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ABSTRACT. High-dimensional data often lie in low-dimensional subspaces instead of the
whole space. Subspace clustering is a problem to analyze data that are from multiple low-
dimensional subspaces and cluster them into the corresponding subspaces. In this work,
we propose a (k, k)-sparse matrix factorization method for subspace clustering. In this
method, data itself is considered as the “dictionary”, and each data point is represented as a
linear combination of the basis of its cluster in the dictionary. Thus, the coefficient matrix
is low-rank and sparse. With an appropriate permutation, it is also blockwise with each
block corresponding to a cluster. With an assumption that each block is no more than k-by-
k in matrix recovery, we seek a low-rank and (k, k)-sparse coefficient matrix, which will
be used for the construction of affinity matrix in spectral clustering. The advantage of our
proposed method is that we recover a coefficient matrix with (k, k)-sparse and low-rank
simultaneously, which is better fit for subspace clustering. Numerical results illustrate the
effectiveness that it is better than SSC and LRR in real-world classification problems such
as face clustering and motion segmentation.

1. Introduction. There are huge amount of data generated and collected in our daily life.
Despite of their different sources and natures, those seemingly structureless data often pos-
sess good structures. One commonly used structure is that high-dimensional data belonging
to the same category lie in a low-dimensional subspace instead of arbitrarily distributed in
the whole space. For example, hand-writings of the same digit with different rotations,
translations or thickness are approximately in a low-dimensional subspace. Some other
examples are human face image data, where the face images of each human under different
illuminations form a low-dimensional subspace, and a video sequence with multiple mov-
ing objects, where each moving object in different frames belongs to a low-dimensional
subspace. When multiple categories are presented, we will have a data set that is a union
of low-dimensional subspaces, one category corresponding to a subspace. The problem
of subspace clustering refers to extraction of the low-dimensional subspaces from such
a data set with multiple categories. Many applications can be formulated as a subspace
clustering problem, including face clustering and motion segmentation in computer vision,
community clustering in social networks, and so on.

There are many available subspace clustering algorithms, including generalized prin-
cipal component analysis (GPCA) [26], spectral curvature clustering [5], sparse subspace
clustering (SSC) [8], low-rank representation (LRR) [14], low-rank subspace clustering
(LRSC) [9], and low-rank and sparse subspace clustering (LRSSC) [27]. For more details
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about the algorithms of subspace clustering, interested readers may consult the survey pa-
per [25]. Subspace clustering algorithms can be classified into four categories, namely,
algebraic methods [6, 26, 27], iterative methods [1, 15], statistical methods [24, 23, 7, 21],
and spectral clustering-based methods [28, 30, 11, 5, 8, 9, 30].

In spectral clustering-based methods, an affinity matrixW is constructed with the (i, j)-
th entry measuring the similarity between the i-th and j-th data points. One of the chal-
lenges in applying spectral clustering-based methods is how to choose the affinity matrix
W . Usually, W is constructed based on the coefficient matrix when the data set is repre-
sented as a linear combination of itself. Due to the structure of union of subspaces, the
coefficient matrix possesses properties of low rank and sparsity, which are exploited in
some state-of-the-art subspace clustering methods. In sparse subspace clustering (SSC)
[8], a sparse coefficient matrix is assumed and sought. The low-rank representation (LRR)
[14] try to find a low-rank representation of the coefficient matrix. Although SSC and LRR
are both successful in subspace clustering, they are problematic under some circumstances,
due to the reason that only one of the sparsity and the low-rank properties is used and the
other is ignored. LRR has never been shown that it is successful without of an restrictive
assumption of “independent subspace” [27]. SSC obtains an over-sparse coefficient matrix,
based on which the affinity graph may not be a connected body for the data points from the
same cluster [27, 16]. Moreover, the numerical experiments of Hopkins155 data show the
instances where SSC fails are often different from that of LRR [27].

To fix these problems, one may consider both the low-rank and sparsity properties of
the coefficient matrix. For this purpose, it is proposed in [27] to minimize a weighted sum
of the nuclear norm and the `1-norm of the coefficient matrix. Since the nuclear norm
promotes low rank and the `1-norm promotes the sparsity, it is expected that the coefficient
matrix is simultaneously low-rank and sparse. However, it was shown in [18] that, when a
matrix is jointly low-rank and sparse, minimizing a weighted sum of the nuclear norm and
the `1-norm has little improvement over minimizing just one of the two norms.

We have to seek new regularization terms that can promote the simultaneously low-rank
and sparse structure. In particular, the coefficient matrix in subspace clustering is jointly
block sparse and low-rank, which is a linear combination of a few block sparse and rank-1
matrices. Based on this observation, the atomic norm [4] minimization is proposed in [22]
to find the coefficient matrix. Unfortunately, the atomic norm optimization for jointly block
sparsity and low rank recovery is NP-hard [22]. In this paper, we propose an algorithm to
approximate the solution of the atomic norm minimization. Our algorithm is based on the
low-rank factorization of the coefficient matrix, where the factors are sparse. By this way,
we get a jointly sparse and low-rank coefficient matrix, which leads to effective subspace
clustering. Numerical experiments demonstrate that our algorithm outperform state-of-the-
art subspace clustering algorithms.

The rest of this paper is organized as follows. In Section 2, we present the formula-
tion of the atomic norm for jointly block sparse and low-rank matrices. In Section 3, a
new algorithm, called (k, k)-sparse matrix factorization, is proposed for matrix recovery
of the corrupted data, which is applied for spectral-based subspace clustering in Section 4.
Numerical results are given on two real-world clustering problems of face clustering and
motion segmentation in Section 5. Finally, the paper is concluded in Section 6.

2. Jointly (k, k)-Sparse and Low-Rank Matrices and Subspace Clustering. In this sec-
tion, we present the atomic norm minimization for the construction of the coefficient matrix
for subspace clustering.



SUBSPACE CLUSTERING BY (k, k)-SPARSE MATRIX FACTORIZATION 3

2.1. The Atomic Norm. Our goal is to cluster a collection of data points which are drawn
from a union of low-dimensional subspaces. Let

X = [x1,x2, · · · ,xn]

be the data matrix, where each data point xi ∈ Rp, i = 1, · · · , n is drawn from a union
of t (t is unknown) linear subspaces {Si}ti=1 with the dimension of each subspace di =
dim(Si), i = 1, · · · , t, unknown. We assume that the dimension of each subspace is low
enough such that it is smaller than the number of data points in this subspace. Then,
each data points can be represented as a linear combination of data points from its cluster.
Therefore, when each data point is represented as a linear combination of other data points
in the same set, the coefficient matrix is block diagonal under an appropriate permutation,
and each diagonal block corresponds to a subspace. Moreover, since each subspace is low
dimensional, each diagonal block is also of low rank. More precisely, we use Z to denote
the coefficient matrix of X under the linear representation of itself, i.e.,

X = XZ. (1)

Then, in the ideal case, Z is a diagonal block low-rank matrix after suitable permutation.
We assume that each nonzero block is no more than a k-by-k submatrix. In the follow-
ing, we call the matrix (k, k)-sparse if the matrix is block-diagonal under an appropriate
permutation and each nonzero block is no more than k-by-k submatrix.

To promote the (k, k)-sparse and low-rank properties simultaneously, we use the atomic
norm [4, 22] minimization. Let

Ak,k = {uvT : (u,v) ∈ Snk × Snk }

with
Snk = {ω ∈ Rn | ‖ω‖0 ≤ k, ‖ω‖2 = 1}.

In other words, Ak,k is a dictionary of infinite atorms, and each atom in Ak,k is a rank-1
matrix that contains at most k nonzero rows and k nonzero columns. The coefficient matrix
Z can be represented as a linear combination of a small number of elements in Ak,k

Z =

r∑
i=1

ciAi, (ci, Ai) ∈ R+ ×Ak,k, (2)

where r is the rank of Z. That is, Z has a sparse representation under dictionary Ak,k. For
a given arbitrary matrix M , its sparsity under dictionary Ak,k is defined

T
(0)
k,k(M) = inf

{
p : M =

p∑
i=1

ciAi, (ci, Ai) ∈ R+ ×Ak,k

}
.

In subspace clustering, we want to find the coefficient matrix Z such that T (0)
k,k(Z) is as

small as possible subject to suitable constraints. That is, we seek a coefficient matrix Z
that uses as few as possible atoms in Ak,k. However, the function T (0)

k,k is non-convex and
discontinuous. Its best convex relaxation is the atomic norm [4, 22] as follows

Tk,k(M) = inf

{
p∑
i=1

ci : M =

p∑
i=1

ciAi, (ci, Ai) ∈ R+ ×Ak,k

}
. (3)

Instead of the minimization of T (0)
k,k(Z), a minimum Tk,k(Z) is sought for the jointly (k, k)-

sparse and low-rank coefficient matrix Z.
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2.2. Robust recovery to noises or outliers. In applications, the data points are often cor-
rupted by noise with possible outliers. To be precise, let Y = [y1,y2, · · · ,yn] be the data
matrix, where each yi ∈ Rp, i = 1, · · · , n is a corrupted data point with yi = xi + εi,
where xi is the clear data point and εi is the corresponding error vector. Or, in matrix
notations,

Y = X + ε, (4)
with ε = [ε1, · · · , εn]. According to Equations (1) and (4), we have

Y = X + ε = XZ + ε = (Y − ε)Z + ε = Y Z + (ε− εZ) , Y Z + E. (5)

where E = ε − εZ. We know the coefficient matrix Z ∈ Rn×n is jointly low-rank and
(k, k)-sparse. If we assume ε is sparse, then E is also sparse. This strategy was also used
in [8, 28]. Therefore,

Y = Y Z + E, (6)
where Z is the coefficient matrix and E is the sparse error matrix. Hence, we can recover
the jointly (k, k)-sparse and low-rank coefficient matrix via the following convex optimiza-
tion

min
Z,E

Tk,k(Z) + λe‖E‖1

s.t. Y = Y Z + E
(7)

3. Matrix recovery by (k, k)-Sparse Matrix Factorizaiton. In this section, we present
an algorithm based on matrix factorization to approximate a solution of (7).

3.1. Matrix Factorization Approximation of the Atomic Norm. In this section, we
present an approximation of (7). Our starting point is the following theorem, which is
a corollary of Theorem 11 in [22].

Theorem 3.1 (a Corollary of [22, Theorem 11]). Let Z ∈ Rn×n be a matrix. Then

Tk,k(Z) = inf
Z=

∑
i uiv

T
i

1

2

(∑
i

(‖ui‖spk )2 +
∑
i

(‖vi‖spk )2

)
. (8)

Here ‖ · ‖spk is the k-support norm [2] as follows:

‖v‖spk , min

{∑
I∈Gk

‖wI‖2 : supp(wI) ⊆ I,
∑
I∈Gk

wI = v

}
,

where Gk denotes the set of all subsets of {1, 2, · · · , n} of cardinality at most k and
supp(wI) is the support of the vector wI .

Proof. By [22, Theorem 11],

Tk,k(Z) = inf

{∑
i

‖ui‖spk ‖vi‖
sp
k : Z =

∑
i

uiv
T
i

}
. (9)

Let the infimum on the right hand side of (8) be S1(Z), and that of (9) be S2(Z).
According to the Cauchy-Schwarz inequality, we have∑

i

‖ui‖spk ‖vi‖
sp
k ≤

√∑
i

(‖ui‖spk )2
√∑

i

(‖vi‖spk )2

≤

∑
i

(‖ui‖spk )2 +
∑
i

(‖vi‖spk )2

2
(10)
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Therefore, S1(Z) ≥ S2(Z).
It remains to prove S1(Z) ≤ S2(Z). For a given arbitrary precision ε > 0, let vi and ui

be fixed such that Z =
∑
i uiv

T
i and S2(Z) + ε ≥

∑
i ‖ui‖

sp
k ‖vi‖

sp
k . We define, for any

i,

ṽi = vi/αi, ũi = αiui, where αi =
√
‖vi‖spk /‖ui‖

sp
k .

It can be easily checked that Z =
∑
i ũiṽ

T
i and ‖ũi‖spk = ‖ṽi‖spk , so

S2(Z)+ε ≥
∑
i

‖ui‖spk ‖vi‖
sp
k =

∑
i

‖ũi‖spk ‖ṽi‖
sp
k

=

∑
i

(‖ũi‖spk )2 +
∑
i

(‖ṽi‖spk )2

2
≥ S1(Z).

Sending ε→ 0 yields S2(Z) ≥ S1(Z).

Note that the number of ui and vi are unknown in (8). If we fix this number to s, then
we get an approximation of Tk,k as follows

min
Z=UV T

U,V ∈Rn×s

1

2

(
‖U‖2k,2 + ‖V ‖2k,2

)
,

with ‖U‖k,2 =
√∑s

j=1 (‖uj‖spk )
2 withU = [u1, · · · ,us] and ‖V ‖k,2 =

√∑s
j=1 (‖vj‖spk )

2

with V = [v1, · · · ,vs]. Instead of (7), we solve its approximation

minimize
U,V,E

1

2

(
‖U‖2k,2 + ‖V ‖2k,2

)
+ µe‖E‖1

s.t. Y = Y UV T + E

(11)

Model (11) is to find a (k, k)-sparse and low-rank representation by matrix factorization
method. In the following, we call this method as (k, k)-sparse matrix factorization.

3.2. Alternating Direction Method of Multipliers (ADMM). In order to solve (11), we
use the alternating direction method of multipliers (ADMM) [19]. By introducing an aux-
iliary variable, (11) is converted to an equivalence

minimize
Z,E,U,V

1

2

(
‖U‖2k,2 + ‖V ‖2k,2

)
+ µe‖E‖1

s.t. Y = Y Z + E,

Z = UV T .

(12)

Then the augmented Lagrangian function of (12) is

L(Z,E,U, V, λ1, λ2)

=
1

2

(
‖U‖2k,2 + ‖V ‖2k,2

)
+ µe‖E‖1

+ 〈λ1, Y − Y Z − E〉+
µ1

2
‖Y − (Y Z + E)‖2F

+ 〈λ2, Z − UV T 〉+
µ2

2

∥∥Z − UV T∥∥2
F
, (13)

where the Euclidean inner product of two matrices M and N is defined as 〈M,N〉 =
tr(MNT ), NT is the transpose of the matrix N , and tr(·) is the trace of a matrix.

Instead of the problem (12), ADMM solves

max
λ1,λ2

min
Z,E,U,V

L(Z,E,U, V, λ1, λ2)
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by a gradient ascent algorithm, where the gradient is obtained approximately by one step
of alternating direction minimization. The ADMM for (12) uses the following iteration

1. Update Z:

Z ← arg min
Z

µ1

2

∥∥∥∥Y − (Y Z + E) +
λ1
µ1

∥∥∥∥2
F

+
µ2

2

∥∥∥∥Z − UV T +
λ2
µ2

∥∥∥∥2
F

, (14)

2. Update E and U , V , respectively:

E ← arg min
E

µ1

2

∥∥∥∥E − (Y − Y Z +
λ1
µ1

)∥∥∥∥2
F

+µe‖E‖1

= proxµe
µ1
‖·‖1

(
Y − Y Z +

λ1
µ1

)
, (15)

(U, V ) ← arg min
U,V

µ2

2

∥∥∥∥Z +
λ2
µ2
− UV T

∥∥∥∥2
F

+
1

2

(
‖U‖2k,2 + ‖V ‖2k,2

)
, (16)

3. Update λ1 and λ2:

λ1 ← λ1 + µ1 (Y − Y Z − E) , (17)

λ2 ← λ2 + µ2

(
Z − UV T

)
. (18)

Subproblem (14) is a least squares problem and can be solved efficiently by linear sys-
tem solvers. The solution of (15) is the entrywise soft-thresholding. However, it is not
trivial to solve subproblem (16), and we employ an iterative method that will be discussed
in Section 3.3 in detail. Algorithm 1 outlines the whole algorithm to solve (11) by ADMM.

Data: Initialize E = 0, U = 0, V = 0, λ1 = 0, λ2 = 0.
1 while not convergence do
2 Update Z with Equation (14) ;
3 Update E with Equation (15) and U , V with Equation (16), respectively;
4 Update λ1 with Equation (17) and λ2 with Equation (18);
5 end

Algorithm 1: ADMM Algorithm to solve Model (11).

3.3. (k, k)-Sparse Matrix Factorization. In this subsection, we discuss efficient numer-
ical solvers for solving subproblem (16) in ADMM. In particular, proximal alternating
linearized minimization (PALM) [3] is applied.

For simplicity, we denote

Z̃ = Z +
λ2
µ2
∈ Rn×n.
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In (16), we find two matrices U ∈ Rn×s and V ∈ Rn×s that satisfy Z̃ ≈ UV T and UV T

is a (k, k)-sparse matrix, where s is a fixed integer approximating the rank. If we further
define E(U, V ) = 1

2‖Z̃ − UV
T ‖2F , then (16) is rewritten as

[U, V ] = arg min
U∈Rn×s

V ∈Rn×s

E(U, V ) +
1

2µ

(
‖U‖2k,2 + ‖V ‖2k,2

)
(19)

Note that (19) is a non-convex optimization problem with respect to U and V . Finding
the global minimum is generally challenging. Nevertheless, one standard approach for
finding a local minimum of (19) is the Gauss-Seidel iteration, which is also known as
alternating minimization or block coordinate descent. The alternating minimization for
solving (19) is as follows:

U ← arg min
U∈Rn×s

E (U, V ) + 1
2µ‖U‖

2
k,2

V ← arg min
V ∈Rn×s

E (U, V ) + 1
2µ‖V ‖

2
k,2

(20)

Unfortunately, the subproblems involved in (20) do not have close-form solutions, which
means that nested iterative algorithms are needed. Furthermore, a necessary condition for
the convergence of alternating minization is the minimum in each step is uniquely attained
[29], and, otherwise, it is possible that the method may cycle without convergence [20].

If each subproblem in (20) is approximately solved by one step of proximal forward-
backward iteration [19], then we get the proximal alternating linearized minimization (PALM)
algorithm [3] as follows:U ← prox 1

2µζ ‖·‖
2
k,2

(
U − ζ(UV T − Z̃)V

)
,

V ← prox 1
2µξ ‖·‖

2
k,2

(
V − ξ

(
V UT − Z̃T

)
U
)
,

(21)

where prox 1
2α‖·‖

2
k,2

is the proximity operators of 1
2α‖ · ‖

2
k,2 as follows

prox 1
2α‖·‖

2
k,2

(H) = arg min
G∈Rn×s

{
1

2α
‖G‖2k,2 +

1

2
‖G−H‖2F

}
. (22)

It is shown in [3] that (21) converges to a stationary point of (19), provided that the step
sizes ζ and ξ satisfy certain constraints.

In order to get a practical algorithm, it remains to find an explicit expression of the
proximity operator. To this end, let G = [g1, · · · ,gs] and H = [h1, · · · ,hs] in (22). Then
we have

prox 1
2α‖·‖

2
k,2

(H)

= arg min
G∈Rn×s

{
1

2α
‖G‖2k,2 +

1

2
‖G−H‖2F

}
= arg min

g1,··· ,gs

s∑
i=1

{
1

2α
(‖gi‖spk )2 +

1

2
‖gi − hi‖22

}
.

Since gi’s for i = 1, . . . , s are independent in the optimization in the last line of the above
equation, the calculation of columns of prox 1

2α‖·‖
2
k,2

(H) can be carried out independently.
More precisely, if we write

prox 1
2α‖·‖

2
k,2

(H) = [p1, . . . ,ps],
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then

pi = arg min
gi

{
1

2α
(‖gi‖spk )2 +

1

2
‖gi − hi‖22

}
,

for i = 1, . . . , s. A closed-form formula of pi for a given hi is provided by [2], which is
outlined in Algorithm 2. For simplicity, we drop the index i in the vectors hi and pi.

Data: h ∈ Rn and the parameter α.
Result: p = arg min

g

{
1
2α (‖g‖spk )2 + 1

2‖g − h‖22
}

1 Let h̃ = [h̃1, · · · , h̃n]T , i.e., h̃i is the i-th largest element of |h|. Let Π be the
permutation matrix such that h̃ = Π|h|. For simplicity, define h̃0 := +∞,
h̃n+1 := −∞ and γr,l :=

∑l
i=k−r h̃i.

2 Find r ∈ {0, · · · , k − 1} and l ∈ {k, · · · , n} such that

h̃k−r−1
α+ 1

>
γr,l

l − k + (α+ 1)(r + 1)
≥ h̃k−r
α+ 1

,

ũl >
γr,l

l − k + (α+ 1)(r + 1)
≥ g̃l+1.

3 Define

qi =


α
α+1 h̃i if i = 1, · · · , k − r − 1

h̃i − γr,l
l−k+(α+1)(r+1) if i = k − r, · · · , l

0 if i = l + 1, · · · , n
4 Set p = [p1, . . . , pn]T , where pi = sign(hi)(Π

−1q)i.

Algorithm 2: The algorithm for proximity operator of 1
2α (‖ · ‖ksp)2 with input h.

Since (19) is a non-convex optimization, the limit of our algorithm (21) depends on the
initial guess . In general, the initialization with U = 0 and V = 0 is not good. Instead, we
initialize U and V as follows. When (21) is called by the first iteration of Algorithm 1, we
initialize U and V with

U = PsΣ
1/2
s , V = QsΣ

1/2
s ,

where (Ps, Qs,Σs) are the singular value triplets correponding to the largest s singular
value of Z̃. In the subsqeuent iterations of Algorithm 1, we use the U, V calculated in the
previous iteration as the initial guess of current iteration and terminate the algorithm when

max

(
max

(∣∣∣∣U (l)
(
V (l)

)T
− U (l−1)

(
V (l−1)

)T ∣∣∣∣)) < 2× 10−4.

4. Spectral clustering framework. In this section, we present a framework of spectral
subspace clustering based on the coefficient matrix C = UV T found by Algorithm 1 that
solves (11).

As stated in the introduction, spectral clustering is very popular and is a very powerful
tool for subspace clustering. In spectral clustering-based methods, an affinity matrix W ∈
Rn×n is constructed with the (i, j)-th entry measuring the similarity between the i-th and
j-th data points. First of all, we build a graph G = (V, E ,W ) with V being the set of nodes,
E being the set of edges. W is the affinity matrix whose entries are the weights of an edge
connecting two nodes. The weight equals 0 if there is no edge between two nodes. In an
ideal graph, nodes from the same cluster are connected together and there are no edges
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between the nodes from different clusters. One of the most challenges in applying spectral
clustering-based methods is how to choose the affinity matrix.

We use the coefficient matrix C = UV T by Algorithm 1 to construct the affinity matrix.
Recall that Algorithm 1 solves (11), where we use the data itself as the dictionary ma-
trix, i.e. each sample is represented as a linear combination of the data points themselves.
Moreover, we assume that each data point can be represented as a linear combination of the
basis of those data points from the same cluster as itself. Ideally, for the coefficient matrix
C = UV T , the (i, j)-th entry ci,j of C is nonzero value if the i-th and j-th data points lie
in the same cluster, otherwise, ci,j = 0. Under an appropriate permutation, the matrix C
is block-diagnal. We will construct the affinity matrix W based on the coefficient matrix
C for spectral clustering. Note that it is possible that the coefficient matrix is not symmet-
ric. Sometimes, the entries of the coefficient matrix are negative. In our experiments, the
affinity matrix is chosen asW = |C|+ |CT | with wij = |cij |+ |cji|. Therefore, W is sym-
metric with nonnegative entries. Ideally, W is a block-diagonal matrix by an appropriate
permutation with each block associated with one cluster.

Based on the affinity matrix W , we can apply normalized spectral clustering [17] for
subspace clustering. More specifically, we compute the eigenvectors x1,x2, · · · ,xt of the
normalized Laplacian Lsym corresponding to the t ( t is the number of clusters) smallest
eigenvalues, and then we normalize the rows of [x1, · · · ,xt] to norm 1 to get a matrix
Φ = [φT1 , φ

T
2 , · · · , φTn ]T ; finally we cluster {φj}nj=1 by K-means.

5. Numerical Results. In this section, we evaluate our proposed method in face clustering
and motion segmentation by experiments. Our method is also compared with the two state-
of-the-art subspace clustering methods SSC [8] and LRR [14]. To have a fair comparison,
we take out the post processing steps used in the original paper [8] of SSC and [14] of
LRR, and we construct the affinity matrix by the coefficient matrix directly for subspace
clustering.

5.1. Choice of s. In our proposed method, matrix factorization is performed for matrix
recovery. It is necessary to find an appropriate value of s. In practice, we do not have
available knowledge about the reduced number of dimension s priorly, and a suitable s is
always based on the given data. Generally speaking, s must be large enough to contain
necessary information and small enough to take out the noises. In other words, if s is less
than the real rank, then the data can not be adequately approximated, and if the reduced
number s is equal or more than the real rank, then the reduction of the residual sum of
square (RSS) is very slow. Therefore, in the plot of RSS versus different reduced numbers
s, there is an inflection where s matches the proper rank number [12].

We use one experiment to investigate the relationship between the RSS and the number
of the reduced dimension, and the RSS based on model (11) is defined as

RSS(U, V,E) = ‖Y − Y UV T − E‖2F . (23)

Figure 1 illustrates the plot of the residual sum of square (RSS) versus the reduced number
s for s = 5, · · · , 10 on one of the video sequences in Hopkins155 data. We see that there
is an inflection point on the curve, which is chosen as s of our algorithm. We also observe
that when s exceeds the inflection point, the RSS becomes stable. Therefore, our method
is not sensive to the choice of the parameter s, as long as it is larger than the proper rank.

5.2. Face clustering. Face clustering is to cluster the face images belonging to the same
human subject into one cluster. In the following, we evaluate our proposed method on
Extended Yale Database B [13]. This dataset contains face images for 38 human subjects
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FIGURE 1. The plot of RSS vs. the reduced dimension s.

with 64 face images for each human subject under different illumination conditions, Figure
2 illustrates the face images of one human subject under different illumination conditions.

FIGURE 2. The ExtendedYale data B.

In our experiments, we test on the t ∈ {2, 3, 5, 8, 10} subjects for subspace clustering.
In order to save time and memory storage [10, 8], we resize each face image to 48 ×
42 pixels from 192 × 168 pixels, and then further project the 2016-dimensional vector
for each face image to 9 × t-dimensional subspace under singular value decomposition
(SVD). For the parameters of SSC and LRR, we use the default values setting by the authors
with α = 20 for SSC and α = 0.18 for LRR. For our proposed method, (k, k)-SMF, the
parameters are setting as µ1 = α/mini maxj 6=i ‖yj‖1, µ2 = α and µe = α/50000 with
α = 20. Table 5.2 lists the mean (%) and median (%) of the error rate and the number of
reduced dimension we assigned for t ∈ {2, 3, 5, 8, 10} and k ∈ {3, 4} in face clustering on
Extended Yale dataset B. We see that in general our method achieves the minimum error
among all the three methods.

5.3. Motion segmentation. In computer vision, motion segmentation is the process of
separating regions, features, or trajectories from a video sequence into coherent subsets
of space and time. These subsets correspond to independent moving objects in the scene.
In the following, we use Hopkins155 dataset to evaluate our proposed method for mo-
tion segmentation. In this dataset, there are 156 video sequences including Checkerboard
sequences, Traffic sequences and Articulated/non-rigid sequences. Each sequence is an in-
dependent data with the extracted feature points in all frames and there are 156 different
datasets. In our numerical experiment, there is no pre/post processing on the dataset for all
three methods. The parameters for SSC and LRR are also the default values setting by the
authors. Since the outliers in the data have been manually removed, the overall error level
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# Classes mean/median SSC LRR (3, 3)-SMF (4, 4)-SMF
error s error s

2 mean 15.83 6.37 3.38 18 3.53 18median 15.63 6.25 2.34 2.34

3 mean 28.13 9.57 6.19 25 6.06 25median 28.65 8.85 5.73 5.73

5 mean 37.90 14.86 11.06 35 10.04 35median 38.44 14.38 9.38 9.06

8 mean 44.25 23.27 23.08 50 22.51 50median 44.82 21.29 27.54 26.06

10 mean 50.78 29.38 25.36 65 23.91 65median 49.06 32.97 27.19 27.34
TABLE 1. The error rate (mean % and median %) for face clustering on
Extended Yale dataset B.

is low, we set the parameters of error µe = α/10 with α = 80. Table 5.3 lists the error
rate (mean %/median %) for motion segmentation on Hopkins155 dataset with the number
of reduced dimension s = 10. From Table 5.3, we see that our method has a smaller mean
error than both SSC and LRR.

SSC LRR (3, 3)-SMF (4, 4)-SMF
Mean 9.28 8.43 6.61 7.16

Median 0.24 1.54 1.20 1.32
TABLE 2. The error rate (mean %/median %) for motion segmentation
on Hopkins155 dataset.

6. Conclusion. In this work, we have proposed a (k, k)-sparse matrix factorization method
for subspace clustering. This method consists of a matrix recovery by (k, k)-sparse matrix
factorization and a spectral clustering. In matrix recovery by (k, k)-sparse matrix fac-
torization, we recover a low-rank and (k, k)-sparse coefficient matrix, which is used to
construct the affinity matrix for spectral clustering. Our (k, k)-sparse matrix factorization
algorithm is robust to outliers contained in the corrupted data. Our method is evaluated by
experiments on the datasets of Extended Yale dataset B for face clustering and Hopkins155
dataset for motion segmentation. Numerical results demonstrate that our proposed method
is better than the two state-of-the-art subspace clustering methods SSC and LRR.

There are several possible future research directions. One is to establish the convergence
and theoretical guarantee of the proposed algorithm for subspace clustering. Another one is
to investigate theoretical results of the atomic norm minimization for recovering low-rank
and (k, k)-sparse matrix.
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