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Abstract

In image restoration, we usually assume that the underlying image has a good sparse approximation
under a certain system. Wavelet tight frame system has been proven to be such an efficient system
to sparsely approximate piecewise smooth images. Thus it has been widely used in many practical
image restoration problems. However, images from different scenarios are so diverse that no static
wavelet tight frame system can sparsely approximate all of them well. To overcome this, recently, Cai
et. al. [7] proposed a method that derives a data-driven tight frame adapted to the specific input image,
leading to a better sparse approximation. The data-driven tight frame has been applied successfully to
image denoising and CT image reconstruction. In this paper, we extend this data-driven tight frame
construction method to multi-channel images. We construct a discrete tight frame system for each
channel and assume their sparse coefficients having a joint sparsity. The multi-channel data-driven tight
frame construction scheme is applied to joint color and depth image reconstruction. Experimental results
show that the proposed approach has a better performance than state-of-the-art joint color and depth
image reconstruction approaches.

1 Introduction

Image restoration [12] is one of the most important areas in imaging science. Its major task is to esti-
mate the clean original image from a corrupted/noisy image during the process of imaging, acquisition and
communication. A popular class of approaches for image restoration are the sparsity-based regularization
methods, assuming the underlying image has a good sparse approximation under some properly designed
system. Actually, in the past decades, sparse approximation not only has been a powerful tool for image
restoration but also has played important roles in many signal processing areas such as compression and
data analysis.

The foundation of sparse approximation for image restoration is the design of systems under which a large
class of images have a good sparse approximation. There are various such systems available. Some of them
are bases, which use linearly independent atoms, and therefore the dimension of the coefficients is minimized.
One representative class of bases for sparse approximation are orthonormal wavelet bases [13,26], which can
approximate piecewise smooth images very efficiently with only a few non-zero wavelet coefficients. This
leads to the great success of orthonormal wavelet in image processing. However, linear independency of bases
limits the number of atoms in the basis system. As a result, the sparse approximation ability by a basis
is limited. Also, the linear independency constraint introduces inflexibility in the construction of bases for
sparse approximation. Due to these reasons, over-complete systems, which sacrifice the linear independency
of atoms in bases, have become more and more widely used in sparse approximation. When the linear
independency in orthonormal wavelet bases are discarded while keeping Parseval’s identity, one gets over-
complete systems called wavelet tight frames derived from extension principles [14,28]. While wavelet tight
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frames inherit many good properties from orthonormal wavelet bases such as efficient decomposition and
reconstruction algorithms, they possess a more powerful sparse approximation ability for piecewise smooth
images than orthonormal wavelet bases. Wavelet tight frames are now widely used in image restoration for
various tasks; see, e.g., [4,6,8,9]. Some other over-complete systems that have a good sparse approximation
for images are X-lets [10,21,22].

Images from real applications are diverse. Different applications give images with different characteristics.
For example, images arising from medical imaging contain relatively fewer structures than images captured
by a digital camera. Even for the same application, images behavior quite differently from instance to
instance. The images of human faces captured by a digital camera are definitely different from those of
street views. Consequently, systems of sparse approximation cannot always perform very well for practical
problems. For example, it is well known that both orthonormal wavelet and wavelet tight frame cannot handle
images with abundant texture structures very well. Motivated by this, [7] recently proposed a method that
derives a discrete tight frame system, called data-driven tight frame, from the input image itself to provide
a better sparse approximation to the input image. By relaxing the unitary extension principle [17, 28], an
optimization involving a 0-norm and a unitary matrix constraint is used to obtain the filters in the data-
driven tight frame. An alternating minimization scheme is employed for the resulting optimization. However,
its convergent analysis is not provided in [7]. To overcome this issue, [2] proposed a theoretically convergent
algorithm for data-driven tight frame construction. The advantage of data-driven tight frame over static tight
frame has been demonstrated for image denoising [7], image inpainting [1], CT image reconstruction [34],
and seismic data restoration [23]. In [1], the data-driven tight frame construction method is reformulated as
an orthonormal dictionary learning in the image patch space.

In this paper, we extend the data-driven tight frame construction method to multi-channel images.
We construct one discrete tight frame system for each channel and assume their sparse coefficients having
a common sparsity pattern. This leads to an optimization problem involving a vector 0-norm and several
orthonormal matrix constraints. The multi-channel data-driven tight frame is applied to joint color and depth
image (RGB-D image) reconstruction, which arises from recent development on the emerging consumer RGB-
D cameras. The RGB-D cameras can capture both the color image and the depth of the scene. However, the
depth in an RGB-D image is often noisy and incomplete, especially around object boundaries. Furthermore,
the RGB-D camera may produce a severely noised color image under some bad illumination conditions. Thus
the enhancement of depth image and RGB-D image is receiving increasing research interest [18, 24, 30, 35].
We will employ the proposed multi-channel data-driven tight frame for the joint task of restoration of the
depth image and noise removal of the color image. The experiments showed that the proposed approach has
a better performance than state-of-the-art joint color and depth image reconstruction approaches in [24].

The rest of the paper is organized as follows. In Section 2, we give some preliminary backgrounds on
wavelet tight frame, and the data-driven tight frame construction method in [7]. In Section 3, we present our
multi-channel data-driven tight frame construction scheme, which will be applied to joint color and depth
image reconstruction in Section 4. The paper is concluded in Section 5.

2 Tight Frames and Data-Driven Tight Frames

This section is devoted to some preliminaries of wavelet tight frame and data-driven tight frame construction.
In Section 2.1, wavelet tight frame and its construction from unitary extension principles are introduced. In
Section 2.2, we present the construction scheme of data-driven tight frames.

2.1 Tight Frame and Wavelet

In this section, we discuss briefly on tight frame, wavelet tight frame, and their construction from unitary
extension principle; see [14,28,32] for more details. Let H be a Hilbert space and {xn} ⊂ H be a countable
set. Then, we call {xn} a tight frame for H if

‖x‖2 =
∑
n

|〈x, xn〉|2, ∀x ∈ H. (1)
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Figure 1: The scaling function and framelets in piecewise linear B-spline wavelet tight frame
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It is easy to see that any orthonormal basis is a tight frame. However, a tight frame is not necessarily an
orthonormal basis. For example, the union of two distinct orthonormal bases divided by

√
2 is a tight frame

but not an orthonormal basis. Therefore, tight frame is a generalization of orhtonormal basis. While keeping
Parseval’s identity of orthonormal basis, tight frame discards linear dependency, and it is over-complete.

Wavelet tight frames are a widely used class of tight frames for sparse approximation in image restoration.
We start with the univariate case where H = L2(R). In wavelet tight frame systems, all the functions are
shifts and dilations of some finite generators. In particular, let Ψ = {ψ1, ψ2, ψ3, . . . , ψm−1} ∈ L2(R) be a set
of finite generators. Then, we call the following system X(Ψ) a wavelet tight frame if it forms a tight frame
in L2(R):

X(Ψ) = {ψij,k, 1 ≤ i ≤ m− 1, j ∈ Z, k ∈ Z},

where ψij,k = 2j/2ψi(2
j · −k).

The construction of wavelet tight frames is then the construction of Ψ. One construction scheme is using
multi-resolution analysis (MRA) and the unitary extension principle (UEP). We start from a compactly
supported refinable function φ (often referred as a scaling function) with a refinement mask a0 satisfying

φ̂(2·) = â0φ̂,

where φ̂ is the Fourier transform of φ, and â0 is a 2π-periodic trigonometric polynomial defined as â0(ω) :=∑
k∈Z a0[k]eıkω and satisfies â0(0) = 1. We then define the generators ψ`, i = 1, . . . ,m − 1, in Ψ in the

Fourier domain by
ψ̂i(2·) = âiφ̂, i = 1, . . . ,m− 1,

where the associated masks {âi}m−1
i=1 are 2π-periodic trigonometric polynomials âi(ω) =

∑
k∈Z ai[k]eıπkω.

The unitary extension principle (UEP) [14,28] tells that X(Ψ) forms a tight frame provided that

m−1∑
i=0

âi(ω)âi(ω + γπ) = δγ , ∀γ ∈ {0, 1}, (2)

where δ0 = 1 and δ1 = 0. The elements in Ψ are called framelets. The sequence a0 is called the low-pass
filter, and a1, . . . ,am−1 are called high-pass filters.

One example class of wavelet tight frames derived from MRA and UEP are the B-spline wavelet tight
frame systems. Figure 1 depicts the scaling function and the framelets in piecewise linear B-spline wavelet
tight frames, and the associated low-pass and high-pass filters are

a0 =
1

4
[1, 2, 1], a1 =

√
2

4
[1, 0, − 1], a2 =

1

4
[−1, 2, − 1].

Wavelet tight frames for L2(R2) can be obtained by tensor products: the scaling function, framelets, and
filters for wavelet tight frames in L2(R2) are tensor products of their correspondences in L2(R).

Digital images are vectors in RN2

that are discretizations of functions in L2(R2). One can construct tight
frame systems for digital images using filters of wavelet tight frames with proper boundary conditions. The
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construction is derived from discrete wavelet tight frame transform. Let {ai}m−1
i=0 be the low-pass filter and

high-pass filter associated with the wavelet tight frame in L2(R2). Let a ∗ b be the filtering of two vectors

a, b ∈ RN2

, viewed as 2D arrays of size N × N , with proper boundary conditions. Then, the one level
translation invariant discrete wavelet tight frame transform is a linear transform

W : x ∈ RN
2

→

 a0 ∗ x
...

am−1 ∗ x

 ∈ RmN
2

. (3)

The unitary condition (1) and UEP (2) implies that WTW = I. In other words, the rows of W forms a tight

frame in RN2

. See [3, 11,32] for more details.

2.2 Data-Driven Tight Frames

Though the tight frame introduced in the previous section is applied widely for image restoration [3, 4, 6, 8,
9,11,32], they are not good at reconstructing of images with rich textures. To broaden its applicability and
improve its ability of sparse approximation, [7] proposed a scheme for constructing a discrete tight frame,
called data-driven tight frame, adapted to a given image.

Since a wavelet tight frame is completely determined by its filters, the construction of data-driven tight
frame is constructed by finding its filters. Instead of using static filters no matter what the underlying image
is, the data-driven tight frame uses filters that are tailored to the specific input image. In particular, let
{hi}R−1

i=0 be a family of compact supported 2D filters that are to be determined later, and write

H = [h0, h1, . . . ,hR−1].

In the following, we will not distinct the set of filters {hi}R−1
i=0 and the matrix of filters H. Then, by (3),

the associated one level tight frame transform is

W (H) : x ∈ RN
2

→

 h0 ∗ x
...

hR−1 ∗ x

 ∈ RRN
2

, (4)

where ∗ is the filtering of two 2D arrays. In order rows of W (H) ∈ RRN2×N2

forming a tight frame in

RN2

, the perfect reconstruction property W (H)TW (H) = I should be satisfied, which is finally reduced to
certain conditions on the filters . By using the UEP, we have the following theorem from [7].

Theorem 1 ( [7]). Assume H ∈ RR×R with R = r2 for some integer r, and columns of H are vectorization

of 2D arrays of size r × r. Then the rows of W (H) forms a tight frame of RN2

if HTH = I/R.

Let g ∈ RN2

be the input image. To get a tight frame, in the rest of the section, we will assume
H ∈ RR×R with R = r2 for some integer r, and columns of H are vectorization of 2D arrays of size r × r.
With the help of Theorem 1, one can formulate the data-driven tight frame construction as the following
minimization problem

min
H,v
‖W (H)g − v‖22 + λ2‖v‖0, subject to HTH = I/R, (5)

where ‖v‖0 is the 0-norm of v. The first term of the cost function in (5) is to keep the coefficient v ∈ RRN2

close to W (H)g. The second term is to enforce the sparsity of v. The constraint ensures that W (H) is a
tight frame, according to Theorem 1. Therefore, through (5), we obtain a set of filters H and a tight frame
W (H), under which the input image has a sparse coefficient. Eq. (5) is solved numerically by an alternating
direction minimization scheme. Fixing H, the minimization problem (5) becomes

min
v
‖W (H)g − v‖22 + λ2‖v‖0,
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whose solution is
v = Tλ(W (H)g). (6)

Here Tλ is the hard-thresholding operator defined by

Tλ(x) = x · χ|x|≥λ,

where χ|x|≥λ is the characteristic vector for the componentwise comparison |x| ≥ λ. Fixing v, the minimiza-
tion problem (5) is equivalent to

min
H
‖W (H)g − v‖22, subject to HTH = I/R. (7)

The closed-form solution of (7) is given by singular value decomposition (SVD), summarized in the following
theorem.

Theorem 2 ( [7]). Let G ∈ RR×N2

be the matrix by sampling all the r×r patches of g, viewed as an N ×N
2D array. Let V ∈ RR×N2

be the reshape of v such that the j-th column of V corresponds to coefficients for
pixel j. Let GV T = PΣQT be a singular value decomposition of GV T . Then, the solution of (7) is given
by

H = PQT /r. (8)

Finally, the construction of data-driven tight frame from g is to applying formulas (6) and (8) alterna-
tively.

The improvement of data-driven tight frame approach over static tight frame approach has been demon-
strated for image denoising [7], image inpainting [1], CT image reconstruction [34], and seismic data restora-
tion [23]. In [1], the data-driven tight frame construction method is reformulated as an orthonormal dictio-
nary learning in the image patch space.

3 Construction of Multi-Channel Data-Driven Tight Frame

In this section, we extend the construction scheme of data-driven tight frames to multi-channel images. We
will derive one tight frame for each channel and assume their coefficients having a joint sparsity.

Let
G = [g(1) , g(2), . . . , g(c)]

be a multi-channel image, where g(i) ∈ RN2

is the i-th channel. Since each channel may contain information
of different features, we construct one tight frame for each channel. Let H(i), i = 1, . . . , c, be the filters of
the tight frame for g(i), and W (H(i)) be its associated tight frame transform as in (4). We assume, for any
i = 1, . . . , c, H(i) ∈ RR×R with R = r2 for some integer r and columns of H(i) are vectorization of 2D arrays
of size r × r. Denote by v(i) the coefficient of g(i) under the transform of W (H(i)), and write

V = [v(1) ,v(2), . . . , v(c)].

As channels in G are interacted, sparsity of columns of V should be related. Here we assume that colomns
of V have a common sparsity pattern. We assume that most of the rows in V are zero vectors. Such a joint
sparsity constraint is a widely used model for vector-valued data, and it has been successfully used in various
applications [15,16,31,33]. To promote such a joint sparsity, we employ ‖V ‖0,row defined in the following as
a regularization term

‖V ‖0,row =

N2∑
j=1

χvj 6=0,

where vj is the j-th row of V , and χvj 6=0 is the characteristic function of vj 6= 0. The function ‖ · ‖0,row is
a generalization of 0-norm to vector-valued data.
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Altogether, we construct the data-driven tight frame for multi-channel images by solving the following
minimization problem

min
V ,H(1),...,H(c)

c∑
i=1

wi‖W (H(i))g(i) − v(i)‖22 + λ2 ‖V ‖0,row ,

subject to (H(1))TH(1) = . . . = (H(c))TH(c) = I/R

(9)

where wi for i = 1, . . . , c are positive constants to balance difference channels. The first term of the objective
function in (9) is a data-fidelity term, which is to keep v(i) the coefficient of g(i under the discret tight frame
transform W (H(i)); the second term is a regularization term, which forces V to satisfy the joint sparsity
prior; the constraints, together with the additional assumptions on H(i), ensure that W (H(i)), i = 1, . . . , c,
are tight frame transforms, according to Theorem 1.

The alternating minimization method is applied to solve (9). Fixing either the filters H(i), i = 1, . . . , c,
or the coefficient V , (9) is solved with respect to the other variable only. When the filters H(1), . . . ,H(c)

are fixed, solving (9) with respect to V can be recast as

min
V

c∑
i=1

wi‖W (H(i))g(i) − v(i)‖22 + λ2 ‖V ‖0,row . (10)

We have the following theorem on the closed form of the solution of (10).

Theorem 3. The solution of (10) is

V = Tλ,w,row

(
[W (H(1))g(1), . . . , W (H(c))g(c)]

)
. (11)

where Tλ,w,row is a row-vector hard-thresholding operator defined as follows: Let the j-th row of Tλ,w,row(X)
and X be [Tλ,w,row(X)]j and xj respectively. Then

[Tλ,w,row(X)]j =

{
xj , if ‖xj‖w ≥ λ,
0, otherwise,

where ‖z‖w =
(∑c

i=1 wiz
2
i

)1/2
is a weighted 2-norm.

Proof. Let X = [W (H(1))g(1), . . . , W (H(c))g(c)]. Let xij and xj be the (i, j)-th entry and j-th row of X
respectively. Then, (10) can be rewritten as

min
V

N2∑
j=1

(
c∑
i=1

wi(xij − v(i)
j ) + λ2χvj 6=0

)
,

meaning that (10) can be separated as N2 independent small-sized minimization problems

min
vj

(
c∑
i=1

wi(xij − v(i)
j ) + λ2χvj 6=0

)
(12)

for j = 1, . . . , N2. Let us find the solution vj of (12). If xj = 0, then the solution of (12) is obviously vj = 0.
Thus we assume xj 6= 0. By considering the cases where vj 6= 0 and vj = 0 respectively, we rearrange (12)
as

min
vj

{∑c
i=1 wi(Xij − v(i)

j ) + λ2, if vj 6= 0,

‖xj‖2w, if vj = 0.

Apparently, the minimizer in the first case is vj = xj 6= 0, and the associated minimum is λ2. Therefore, if
‖xj‖w ≥ λ, then the minimum is achieved by choosing the first case and the minimizer is vj = xj , otherwise
the minimum is achieved by choosing the second case and the minimizer is vj = 0.
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When the coefficient V is fixed, solving (9) with respect to H(i), i = 1, . . . , c, is equivalent to solving the
following c independent minimization problems

min
H(i)
‖W (H(i))g(i) − v(i)‖22 s.t. (H(i))TH(i) = I/R, (13)

for i = 1, . . . , c. By Theorem 2, the solution of (13) has a closed form

H(i) = P (i)(Q(i))T /r, (14)

where P (i) and Q(i) are the matrices of singular vectors in the SVD G(i)(V (i))T = P (i)Σ(Q(i))T . Here

G(i) ∈ RR×N2

is the matrix by sampling all the r × r patches of g(i), viewed as an N × N 2D array;
V (i) ∈ RR×N2

is the reshape of v(i) such that the j-th column of V (i) corresponds to coefficients for pixel j.
Our algorithm for the construction of multi-channel data-driven tight frame is summarized in Algorithm

1.

Algorithm 1 Construction of Multi-Channel Data-Driven Tight Frame

Input: A c-channel image G = [g(1), . . . , g(c)], and a set of initial filters A(i), i = 1, . . . , c.
Output: A set of filters of H(i), i = 1, . . . , c of learned multi-channel data-driven tight frame.

Procedures:

1. Initialize H
(i)
(0) by setting it to A(i) for i = 1, . . . , c.

2. Iterates k = 1, 2, . . . .

(a) Update the coefficient V by (11) with H(i) = H
(i)
(k−1), i = 1, . . . , c.

(b) Update the filters H
(i)
(k) for i = 1, . . . , c by:

i. Construct the matrices G(i) and V (i).

ii. Compute the SVD of G(i)(V (i))T = P (i)Σ(Q(i))T .

iii. Obtain H
(i)
(k) by (14).

(c) If the stopping criteria is met, then set K = k and quit the loop.

3. Output the filters H(i) = H
(i)
(K) for i = 1, . . . , c.

4 Application to Joint Color and Depth Image Reconstruction

In this section, we focus on the application of proposed multi-channel data-driven tight frame construction
scheme for joint color and depth image reconstruction. Calculating the distance of points in the scene relative
to the position of the camera is one of the important tasks in computer vision [19]. Such depth information
estimation problems are long-standing and used to be challenging. Recent development of RGB-D sensor
is completely changing the world of computer vision, where the emerging consumer RGB-D sensor enables
the easy acquisition of depth maps and corresponding color images in real time. Some representatives of
commercial RGB-D cameras are Microsoft Kinect and ASUS Xtion Pro. The feature of capturing depth
map at a low cost by the RGB-D cameras is gaining the attention of the research community, application
developers and the game industry. Related computer vision applications [20, 25] become more and more
widespread.
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However, the depth images captured by depth cameras are usually noisy and incomplete, especially at
the edge area of objects. Also, the color image might be severely noised when it is captured under a bad
illumination condition. Thus the enhancement of both depth image and color image is receiving increasing
research interest. Varieties of optimization recovery based schemes have been developed to solve this problem.
[35] proposes to approximate piecewise smooth functions in frame domain with sparse representation, and a
tight frame based scheme is developed to recover depth image from noise and outliers corrupted data. [30]
presents a convex optimization framework to simultaneously estimate super-resolution of both depth images
and color images, in which the problem is formulated into a single energy minimization with a convex function.
Similarly, [18] proposes to utilize the depth cues from the induced optical-flow to enhance the depth images
captured by a moving device. The problem is also addressed by minimizing an energy function. [24] assumes
that similar RGB-D patches lie in a low dimensional subspace. Based on the low-rank subspace constraint,
the depth image enhancement problem is formulated into a low-rank matrix completion problem. However,
the low-rank completion model is still not novel enough to represent the diverse images well, especially for
the complex texture regions.

4.1 Algorithm

A straightforward method for RGB-D image reconstruction is to apply the data-driven tight frame construc-
tion and image reconstruction for each channel independently. However, strong correlation exists among
different channels in multi-channel images. See, e.g., [18,24]. Good algorithms should take this into account
to achieve good reconstructed RGB-D image quality. Actually, all of the aforementioned algorithms for
depth image reconstruction are based on the fact that the color image (RGB channels) and its corresponding
depth image (D channel) are highly related. Motivated by this, we apply the multi-channel data-driven tight
frame (DDTF) for the joint task of depth image reconstruction and removal of possible noise in the color
image, as channel correlations are considered significantly in the construction of the multi-channel DDTF.

A mathematical description of the joint color and depth image reconstruction is as follows. Let g(1), g(2),
and g(3) be the red (R), green (G), and blue (B) channels of the color image respectively, and g(4) be the
depth (D) channel. The observed images (noisy color image and noisy incomplete depth image) are

f (i) = g(i) + η(i), i = 1, 2, 3, f
(4)
Λ = g

(4)
Λ + η(4),

where η(i), i = 1, 2, 3, 4 are noises, Λ is the set of positions of observed pixels in the depth image, and xΛ is
the restriction of x on Λ. We would like to reconstruct both the RGB channels and the D channel.

The RGB-D channel image reconstruction problem can be seen as a problem of inpainting with missing
pixels in the D channel only. Suppose that we have already constructed a multi-channel tight frame with
filters H(i), i = 1, 2, 3, 4. Inspired by the tight-frame inpainting algorithm in [5], a multi-channel tight frame
inpainting algorithm is
g

(4)
(k+1/2) = PΛf

(4) + (I − PΛ)g
(4)
(k),

[v
(1)
(k+1), . . . , v

(4)
(k+1)] = Tλ,w,row

( [
W (H(1))f (1), W (H(2))f (2), W (H(3))f (3), W (H(4))g

(4)
(k+1/2),

] )
,[

g
(1)
(k+1), . . . , g

(4)
(k+1)

]
=
[
(W (H(1)))Tv

(1)
(k+1), . . . , (W (H(4)))Tv

(4)
(k+1)

]
,

(15)
where PΛ is the diagonal matrix with diagonals 1 if the position is in Λ and 0 otherwise. The algorithm

(15) is explained as follows. Let g
(4)
(k) be a guess of the D-channel. We replace its pixels on Λ by the noisy

observation f
(4)
Λ , which is done by the first step of (15). This estimated D-channel g

(4)
(k+1/2) is combined

with the observed RGB-channels f (1), f (2), and f (3) to get an estimated noisy RGB-D image, whom a
multi-channel tight frame denoising scheme is applied to in Steps 2 and 3 in (15). By this way, we get a
better guess of the depth image, as well as a denoised color image.

We finally obtain our joint color and depth image reconstruction method by combining the multi-channel
tight frame inpainting algorithm (15) with the multi-channel data-driven tight frame construction Algorithm
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2. In particular, the tight frame filters H(i), i = 1, 2, 3, 4, in (15) is updated in each iteration by the output
of one step of Algorithm 1. The algorithm is described in Algorithm 2.

Algorithm 2 Joint Color Image and Depth Image Reconstruction by Multi-Channel Data-Driven Tight
Frame

Input: The noisy color image f (i) for i = 1, 2, 3, the noisy incomplete depth image f
(4)
Λ , and the set Λ of

known pixels of the depth image.
Output: The denoised color image g(i) for i = 1, 2, 3, and the reconstructed depth image g(4).

Procedures:

1. Initialize g
(4)
(0) and the set of filters H

(i)
(0) for i = 1, 2, 3, 4.

2. Iterates k = 1, 2, . . . .

(a) Set G(k−1/2) = [f (1), f (2), f (3), PΛf
(4) + (I − PΛ)g

(4)
(k−1)].

(b) Construct a multi-channel data-driven tight frame H
(i)
(k), i = 1, 2, 3, 4, by performing one

iteration of Algorithm 1 with input imageG = G(k−1/2) and filtersA(i) = H
(i)
(k−1), i = 1, 2, 3, 4.

(c) Denoise G(k−1/2) by thresholding the multi-channel tight frame coefficients[v
(1)
(k), . . . , v

(4)
(k)] = Tλ,w,row

( [
W (H

(1)
(k))g

(1)
(k−1/2), . . . ,W (H

(4)
(k))g

(4)
(k−1/2)

] )
,[

g
(1)
(k), . . . , g

(4)
(k)

]
=
[
(W (H

(1)
(k)))

Tv
(1)
(k), . . . , (W (H

(4)
(k)))

Tv
(4)
(k)

]
,

and denote G(k) =
[
g

(1)
(k), . . . , g

(4)
(k)

]
.

(d) If the stopping criteria is met, the set K = k and quit the loop.

3. Output G(K).

4.2 Experimental Results

In this section, we give the experimental validation and results of Algorithm 2, and compare it with state-of-
the-art algorithm proposed in [24] for joint color and depth image reconstruction. To validate the efficiency
of our scheme, a trivial solution that reconstructs each channel independently by applying the method in [7]
is also compared.

The experiments are conducted in Matlab 2014a on a Windows PC with Intel i7 CPU and 8G memory.
The public dataset Middlebury stereo dataset [29] is used as color images and depth images1. For the purpose
of comparison, the same experimental setting is utilized to obtain the color and depth images as in [24] (e.g.,
Gaussian white noise with stand deviation σ = 25 and σd = 5 is added into the RGB and depth channel
respectively). To evaluate the quality of reconstruction, the enhancement result of [27] is used as ground
truth, following the settings in [24]. The filters H(i), i = 1, . . . , 4, of the multi-channel tight frame are of
size 8× 8 and initialized with 8× 8 DCT transform. The missing values in the incomplete depth image are
initialized by conventional interpolation methods. We set the weights w1 = w2 = w3 = 1 in (10) for the
RGB channels. As the depth channel is different from RGB channels, the weights w4 should be different
from the others. We choose w4 manually according to the ratio of the 2-norms of the initial color image
and the initial depth image. The range of w4 is in [1, 5]. The thresholding value for the filter update and
coefficient update is set as λ2 = 14σ2. In our experiment the number of iterations is fixed K = 50.

1The dataset can be downloaded at http://web.cecs.pdx.edu/ fliu/project/depth-enhance/Middlebury.htm
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Both the PSNR and visual reconstruction results are compared between our method Algorithm 2 and
the low-rank matrix completion based method (LRMC) in [24]. The comparison of LRMC with other
popular joint color-depth reconstruction and depth enhancement algorithms are presented in [24], and LRMC
has shown to outperform its counterparts in the context of joint color and depth image reconstruction.
Therefore, we compare our Algorithm 2 with the state-of-the-art depth enhancement method LRMC only.
As a comparison, the result of a straightforward solution of applying the method in [7] in each channel
independently is also provided. This is demonstrated in Table 1, Fig. 2 and Fig. 3. More results can be
found in our project website.It is seen from Table 1 that the multi-channel data-driven tight frame approach
Algorithm 2 produces better image quality in terms of PSNR than LRMC and the straightforward method.
Also, Fig. 2 demonstrates the superior visual quality of the reconstructed images by Algorithm 2 over LRMC.
For example, Figs. 2(g) and 2(o) produced by Algorithm 2 contain finer textures than Figs. 2(e) and 2(m)
by LRMC. For some images LRMC has better results on the depth image, as demonstrated in Fig. 3. Note
that in this case our algorithm still have better color image reconstruction results.

Table 1: PSNR comparison of reconstructed color and depth images with LRMC
IMAGE 01 02 03 04

METHODS LRMC [7] Alg. 2 LRMC [7] Alg. 2 LRMC [7] Alg. 2 LRMC [7] Alg. 2
Color Image 26.29 26.01 27.32 30.72 29.18 30.95 29.46 29.12 30.24 30.07 29.77 30.91
Depth Image 35.26 35.54 35.63 33.10 31.53 32.29 39.00 38.33 38.92 42.71 42.41 42.99
IMAGE 05 06 07 08

METHODS LRMC [7] Alg. 2 LRMC [7] Alg. 2 LRMC [7] Alg. 2 LRMC [7] Alg. 2
Color Image 30.94 30.49 31.54 30.19 29.22 31.05 32.29 31.84 32.58 31.33 30.95 32.14
Depth Image 42.66 43.29 43.33 41.13 41.29 42.12 38.29 37.59 38.00 39.78 37.94 38.18
IMAGE 09 10 11 12

METHODS LRMC [7] Alg. 2 LRMC [7] Alg. 2 LRMC [7] Alg. 2 LRMC [7] Alg. 2
Color Image 25.61 25.38 27.08 28.71 28.10 29.20 28.82 27.91 29.09 26.46 26.23 27.57
Depth Image 46.23 48.08 46.86 42.39 41.66 42.33 42.62 41.68 42.16 37.72 37.29 37.57
IMAGE 13 14 15 16

METHODS LRMC [7] Alg. 2 LRMC [7] Alg. 2 LRMC [7] Alg. 2 LRMC [7] Alg. 2
Color Image 27.59 26.45 28.23 29.52 28.07 29.77 33.35 33.28 34.50 32.11 31.48 32.17
Depth Image 39.03 38.41 38.56 41.86 41.75 42.13 43.01 42.67 43.77 39.13 38.37 39.37
IMAGE 17 18 19 20

METHODS LRMC [7] Alg. 2 LRMC [7] Alg. 2 LRMC [7] Alg. 2 LRMC [7] Alg. 2
Color Image 34.15 33.39 34.29 31.31 29.52 31.57 32.16 30.69 32.83 32.62 31.33 33.31
Depth Image 38.88 38.19 39.32 38.59 37.40 37.91 39.91 38.56 39.06 39.10 38.21 38.52
IMAGE 21 22 23 24

METHODS LRMC [7] Alg. 2 LRMC [7] Alg. 2 LRMC [7] Alg. 2 LRMC [7] Alg. 2
Color Image 31.13 29.84 31.25 31.23 29.86 32.40 34.48 33.88 35.11 31.08 29.73 31.12
Depth Image 41.40 41.24 41.67 39.85 38.29 40.02 42.35 42.11 43.34 36.13 35.64 35.90
IMAGE 25 26 27 28

METHODS LRMC [7] Alg. 2 LRMC [7] Alg. 2 LRMC [7] Alg. 2 LRMC [7] Alg. 2
Color Image 29.90 28.85 30.25 29.38 28.48 29.85 28.41 27.44 29.28 33.56 33.18 34.07
Depth Image 45.26 45.41 45.49 46.13 46.60 46.58 40.77 39.94 40.80 39.96 39.60 40.80
IMAGE 29 30 AVERAGE

METHODS LRMC [7] Alg. 2 LRMC [7] Alg. 2 LRMC [7] Alg. 2
Color Image 33.70 32.83 34.11 27.65 26.53 28.26 30.47 29.63 31.07
Depth Image 40.32 38.36 41.04 41.26 39.43 41.18 40.46 39.89 40.53

5 Conclusion

In this paper, we present a method for the construction of a data-driven tight frame from an input multi-
channel image. We construct one discrete tight frame system for each channel and assume their sparse
coefficients having a common sparsity pattern. Similar to [7], this leads to an optimization problem in-
volving a row-vector 0-norm and several orthonormal matrix constraints, which is solved by an iterative
algorithm that performs thresholding and SVDs alternatively. The multi-channel data-driven tight frame is
applied to joint color and depth image (RGB-D image) reconstruction. The experiments showed that the
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(a) Ground-truth color image (b) Ground-truth incomplete
depth image

(c) Noisy color image (d) Noisy depth image

(e) LRMC color image (f) LRMC depth image (g) Our color image (h) Our depth image

(i) Ground-truth color image (j) Ground-truth incomplete
depth image

(k) Noisy color image (l) Noisy depth image

(m) LRMC color image (n) LRMC depth image (o) Our color image (p) Our depth image

Figure 2: Visual quality comparison between Algorithm 2 and LRMC.
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(a) Ground-truth color image (b) Ground-truth incomplete
depth image

(c) Noisy color image (d) Noisy depth image

(e) LRMC color image (f) LRMC depth image (g) Our color image (h) Our depth image

(i) Ground-truth color image (j) Ground-truth incomplete
depth image

(k) Noisy color image (l) Noisy depth image

(m) LRMC color image (n) LRMC depth image (o) Our color image (p) Our depth image

Figure 3: Visual quality comparison between Algorithm 2 and LRMC.
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proposed approach has a better performance than state-of-the-art joint color and depth image reconstruction
approaches in [24].
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