
j). In particular, when phase is 0, we denote the

frequency-atom simply as a(fj). We assume that the signal
in (II.1) is observed over the time index set M ⊆ N , ∣M∣ =
m ≤ n, where m observations are chosen randomly. Our goal
is to recover all the frequencies with the smallest possible
number of observations. Estimating frequencies is not trivial
because they are in continuous domain, and their phases and
magnitudes are also unknown.

The atomic norm of a signal x and its dual norm [5, Eq.
(II.7)] are defined respectively as follows:

∣∣x∣∣A = inf{∑
j

∣cj ∣ ∶ x =∑
j

cja(fj)}, (II.2)

∣∣q∣∣∗A = sup
∣∣x∣∣A≤1

⟨q, x⟩R = sup
ϕ∈[0,2π],
f∈[0,1]

⟨q, eiϕa(f,0)⟩R = sup
f∈[0,1]

∣⟨q, a(f)⟩∣,
(II.3)

where ⟨q, x⟩R represents the real part of the inner product
xHq. Here, the superscript H is used for the conjugate
transpose. In [5], the authors proposed the following atomic
norm minimization to recover a spectrally sparse signal x⋆

using randomly chosen time samples M ⊆ N :

minimize
x

∣∣x∣∣A subject to xj = x⋆j , j ∈M. (II.4)

The dual problem of (II.4) is

maximize
q

⟨qM, x⋆M⟩R subject to qN∖M = 0, ∣∣q∣∣∗A ≤ 1. (II.5)

The constraint ∣∣q∣∣∗A ≤ 1 in (II.5) can be changed to
supf∈[0,1] ∣⟨q, a(f)⟩∣ ≤ 1 using (II.3). We label ⟨q, a(f)⟩ as the
dual polynomial Q(f). Since the Slater condition is satisfied
in (II.4), there is no duality gap between (II.4) and (II.5)
[15]. Moreover, the estimated spectral content comprises the
frequencies at which the absolute value of the dual polynomial,
which is derived from q (obtained as a solution of (II.5)),
attains the maximum modulus of unity. We refer the reader to
[5] for details. The off-the-grid compressed sensing approach
in [5] demonstrated that with randomly chosen observation
data, one can correctly obtain frequency information by solv-
ing the atomic norm minimization. However, the atomic norm
minimization requires a certain minimum separation between
frequencies for successful recovery.

In [7], we considered frequency recovery with external prior
information, and showed that if the frequencies are known
to lie in frequency subbands, we can obtain better recovery
performance by using frequency block prior information. The
SDP formulation adopted inside each iteration of our new
algorithms follows that detailed in [7]. We summarize that
SDP formulation in the following paragraph.

Suppose the frequency f of the signal x lies within the
frequency block B ⊂ [0,1]. Then, given this block prior
information B, the atomic norm with block priors and its dual
are stated respectively as follows [7, Eq. (II.9)]:

∣∣x∣∣A,B = inf{∑
j

∣cj ∣ ∶ x =∑
j

cja(fj), fj ∈ B}, (II.6)

∣∣q∣∣∗A,B = sup
∣∣x∣∣A,B≤1

⟨q, x⟩R = sup
f∈B
∣⟨q, a(f)⟩∣. (II.7)

We formulate the atomic norm minimization with block priors
[7, Eq. (III.1)] as

minimize
x

∣∣x∣∣A,B subject to xj = x⋆j , j ∈M. (II.8)

The dual problem of (II.8) is

maximize
q

⟨qM, xM⟩R subject to qN∖M = 0, ∣∣q∣∣∗A,B ≤ 1. (II.9)

Here, B is a union of disjoint frequency blocks within which
all the true frequencies are located, i.e., f⋆j ∈ B, B =
∪rk=1[fLk

, fHk
], where r is the number of disjoint block

blocks, fLk
and fHk

are the lowest and highest frequencies
of the k-th frequency block. Using the properties of positive
trigonometric polynomials [16, 17] and (II.7), this dual prob-
lem can be formulated as an SDP [7, Eq. (III.16)]:

maximize
q,{Gai

}ri=1,{Gbi
}ri=1
⟨qM, xM⟩R

subject to qN∖M = 0, (II.10)

δki = Lki,fLi
,fHi
(Gai ,Gbi),

ki=0,...,(n−1),
i=1,...,r ,

[Gai q
qH 1

] ⪰ 0, i = 1, ..., r,

where δki = 1 if ki = 0, and δki = 0 otherwise,
Gai ∈ Cn×n and Gbi ∈ C(n−1)×(n−1) are Gram ma-
trices. The trace parameterization term Lk,fL,fH (Ga,Gb)
for the frequency block [fL, fH] ⊂ [0,1] is set to
tr[ΘkGa] + tr[(d1Θk−1 + d0Θk + dH1 Θk+1) ⋅Gb], where Θk

is the Toeplitz matrix that has ones on the k-th diagonal
and zeros elsewhere, d0 = −αβ+1

2
, d1 = 1−αβ

4
+ iα+β

4
, where

α = tan(2πfL/2), and β = tan(2πfH/2) when [fL, fH] ⊂
[0,0.5], and α = tan(2π(fL − 1)/2), and β = tan(2π(fH −
1)/2) when [fL, fH] ⊂ (0.5,1]. This SDP approach [7] was
expanded for more general cases in [14].

Although the atomic norm minimization that exploits ex-
ternal prior information can improve signal recovery perfor-
mance, in practice, one may not always have direct access to
prior information. This leads to the question if we can improve
the frequency recovery performance without any external prior
information. We describe new algorithms to address this issue
in the following section.

III. BLOCK ITERATIVE (RE)WEIGHTED ATOMIC NORM
MINIMIZATION ALGORITHMS

We propose three iterative algorithms to enhance frequency
recovery performance in the absence of external prior in-
formation. In our algorithms, we use estimated frequency
support information from previous iterations as block prior
for subsequent iterations.

A. Block iterative weighted Atomic Norm Minimization

We first introduce a conceptual algorithm named Block iter-
ative weighted Atomic Norm Minimization (BANM). BANM
solves SDP of (II.10) repeatedly, using block priors obtained
from the previous iteration. In each iteration, BANM estimates
the frequency locations, and then, around the estimated fre-
quencies, BANM forms blocks which very likely contain the
true frequencies. With the block priors so obtained, BANM
enhances frequency recovery via solving (II.10) in the next
iteration, using the new block information.

BANM initially sets the iteration number t = 0, frequency
block B = [0,1], f ∈ B, and then solves (II.10). Suppose
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the solution of (II.10) gives r estimated frequencies f
(t)
i ,

i = 1, ..., r, where the superscript (t) is used to represent
the iteration number. BANM chooses the l frequencies fi1 ,
fi2 , ..., fil with the largest coefficients in amplitude among
them, where l is a certain integer number. BANM then forms
a union frequency block B with l frequency subbands around
the estimated frequencies f

(t)
ij

, j = 1, ..., l, as

B =
l

⋃
j=1
[f (t)ij

− τ, f (t)ij
+ τ], (III.1)

for some small real number τ > 0, τ ∈ [0,1] that determines
the size of the subband. BANM uses the union frequency block
B as block prior and solves (II.10) again with updated param-
eters. The algorithm continues solving (II.10) and updating
(III.1) in each iteration until either a maximum number of
iterations is reached or the solution of (II.10) converges.

B. Block iterative reweighted ℓ1 and Atomic Norm Minimiza-
tion Mixture

BANM requires solving SDP in each iteration to estimate
the location of frequencies, but solving SDP repeatedly causes
long execution time. Thus, we propose using low-complexity
algorithm to obtain prior information on frequency locations.
We then use the aforementioned SDP (II.10) only in the last
iteration for accurately determining the frequency locations.
This concept is the key to design of our algorithm - Block
iterative reweighted ℓ1 and Atomic Norm Minimization Mix-
ture (or simply, BANM-Mix) algorithm that can achieve super-
resolution of frequencies with low complexity (Algorithm 1).

BANM-Mix first discretizes the continuous frequency do-
main [0,1] in uniform intervals of size △f . We denote the
index set for these intervals as P = {i}pi=1, where p = 1/△f .
The index set corresponds to p discrete frequency grid points
fj = (j − 1)/p, 1 ≤ j ≤ p. We have the discrete Fourier matrix
F ∈ Cn×p over p discrete frequency grid points whose element
in the j-th column and l-th row is a(fj)l = ei(2πfj l).

Then, BANM-Mix iteratively solves reweighted ℓ1 mini-
mization over this discretized frequency dictionary to effi-
ciently estimate frequency locations. Different from iterative
reweighted ℓ1 minimization algorithms designed for inco-
herent discrete dictionaries [8–12], our iterative reweighted
ℓ1 minimization algorithm employs novel adaptive gridding
and block reweighting strategies to extract frequency support
information from our highly correlated discretized dictionary.

BANM-Mix initializes coefficients c
(0)
i = 0, weights w

(0)
i =

1 for i = 1, ..., p, and an index set K(0) = {j ∶ j = ql +
1, l = 0,1, ..., (p − 1)/q, q ∈ Z+} ≜ {j}j=1∶q∶p ⊆ P . Let
W (t) = diag(w(t)K(t)) be a diagonal matrix with weights w

(t)
K(t) ,

FK(t) ∈ C∣M∣×∣K
(t)∣ be the partial discrete Fourier matrix.

In the t-th iteration, BANM-Mix solves the following
weighted ℓ1 minimization problem over the index set K(t),
rather than the larger index set P:

minimize
z

∣∣W (t)z∣∣1 subject to x⋆l = (FK(t)z)l, l ∈M. (III.2)

We then define a vector c(t) having c
(t)
K(t) = z and c

(t)
P∖K(t) = 0.

BANM-Mix then calculates the weight w(t+1)i , i = 1, ..., p.
We define the index-wise frequency block BIi as

Fig. 1. An illustration of the adaptive gridding. The estimated frequency
f2q+1 in the first iteration is depicted by a red pole. The index set K and P
have solid and dotted grid points respectively. The block that contains the red
pole in the middle is the index-wise frequency block BI2q+1, where b = 10.

BIi = {j ∶ i − b/2 ≤ j ≤ i + b/2, j ∈ P}, (III.3)

for some positive integer b, which determines the block width.
BANM-Mix computes the weight w

(t+1)
i by considering the

frequency coefficients around fi in the discretized domain as

w
(t+1)
i = 1

∑j∈BIi ∣c
(t)
j ∣ + ϵ

, i = 1, ..., p (III.4)

where ϵ is a small positive constant to prevent w
(t+1)
i from

going to infinity. We refer to our procedure in (III.4) as block
reweighting. Since the discretized dictionary under consider-
ation has highly correlated columns, block reweighting can
accurately reflect the likelihood of a true frequency existing
around fi. Our numerical experiments showed that earlier
reweighting strategies [8–11], which update wi ← 1

∣ci∣+ϵ , could
not correctly reflect the likelihood of a true frequency being
at index i and resulted in worse frequency recovery perfor-
mance. This is because the solution to (III.2) will disperse the
amplitude of a true frequency into the neighboring indices in
highly correlated dictionary columns.

After updating w
(t+1)
i for i = 1, ..., p, BANM-Mix up-

dates the index set K(t+1) through adaptive gridding. In
adaptive gridding, BANM-Mix first finds indices i, 1 ≤
i ≤ p, with w

(t+1)
i < (min(w(t+1))+max(w(t+1)))/2, where

min(w(t+1)) and max(w(t+1)) are the minimum and max-
imum values of the elements of w(t+1) respectively. We
define (min(w(t+1))+max(w(t+1)))/2 as w

(t+1)
mid . Then BANM-Mix

updates K(t+1) as

K(t+1) = K(t)⋃( ⋃
{i∶ w(t+1)

i
<w(t+1)mid , i∈P}

BIi).
(III.5)

Namely, if w
(t+1)
i < w

(t+1)
mid , K(t+1) will include finer grid

points (with separation △f ) around frequency (i−1)/p. Recall
that, at the beginning, K(0) has only grid points with separation
q△f . The reason is that when w

(t+1)
i is small, very likely a

true frequency exists around frequency (i−1)/p. By applying
finer gridding around frequency (i − 1)/p, one can estimate
the frequency location more accurately in the next iteration.
We call this method of applying different resolutions in the
discretized dictionary as adaptive gridding (see Fig. 1).

The algorithm continues solving (III.2) in each iteration
until either a specified maximum number of iterations (MaxItr)
is exhausted or the solution of (III.2) converges i.e., ∣∣c(t−1) −
c(t)∣∣2 ≤ ϵerr, for some error tolerance ϵerr > 0. BANM-Mix
then chooses the block prior set B by a union of the frequency
blocks around frequency f

(t)
i satisfying w

(t+1)
i < w(t+1)mid . With

this frequency block information, we use SDP (II.10) to super-
resolve frequencies in the last iteration.
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Algorithm 1: Block iterative reweighted ℓ1 and Atomic
Norm Minimization Mixture (BANM-Mix) Algorithm

Input: F ∈ Cn×p, x⋆M, MaxItr, b, ϵ, ϵerr
Output: frequency f̂ , coefficient ĉ

1 Initialize: t← 0, c(t) ← 0, w(t) ← 1, K(t) ← {i}i=1∶q∶p, P ← {i}pi=1
2 for t = 1 to MaxItr do
3 c

(t)
K(t)

← solution of (III.2), c(t)
P∖K(t)

← 0

4 BIi ← frequency block via (III.3) for i = 1, ..., p
5 w

(t+1)
i ← weight via (III.4) for i = 1, ..., p

6 if ∣∣c(t−1) − c(t)∣∣2 < ϵerr then
7 B ← frequency block via (III.1), where fi satisfying

w
(t+1)
i < (min(w(t+1))+max(w(t+1)))/2

8 f̂ ← f such that ∣Q(f)∣ = 1 in B after solving (II.10)
9 ĉ ← c satisfying linear equation (II.1) with given f̂ and x⋆M

10 break
11 end
12 K(t+1) ← index set via (III.5)
13 end

C. Block iterative reweighted ℓ1 Minimization
The complexity of BANM-Mix can still be high since we

have to solve an SDP in the last iteration. To further reduce
its complexity, we propose the Block iterative reweighted
ℓ1 Minimization (BL1M) algorithm which is the same as
BANM-Mix except that BL1M does not solve SDP in the
last iteration. Instead, BL1M uses postprocessing to estimate
the final frequencies from the results of iterative reweighted ℓ1
minimizations. In the last iteration, BL1M finds the frequency
blocks BIi that satisfy w

(t+1)
i < w

(t+1)
mid . If two frequency

blocks BIi overlap, BL1M merges them into one. BL1M
assumes that one frequency block contains only one true
frequency. Suppose that one frequency block (after possible
merging) has r grid frequencies f1, ..., fr whose corresponding
coefficients are c1, ..., cr. Then BL1M estimates the frequency
f̂ in that block as f̂ = ∑

r
i=1 fi×∣ci∣
∑r

i=1 ∣ci∣
.

IV. NUMERICAL EXPERIMENTS

We compare our algorithms with the standard Atomic Norm
Minimization (ANM) [5], and the Reweighted Atomic norm
Minimization (RAM) [13]. We use CVX [18] to solve convex
programs.1 In all experiments, the phases and frequencies are
sampled uniformly at random in [0,2π) and [0,1] respec-
tively. The amplitudes ∣cj ∣, j = 1, ..., k, are drawn randomly
from the distribution

√
0.5 + χ2

1 where χ2
1 represents the chi-

squared distribution with 1 degree of freedom.
We evaluate the recovery performance for the signal di-

mension n = 64, number of observation m is varied from 8
to 25, block width b = 20, ϵ = 28, and ϵerr = 0.5 × 10−4. The
maximum number of iterations (MaxItr) is set to 20 for both
BANM-Mix and RAM.2 Fig. 2 and 3 show the probability of
successful recovery of the entire spectral content over 50 trials
for each parameter setup. We consider a recovery successful
if ∣∣f⋆ − f̂ ∣∣2 ≤ 10−3. Fig. 3 clearly shows that our algorithm
outperforms both ANM and RAM for n = 64 and k = 8.

1We conducted our numerical experiments on HP Z220 CMT with Intel
Core i7-3770 dual core CPU @3.4GHz clock speed and 16GB DDR3 RAM,
using Matlab (R2013b) on Windows 7 OS.

2A MaxItr value of 20 was sufficient to guarantee an empirical convergence
of our iterative procedures in most of our experiments.

Fig. 2. The probability P of successful frequency recovery (n = 64).

Fig. 3. The probability P of frequency recovery for (n, k) = (64,8).

Fig. 4. The execution time as a function of signal dimension n.

We assess the computational complexity of algorithms in
terms of the average execution time for signal recovery from
10 trials. Here, we present results when n is from 120 to 470,
m = ⌊n/2⌋, q = 24, p = 214, b = 20, ϵ = 28, ϵerr = 0.5 × 10−4.
Fig. 4 shows that the speed of BL1M is faster than that of
ANM and RAM. This is because the latter is based on an
SDP while the former uses only ℓ1 minimization.

V. CONCLUSION

The BANM-Mix and BL1M show better recovery than
other known iterative methods [5, 13]. In particular, BL1M
has shorter execution times than these other methods. Our
simulations empirically exhibit convergence of our iterative
procedures. It would be interesting to perform more compre-
hensive theoretical analysis of convergence in the future.
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