
LINEARIZED BREGMAN ITERATIONS FOR COMPRESSED

SENSING

JIAN-FENG CAI∗, STANLEY OSHER† , AND ZUOWEI SHEN‡

Abstract. Finding a solution of a linear equation Au = f with various minimization properties
arises from many applications. One such application is compressed sensing, where an efficient and
robust-to-noise algorithm to find a minimal ℓ1 norm solution is needed. This means that the algorithm
should be tailored for large scale and completely dense matrices A, while Au and AT u can be
computed by fast transforms and the solution we seek is sparse. Recently, a simple and fast algorithm
based on linearized Bregman iteration was proposed in [28, 32] for this purpose. This paper is to
analyze the convergence of linearized Bregman iterations and the minimization properties of their
limit. Based on our analysis here, we derive also a new algorithm that is proven to be convergent
with a rate. Furthermore, the new algorithm is simple and fast in approximating a minimal ℓ1 norm
solution of Au = f as shown by numerical simulations. Hence, it can be used as another choice of
an efficient tool in compressed sensing.
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1. Introduction. Let A ∈ R
m×n with n > m and f ∈ R

m be given. The aim
of a basis pursuit problem is to find u ∈ R

n by solving the following constrained
minimization problem

min
u∈Rn

{J(u) : Au = f}, (1.1)

where J(u) is a continuous convex function. In other words, it is to find a solution
of the linear system Au = f , which has a minimal energy J(u). Throughout this
paper, we assume that A is a surjective map, i.e., AAT is invertible. Therefore,
Au = f is under-determined, and has at least one solution, i.e., u = AT (AAT )−1f
which minimizes the ℓ2 norm among all the solutions of the equation. The set of all
solutions of Au = f is convex. We assume also that J(u) is coercive, i.e., whenever
‖u‖ → ∞, J(u) → ∞. This implies that the set of all solutions of (1.1) is a nonempty
convex set. Furthermore, when J(u) is strictly or strongly convex, the solution of
(1.1) is unique.

This basis pursuit problem arises from many applications. For example, in a
recent burst of research in compressed sensing, it amounts to solving (1.1) with J
being the ℓ1 norm to obtain a sparse solution of the equation. The interested reader
should consult, for example, [2, 8, 9, 10, 11, 12, 19, 21, 22, 23, 24, 29, 30, 31, 33, 34] for
details. The problem (1.1) can be transformed into a linear programming one, and
then solved by a conventional linear programming solver in many cases. However,
such solvers are not tailored for matrices A that are large scale and completely dense
while the solution to find is sparse. It does not use, for example, the fact that matrices
A are normally formed by rows of some orthonormal matrices corresponding to fast
transforms either where Au and AT u can be computed by fast transforms. This fact
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is, indeed, the case in some applications of compressed sensing. Hence, the algorithm
should utilize the fact that the solution to seek is sparse and Au and AT u can be
computed by fast transforms. More importantly, it should also be robust to noise.

1.1. Linearized Bregman Iteration. To solve (1.1) with emphasis on J(u) =
‖u‖1, a linearized Bregman iteration was proposed in [28, 32], which was inspired
by the work in [16]. The idea of the linearized Bregman iteration is to combine a
fixed point iteration and the Bregman iteration in [27, 32]. Given p0 = u0 = 0, the
linearized Bregman iteration is generated by

{
uk+1 = arg minu∈Rn

{
µ(J(u) − J(uk) − 〈u − uk, pk〉) + 1

2δ
‖u − (uk − δAT (Auk − f))‖2

}
,

pk+1 = pk − 1
µδ

(uk+1 − uk) − 1
µ
AT (Auk − f),

(1.2)
where δ is a fixed step size.

This paper is to provide a complete analysis for the linearized Bregman iteration
(1.2). In particular, we prove the convergence of (1.2) (both of the sequences {uk}k∈N

and {pk}k∈N) under the assumption that the convex function J(u) is continuously
differentiable and there exists a positive constant β such that

‖∂J(u) − ∂J(v)‖2 ≤ β〈∂J(u) − ∂J(v), u − v〉, ∀u, v ∈ R
n, (1.3)

where ∂J(u) is the gradient of J(u). This implies that ∂J(u) is Lipshitz continuous.
Note that we also use ∂J(u) to denote the subdifferential of the convex function J(u)
throughout the paper. Moreover, the limit of {uk}k∈N is the unique solution of

min
u∈Rn

{
µJ(u) +

1

2δ
‖u‖2 : Au = f

}
. (1.4)

Though (1.4) is not the same as (1.1), we will show that (1.4) approximates (1.1) with
a large µ.

1.2. Linearized Bregman Iteration for J(u) = ‖u‖1. When J(u) = ‖u‖1,
after reformulation, algorithm (1.2) can be rewritten as

{
vk+1 = vk − AT (Auk − f),

uk+1 = Tµδ(δv
k+1),

(1.5)

where u0 = v0 = 0, and

Tλ(w) := [tλ(w(1)), tλ(w(2)), · · · , tλ(w(n))]T (1.6)

is the soft thresholding operator [20] with

tλ(ξ) =

{
0, if |ξ| ≤ λ,

sgn(ξ)(|ξ| − λ), if |ξ| > λ.
(1.7)

This algorithm is shown to be accurate and efficient in many cases by numerical
simulations in [28]. As shown in [28], algorithm (1.5) is an extremely fast algorithm
that is very simple to program, involving only matrix-vector multiplications and scalar
shrinkages. We remark here that it is not the first time in signal and image processing
to combine an iterative algorithm together with a soft thresholding to obtain a solution
that minimizes the ℓ1 norm in some sense. In fact, one can find many of them in the
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literature; see, e.g., [3, 4, 5, 6, 7, 13, 14, 15, 17, 18] for details. With all of these, we
have good reason to believe that algorithm (1.5) works, as the numerical simulation
of [28] has already illustrated.

Here, we would like to emphasize that algorithm (1.5) is robust to noise. In the
first step of (1.5), it multiplies the error f −Auk by AT and adds it into vk to obtain
vk+1. This step does not blow up the noise. In the second step of (1.5), it thresholds
δvk+1 by Tµδ. This step produces a sparse vector uk+1 and removes the noise. In fact,
if we choose a large µ (as we will see later, this is the case in both theory and practice),
only large components in vk+1 are nonzeroes in uk+1. This implies that uk+1 is a
sparse vector, and the noise contained can be efficiently removed. Furthermore, since
we start with u0 = 0, algorithm (1.5) adds very important nonzero entries into u step
by step. Altogether, it indicates that algorithm (1.5) is robust to noise. This means
that, by properly choosing stopping criteria (e.g., stopping whenever ‖f − Auk‖2 is
less than the standard deviation of the noise), algorithm (1.5) can handle the case
when f is very noisy. Indeed, even for the case that the noise dominates the signal in
f , this algorithm gives an impressive result; see [28].

1.3. Application to Compressed Sensing. The original goal in [28, 32] of
the linearized Bregman iteration is to solve the basis pursuit problem in compressed
sensing, i.e.,

min
u∈Rn

{‖u‖1 : Au = f} . (1.8)

Therefore, another theme of this paper is to apply the theory and analysis presented
here to approximate a solution of (1.8). Hence, algorithms given here can be used as
efficient tools for compressed sensing. Our strategy is as follows.

First, we use the solution of

min
u∈Rn

{
µ‖u‖1 +

1

2δ
‖u‖2 : Au = f

}
(1.9)

to approximate a solution of (1.8). We prove that, as µ → ∞, the solution of (1.9)
tends to a solution of (1.8). The algorithm to find the solution of (1.9) is the lin-
earized Bregman iteration (1.5). Since ‖u‖1 is not differentiable, we cannot prove
the convergence of (1.5) by applying the theory here. However, we show that, when
{uk}k∈N in (1.5) converge, the limit u∗

0,µ of {uk}k∈N is the solution of (1.9).
Second, in order to have a proven convergent algorithm, we further approximate

the solution of (1.8) by the solution of

min
u∈Rn

{
µJǫ(u) +

1

2δ
‖u‖2 : Au = f

}
(1.10)

by properly chosen Jǫ that satisfies (1.3). In particular, we choose

Jǫ(u) =

n∑

i=1

Fǫ(u(i)), with Fǫ(ξ) =

{
ξ2

2ǫ
, if |ξ| ≤ ǫ,

|ξ| − ǫ
2
, if |ξ| > ǫ.

(1.11)

The function Jǫ(u) is Moreau-Yosida C1 regularization for ‖u‖1; see [25]. It is also
known as Huber’s norm in statistics [26]. The function Jǫ is continuously differentiable
and the gradient ∂Jǫ(u) satisfies (1.3); see Figure 1.1. Since the function ‖u‖1, which
is denoted by J0(u) = ‖u‖1, can be approximated by Jǫ, we prove that the solution
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Fig. 1.1. The left figure shows the approximation of Fǫ to the absolute value function, the

middle one shows the approximation of F ′
ǫ to the subdifferential of the absolute value function, and

the right one shows the approximation of tλ,ǫ to the soft-thresholding function tλ.

of (1.10) can be as close to that of (1.9) as possible as long as µǫ is chosen sufficiently
small. This, in turn, reveals that, as µ → ∞ and µǫ → 0, the solution of (1.10)
converges to a solution of (1.8).

The algorithm for solving (1.10) is the linearized Bregman iteration (1.2) with
J = Jǫ, which is guaranteed to be convergent by applying the convergence result of
this paper. Furthermore, iteration (1.2) with J = Jǫ, which has a compact form as
(1.5), can be reformulated as

{
vk+1 = vk − AT (Auk − f),

uk+1 = Tµδ,ǫ(δv
k+1),

(1.12)

where u0 = v0 = 0, and

Tλ,ǫ(u) := [tλ,ǫ(u(1)), tλ,ǫ(u(2), . . . , tλ,ǫ(u(n)]T (1.13)

with

tλ,ǫ(ξ) :=

{
ǫ

λ+ǫ
ξ if |ξ| ≤ λ + ǫ,

sgn(ξ)(|ξ| − λ) if |ξ| > λ + ǫ.
(1.14)

By comparing (1.14) with (1.7), we see that Tλ,ǫ in (1.12) is very simple to implement
and very close to Tλ in (1.5), where Tλ,0 = Tλ as it is also illustrated by Figure 1.1.
In fact, as we will see, Tλ,ǫ is essentially Tλ numerically, when ǫ is sufficiently small.
Therefore, iteration (1.5) can be identified with iteration (1.12) numerically for suffi-
ciently small ǫ. Furthermore, we will show that iteration (1.12) converges to the limit
that can be a good approximation of a solution of (1.8) by choosing sufficiently large
µ and small µǫ. Hence, it can be used in various applications in compressed sensing.

1.4. Organization. The paper is organized as follows. In Section 2, we refor-
mulate the linearized Bregman iteration defined by (1.2) which helps us to understand
the algorithm better. In Section 3, a complete analysis of (1.2) is presented, includ-
ing the convergence of the iteration and minimization properties of its limit. The
theory developed here is then used to derive algorithms approximating a solution of
(1.8) in Section 4. It is shown that the derived algorithms are as effective as (1.5) to
approximate a solution of (1.8).

2. Linearized Bregman Iteration. Before giving a full analysis of the conver-
gence of the linearized Bregman iteration (1.2), we reformulate it into two different
forms to better understand the algorithm.
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We first interpret (1.2) as a one-step approximation of the Bregman iteration in
[32]. Then, we show that the linearized Bregman iteration for J(u) is, in fact, also a
linearized Bregman iteration for another cost functional J(u) + τ

2
‖u‖2 with different

parameters 0 < τ < 1
µδ

. This immediately leads to understanding why (1.2) converges

to the minimizer of (1.4).

2.1. Reformulation. Here, we reformulate the linearized Bregman iteration
(1.2) as a one-step approximation for the Bregman iteration in [32].

The Bregman iteration is defined in terms of the Bregman distance. Recall that
the Bregman distance (see, e.g., [1] for details) based on the convex function J between
points u and v is defined as

Dp
J(u, v) = J(u) − J(v) − 〈u − v, p〉,

where p ∈ ∂J(v) is a subgradient in the subdifferential of J at the point v. Because
Dp

J(u, v) 6= Dp
J(v, u), in general, Dp

J(u, v) is not a distance in the usual sense. How-
ever, it measures the closeness between u and v in the sense that Dp

J(u, v) ≥ 0 and
Dp

J(u, v) ≥ Dp
J(w, v) for all points w on the line segment connecting u and v. More-

over, whenever J is convex, Dp
J(u, v) ≥ 0; whenever J is strictly convex, Dp

J (u, v) > 0
for u 6= v; and whenever J is strongly convex, there exists a constant ν > 0 such that
Dp

J(u, v) ≥ ν‖u − v‖2.
To solve (1.1), the Bregman iteration is proposed in [32]. Given u0 = p0 = 0,

define
{

uk+1 = arg minu∈Rn

{
µ(J(u) − J(uk) − 〈u − uk, pk〉) + 1

2
‖Au − f‖2

}
,

pk+1 = pk − 1
µ
AT (Auk+1 − f).

(2.1)

Since, by induction, pk ∈ ∂J(uk), the first equation can be written in terms of the
Bregman distance as

uk+1 = arg min
u∈Rn

{
µDpk

J (u, uk) +
1

2
‖Au − f‖2

}
.

It was proven in [32] that, if J(u) ∈ C2(Ω) and J(u) is strictly convex in a compact set
Ω, then ‖Auk − f‖ decays exponentially in k whenever uk ∈ Ω for all k. Furthermore,
when the limit of uk exists, it is a solution of (1.1). It was also proven in [32] that,
when J(u) = ‖u‖1, or J is a convex function satisfying some additional conditions
(see [32] for details), iteration (2.1) leads to a solution of (1.1) in finitely many steps.

As shown in [32], the Bregman iteration (2.1) can be written as
{

fk+1 = fk + (f − Auk),

uk+1 = arg minu∈Rn

{
µJ(u) + 1

2
‖Au − fk+1‖2

}
,

(2.2)

where f0 = 0 and u0 = 0. Indeed, by the second equation of (2.1), we have

−µpk = AT

k∑

i=1

(Aui − f). (2.3)

Let E(u) = µ(J(u) − J(uk) − 〈u − uk, pk〉) + 1
2
‖Au − f‖2. Then, by (2.3),

∂(E(u) − µJ(u))

∂u
= −µpk + AT (Au − f) = AT (Au − (f −

k∑

i=1

(Aui − f))
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and

∂2(E(u) − J(u))

∂u2
= AT A.

Therefore, E(u) − µJ(u) is a quadratic function, and

E(u) = µJ(u) +
1

2
‖Au − (f −

k∑

i=1

(Aui − f))‖2 + C,

where C is independent of u. By the definition of uk+1 in (2.1), we have that

uk+1 = arg min
u∈Rn

E(u) = arg min
u∈Rn

{µJ(u) +
1

2
‖Au − (f −

k∑

i=1

(Aui − f))‖2}. (2.4)

Define f0 = 0, f1 = f and fk+1 = f − ∑k
i=1(Aui − f). Then

fk+1 = fk + (f − Auk), f0 = 0. (2.5)

With this, (2.4) becomes

uk+1 = arg min
u∈Rn

{µJ(u) +
1

2
‖Au − fk+1‖2}, (2.6)

which is (2.2). By (2.2), the Bregman iteration (2.1) is essentially using the solution
of the Lagrange multiplier relaxed problem

min
u∈Rn

{
µJ(u) +

1

2
‖Au − f‖2

}
(2.7)

as a solver to approximate the solution of (1.1). The Bregman iteration (2.2) applies
this process iteratively. The first equation of (2.2) is to update the residues from the
result of the solver, and the second equation of (2.2) is to derive a new approximation
by solving (1.1) from the updated data.

Since, generally, there is no explicit expression for the solver (i.e., the second
equation of (2.2) or the first equation in (2.1)), we have to turn to iterative methods.
Therefore, we need an inner-outer iteration for (2.1), where the inner iteration is for
solving the first equation of (2.1) at each step, i.e., (2.8), and the outer one is to solve
(2.1). In the following, we show that the linearized Bregman iteration (1.2) is just an
approximation of this inner-outer iteration, where only one step of the inner iteration
is performed for each outer iteration.

The inner iteration used for solving

uk+1 = arg min
u

{
µ(J(u) − J(uk) − 〈u − uk, pk〉) +

1

2
‖Au − f‖2

}
(2.8)

is the proximal forward-backward splitting (PFBS) iteration of [15]. The goal of the
PFBS iteration is to solve the minimization problem

min
x∈Rn

F (x) with F (x) = F1(x) + F2(x), (2.9)

by the (simplified) iteration

xk+1 = proxδF1
(xk − δ∇F2(x

k)), (2.10)
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where δ is a constant, and proxδF1
is the proximity for δF1 defined by

proxδF1
(x) = arg min

y∈Rn
{δF1(y) +

1

2
‖x − y‖2}. (2.11)

The following convergence theorem is an immediate consequence of the main results
in [15].

Theorem 2.1. Assume that F1 and F2 satisfy

1. F1 is a proper, convex and continuous function whose range is in R ∪ +∞,

and

2. F2 is a proper, convex, differentiable function, whose gradient satisfies

‖∂F2(x) − ∂F2(y)‖ ≤ β‖x − y‖, (2.12)

and whose range is in R. Suppose that there exists at least one solution for (2.9).
Then, for any initial guess x0, iteration (2.10) converges to a solution of (2.9), when

0 < δ < 2
β
.

The PFBS iteration has been used to analyze the convergence of tight wavelet
frame based algorithms for deblurring and inpainting in [3, 4, 5, 6, 7]. Next we apply
the PFBS iteration (2.10) to the minimization problem (2.8) by splitting the energy
function in (2.8) as F1(u) + F2(u), where

F1(u) = µ(J(u) − J(uk) − 〈u − uk, pk〉) and F2(u) =
1

2
‖Au − f‖2. (2.13)

By the definition of the proximity operator, we have

proxδF1
(v) = arg min

u∈Rn
{µδ(J(u) − J(uk) − 〈u − uk, pk〉) +

1

2
‖u − v‖2}.

Then we obtain the PFBS iteration for (2.8) as

uk,i+1 = arg min
u∈Rn

{
µ(J(u) − J(uk) − 〈u − uk, pk〉) +

1

2δ
‖u − (uk,i − δAT (Auk,i − f))‖2

}
.

(2.14)
Based on Theorem 2.1, we have the following convergence result for (2.14).

Proposition 2.2. Assume that 0 < δ < 2
‖AAT ‖ . Then iteration (2.14) converges

to a solution of (2.8) whenever (2.8) has a solution.

Proof. It is easy to see that the assumptions on F1 and F2 in Theorem 2.1 are
satisfied.

Based on this, iteration (2.1) can be written as






uk,0 = uk,

uk,i+1 = arg min
u∈Rn

{
µ(J(u) − J(uk) − 〈u − uk, pk〉) +

1

2δ
‖u − (uk,i − δAT (Auk,i − f))‖2

}
,

uk+1 = uk,Mk ,

pk+1 = pk − 1
µδ

(uk+1 − uk,Mk−1) − 1
µ
AT (Auk,Mk−1 − f),

(2.15)
where u0 = p0 = 0.

The last equation in (2.15) for updating pk+1 is to ensure that pk+1 ∈ ∂J(uk+1).
Theoretically, to make this iteration to be identical with (2.1), the numbers Mk in
each iteration should be infinity. Practically, the number Mk in each iteration is
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chosen to be finite. If we choose Mk to be its minimal, i.e., Mk = 1 for all k, we
obtain the algorithm
{

uk+1 = arg minu∈Rn

{
µ(J(u) − J(uk) − 〈u − uk, pk〉) + 1

2δ
‖u − (uk − δAT (Auk − f))‖2

}
,

pk+1 = pk − 1
µδ

(uk+1 − uk) − 1
µ
AT (Auk − f),

(2.16)
which is exactly the linearized Bregman iteration (1.2).

2.2. Functional J(u)+ τ
2
‖u‖2. The reason why iteration (1.2) converges to the

minimizer of (1.4) is because the linearized Bregman iteration for the functional J(u)
is the same as the linearized Bregman iteration for the cost functional J(u) + τ

2
‖u‖2,

0 < τ < 1
µδ

, with a different step size. This is shown in the next proposition.

Proposition 2.3. Let H(ũ) = J(ũ) + τ
2
‖ũ‖2 with 0 < τ < 1

µδ
, and 1

µδ̃
= 1

µδ
− τ .

Define the sequence {ũk}k∈N and {p̃k}k∈N by




ũk+1 = argminũ∈Rn

{
µ(H(ũ) − H(ũk) − 〈ũ − ũk, p̃k〉) + 1

2δ̃
‖ũ − (ũk − δ̃AT (Aũk − f))‖2

}
,

p̃k+1 = p̃k − 1

µδ̃
(ũk+1 − ũk) − 1

µ
AT (Aũk − f),

(2.17)
where ũ0 = p̃0 = 0. Let {uk}k∈N and {pk}k∈N be generated by (1.2). Then

ũk = uk, p̃k = pk + τuk, ∀k ∈ N. (2.18)

Proof. We prove (2.18) by induction. It is obvious that it holds for k = 0. Assume
that (2.18) holds until k = j. Then, by its definition, we have

ũj+1 = arg min
ũ∈Rn

{µ(J(ũ) +
τ

2
‖ũ‖2 − J(uj) − τ

2
‖uj‖2 − 〈ũ − uj , pj〉 − τ〈ũ − uj, uj〉)

+
1

2δ̃
‖ũ − (uj − δ̃AT (Auj − f))‖2}. (2.19)

Denote the energy function in the above minimization problem by E(ũ). Then we
have

∂(E(ũ) − µJ(ũ) + µJ(uj))

∂ũ
= µ(τũ − (pj + τuj)) +

1

δ̃
[ũ − (uj − δ̃AT (Auj − f))]

= µ(τ +
1

µδ̃
)(ũ − uj) + AT (Auj − f)

=
1

δ
[ũ − (uj − δAT (Auj − f)]

and

∂2(E(ũ) − µJ(ũ) + µJ(uj))

∂(ũ)2
=

1

δ
.

Hence, the function E(ũ) − µJ(ũ) + µJ(uj) is quadratic. Then it follows that

E(ũ) = µ(J(ũ) − J(uj)) +
1

2δ
‖ũ − (uj − δAT (Auj − f))‖2 + C(uj).

Since C(uj) is independent of ũ, by (2.19), we have

ũj+1 = arg min
ũ∈Rn

{µ(J(ũ) − J(uj)) +
1

2δ
‖ũ − (uj − δAT (Auj − f))‖2}.
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Compared with the definition of uj+1 in (1.2), the above equality implies that

ũj+1 = uj+1. (2.20)

Substituting (2.20) and (2.18) with k = j into the second equation in (2.17), we get

p̃j+1 = pj + τuj − 1

µδ̃
(uj+1 − uj) − 1

µ
AT (Auj − f)

= pj + τuj+1 − (τ +
1

µδ̃
)(uj+1 − uj) − 1

µ
AT (Auj − f)

= pj − 1

µδ
(uj+1 − uj) − 1

µ
AT (Auj − f) + τuj+1

= pj+1 + τuj+1.

Thus, (2.18) holds for k = j + 1.

3. Analysis of Linearized Bregman Iteration. In this section, we give a
complete analysis for the linearized Bregman iteration (1.2). We prove the conver-
gence of (1.2) when J(u) is continuous differentiable and the gradient satisfies (1.3).
Moreover, we show that, whenever the sequence {uk}k∈N converges and {pk}k∈N is
bounded, the limit of {uk}k∈N is the minimizer of

min
u∈Rn

{
µJ(u) +

1

2δ
‖u‖2 : Au = f

}
. (3.1)

3.1. Convergence. To prove the convergence of the linearized Bregman iter-
ation (1.2), we first estimate the residual ‖Auk − f‖. The following lemma follows
from ideas in the proofs of Theorems 5.2 and 5.3 in [32]. To make the proof work,
the key step is to construct a symmetric, positive semi-definite matrix Qθ

k at each
step k satisfying (3.4) and C2I ≤ Qθ

k + (1
δ
− θ)I ≤ C1I, where 0 < C2 ≤ C1 < ∞

are independent of k. It is compared with the proof of Theorem 5.2 in [32] for the
Bregman iteration (2.1), where one needs to find Qk satisfying C2I ≤ Qk ≤ C1I and
Qk(uk+1 − uk) = −AT (Auk+1 − f). Thanks to the additional terms in the linearized
Bregman iteration, the matrix Qθ

k demands weaker conditions than those imposed to
Qk in the proof of the corresponding result (Theorem 5.2 in [32]) for the Bregman
iteration. The stronger conditions on Qk in [32] force that the cost functional J there
must meet stronger conditions.

Lemma 3.1. Suppose that J(u) is convex and continuously differentiable satis-

fying (1.3). Let {uk}k∈N be generated by the linearized Bregman iteration (1.2) with

0 < δ < 2
‖AAT ‖ . Assume that uk+1 6= uk. Then

‖Auk+1 − f‖ ≤ η‖Auk − f‖, (3.2)

where η = max{‖I − δAAT ‖, ‖I − δ
1+δβµ

AAT ‖} < 1.
Proof. Since

pk ∈ ∂J(uk), pk+1 ∈ ∂J(uk+1),

and J(u) is convex, the nonnegativity of the Bregman distance implies that

J(uk+1) − J(uk) − 〈uk+1 − uk, pk〉 ≥ 0



10 JIAN-FENG CAI, STANLEY OSHER, AND ZUOWEI SHEN

and

J(uk) − J(uk+1) − 〈uk − uk+1, pk+1〉 ≥ 0.

By summing the above two equations together, we obtain

〈uk+1 − uk, pk+1 − pk〉 ≥ 0. (3.3)

Let θ ∈ (0, 1
µδ

) be a constant. Define γθ
k := 〈uk+1 − uk, µ(pk+1 − pk) + θ(uk+1 − uk)〉.

Then γθ
k ≥ θ‖uk+1 − uk‖2. When uk+1 6= uk, γθ

k > 0. Therefore, we can define a
matrix

Qθ
k =

1

γθ
k

[µ(pk+1 − pk) + θ(uk+1 − uk)][µ(pk+1 − pk) + θ(uk+1 − uk)]T ,

where µ(pk+1 − pk) + θ(uk+1 − uk) is viewed as a column vector. It is obvious that
Qθ

k is symmetric positive semi-definite and satisfies

µ(pk+1 − pk) + θ(uk+1 − uk) = Qθ
k(uk+1 − uk). (3.4)

Furthermore,

‖Qθ
k‖ =

1

γθ
k

〈µ(pk+1 − pk) + θ(uk+1 − uk), µ(pk+1 − pk) + θ(uk+1 − uk)〉

=
1

γθ
k

(〈µ(pk+1 − pk) + θ(uk+1 − uk), µ(pk+1 − pk)〉 + θγθ
k)

≤ 1

γθ
k

(βµ + θ)〈uk+1 − uk, µ(pk+1 − pk)〉 + θ

≤ 1

γθ
k

(βµ + θ)〈uk+1 − uk, µ(pk+1 − pk) + θ(uk+1 − uk)〉 + θ

= βµ + 2θ,

where the first inequality is obtained by applying (1.3). Note that the second equation
in (1.2) gives

µ(pk+1 − pk) +
1

δ
(uk+1 − uk) = −AT (Auk − f). (3.5)

By substituting (3.4) into (3.5), we have

(Qθ
k + (

1

δ
− θ)I)(uk+1 − uk) = −AT (Auk − f),

or equivalently,

uk+1 − uk = −δ(δQθ
k + (1 − δθ)I)−1AT (Auk − f).

Therefore,

Auk+1 − f =
(
I − δA(δQθ

k + (1 − δθ)I)−1AT
)
(Auk − f).

In the following, for given matrices B and B′, the inequality B ≤ B′ (or B ≥ B′)
means wT Bw ≤ wT B′w (or wT Bw ≥ wT B′w) holds for any vector w of the right
size. Since 0 ≤ Qθ

k ≤ (βµ + 2θ)I, we have

(1 − δθ)I ≤ δQθ
k + (1 − δθ)I ≤ (1 + δβµ + δθ)I,
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which implies

1

1 − δθ
I ≥ (δQθ

k + (1 − δθ)I)−1 ≥ 1

1 + δβµ + δθ
I.

This leads to

1

1 − δθ
AAT ≥ A(δQθ

k + (1 − δθ)I)−1AT ≥ 1

1 + δβµ + δθ
AAT ,

which further leads to

I − δ

1 − δθ
AAT ≤ I − δA(δQθ

k + (1 − δθ)I)−1AT ≤ I − δ

1 + δβµ + δθ
AAT .

Since all of matrices in the above equation are symmetric, we obtain

‖I − δA(δQθ
k +(1− δθ)I)−1AT ‖ ≤ max{‖I − δ

1 − δθ
AAT ‖, ‖I − δ

1 + δβµ + δθ
AAT ‖}.

Consequently,

‖Auk+1 − f‖ ≤ max{‖I − δ

1 − δθ
AAT ‖, ‖I − δ

1 + δβµ + δθ
AAT ‖}‖Auk − f‖.

Since θ can be any positive number in (0, 1
δ
), and the norm is a continuous function

of θ, by letting θ tend to 0, we obtain (3.2) with

η = max{‖I − δAAT ‖, ‖I − δ

1 + δβµ
AAT ‖}.

Furthermore, since 0 < δ < 2
‖AAT ‖ , we have

−I < I − δAAT ≤ I − δ

1 + δβµ
AAT < I.

The above inequality also implies η < 1.
Next, we prove the convergence theorem for (1.2).
Theorem 3.2. Suppose that J(u) is convex and continuously differentiable satis-

fying (1.3). Then both the sequences {uk}k∈N and {pk}k∈N generated by the linearized

Bregman iteration (1.2) with 0 < δ < 2
‖AAT ‖ converge with a rate

η = max{‖I − δAAT ‖, ‖I − δ

1 + δβµ
AAT ‖} < 1.

Proof. Suppose that there exists an integer K such that uK+1 = uK . Then,
by the definition, we have pK+1 ∈ ∂J(uK+1) and pK ∈ ∂J(uK). Since, by the
assumption, J is continuously differentiable, pK+1 = pK . Therefore, from (1.2), we
see that uk+1 = uk and pk+1 = pk for all k ≥ K. Thus, both the sequences {uk}k∈N

and {pk}k∈N converge.
Otherwise, suppose that uk+1 6= uk for all k. We take the inner product of both

sides of (3.5) with respect to uk+1 − uk, then we have

〈µ(pk+1 − pk), uk+1 − uk〉 +
1

δ
‖uk+1 − uk‖2 = 〈−AT (Auk − f), uk+1 − uk〉.
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This, together with 〈pk+1 − pk, uk+1 − uk〉 ≥ 0, implies that

1

δ
‖uk+1 − uk‖2 ≤ 〈−AT (Auk − f), uk+1 − uk〉 ≤ ‖AT ‖‖Auk − f‖‖uk+1 − uk‖.

Therefore,

‖uk+1 − uk‖ ≤ δ‖AT ‖‖Auk − f‖.

On the other hand, since 0 < δ < 2
‖AAT ‖ , by Lemma 3.1,

‖Auk+1 − f‖ ≤ η‖Auk − f‖.

Therefore,

‖Auk − f‖ ≤ ηk‖Au0 − f‖.

Thus, for any j and k such that j > k,

‖uk − uj‖ ≤
j−1∑

i=k

‖ui − ui+1‖ ≤ δ‖AT ‖
j−1∑

i=k

‖Aui − f‖ ≤ δ‖AT ‖
j−1∑

i=k

ηi‖Au0 − f‖

≤ δ‖AT ‖‖Au0 − f‖ ηk

1 − η
. (3.6)

We see from the above equation that {uk}k∈N is a Cauchy sequence, hence converges.
Let u∗ be its limit. By letting j → ∞ in (3.6), we obtain

‖uk − u∗‖ ≤ δ‖AT ‖‖Au0 − f‖
1 − η

ηk.

It means that the convergence rate of {uk}k∈N is η. The convergence of {pk}k∈N can
be shown analogously.

3.2. Minimization. In this subsection, we study minimization properties of the
limit for the linearized Bregman iteration (1.2). We have the following theorem, which
holds for any continuous convex function J(u) including ‖u‖1. Some ideas of this proof
are motivated by those in the proof of Theorem 5.3 in [32] and the proof of Theorem
3.1 in [28].

Theorem 3.3. Suppose that J is a continuous convex function. Let {uk}k∈N

and {pk}k∈N be generated by (1.2). Assume that {uk}k∈N converges and {pk}k∈N is

bounded. Then the limit u∗ of {uk}k∈N is the unique solution of (3.1).
Proof. We first prove that Au∗ = f . The proof of this fact given here is from

[28]. It is proven by contradiction. Assume Au∗ 6= f . Then AT (Au∗ − f) 6= 0
since AT has full rank. This means that, for some i, (AT (Auk − f))i converges to
a nonzero value, which by (1.2) implies that pk+1

i − pk
i does as well. On the other

hand, by the assumption, we have {pk}k∈N, hence {pk
i }k∈N is bounded. However, if

pk+1
i − pk

i converges to a nonzero limit, {pk
i }k∈N is not bounded. This contradicts the

assumption that {pk}k∈N is bounded. Therefore, Au∗ = f .
Since p0 = u0 = 0, by the second equation in (1.2), we have

µpk +
1

δ
uk = AT

k−1∑

j=0

(f − Auj).
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Define wk =
∑k−1

j=0 (f−Auj). Then, since A is surjective and both {pk}N and {uk}k∈N

are bounded, we have that {wk}k∈N is bounded, i.e., ‖wk‖ ≤ C for all k.
Let H(u) = µJ(u) + 1

2δ
‖u‖2. By the definition, pk ∈ ∂J(uk). Therefore,

µpk +
1

δ
uk ∈ ∂H(uk).

Since H(u) is a strongly convex function, there exists a unique solution of (3.1), which
is denoted by uopt. By the nonnegativity of the Bregman distance for H(u), we obtain

H(uk) ≤ H(uopt) − 〈uopt − uk, µpk +
1

δ
uk〉 = H(uopt) − 〈uopt − uk, AT wk〉

= H(uopt) − 〈A(uopt − uk), wk〉. (3.7)

On the other hand, by Cauchy-Schwarz inequality, we have

|〈A(uopt − uk), wk〉| ≤ ‖A(uopt − uk)‖‖wk‖ ≤ C‖A(uopt − uk)‖.

Letting k → ∞, and noticing that Auopt = Au∗ = f , we obtain that

lim
k→∞

|〈A(uopt − uk), wk〉| = 0.

Since J(u) hence H(u) is continuous, by letting k → ∞ in (3.7), we have

H(u∗) ≤ H(uopt).

This and Au∗ = f means that u∗ is the unique solution of (3.1).

4. Application to Compressed Sensing. As for applications of compressed
sensing, one needs to solve (1.8). In this section, we develop algorithms for (1.2) by
choosing J = Jǫ, where Jǫ is defined in (1.11), to approximate a special solution of
(1.8).

We first show that the linearized Bregman iteration (1.2) with J = Jǫ becomes
iteration (1.12). Therefore, it converges to the solution of (1.10). Furthermore, we
will see that iteration (1.12), which is as simple as iteration (1.5), is iteration (1.5)
numerically for a sufficiently small ǫ. Then we prove that, as µǫ tends to 0, the
solution of (1.10) tends to the solution of (1.9). Moreover, as µ goes to infinity, the
solution of (1.9) goes to a particular solution of (1.8). Therefore, by properly choosing
µ and µǫ, iteration (1.12) converges to a good approximation of a solution of (1.8).
We further discuss the sparsity of the solution of (1.9). Numerical simulations are
also given to illustrate the effectiveness of iteration (1.12) in compressed sensing.

4.1. Algorithms. In this subsection, we derive the linearized Bregman iteration
(1.2) for J = Jǫ in (1.11). The first equation in (1.2) becomes

uk+1 = arg min
u∈Rn

{
µ(Jǫ(u) − Jǫ(u

k) − 〈u − uk, pk〉) +
1

2δ
‖u − (uk − δAT (Auk − f))‖2

}
.

(4.1)
It can be easily verified that the minimization problem (4.1) can be decoupled into
the following n one variable minimization problems. Let wk = uk − δAT (Auk − f).
Then

uk+1(i) = arg min
ζ∈R

{µFǫ(ζ)−µFǫ(u
k(i))−µ(ζ−uk(i))pk(i)+

1

2δ
(ζ−wk(i))2}, i = 1, . . . , n,

(4.2)
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where Fǫ is defined in (1.11), that is also shown in Figure 1.1. Since the above
minimization problem is strongly convex, it has a unique solution. Hence, the solution
uk+1(i) of (4.2) is the unique solution of the following equation:

µδF ′
ǫ(ζ) + ζ = wk(i) + δµpk(i). (4.3)

Furthermore, tλ,ǫ(ξ) defined in (1.14) is the unique solution of

λF ′
ǫ(ζ) + ζ = ξ. (4.4)

Indeed, the derivative of Fǫ is given by

F ′
ǫ(ζ) =

{
ζ
ǫ

if |ζ| ≤ ǫ,

sgn(ζ) if |ζ| > ǫ.
(4.5)

The conclusion follows by substituting ζ = tλ,ǫ(ξ) into (4.4).
Therefore, the solution uk+1(i) of (4.2) is

uk+1(i) = tµδ,ǫ(w
k(i) + δµpk(i)).

Due to the definition of Tλ,ǫ in (1.13), we have

uk+1 = Tµδ,ǫ(w
k + δµpk) = Tµδ,ǫ(u

k + δµpk − δAT (Auk − f)). (4.6)

Now the linearized Bregman iteration (1.2) with J = Jǫ becomes

{
uk+1 = Tµδ,ǫ(u

k + δµpk − δAT (Auk − f)),

pk+1 = pk − 1
µδ

(uk+1 − uk) − 1
δ
AT (Auk − f),

(4.7)

where u0 = p0 = 0. By introducing a variable vk = µpk + 1
δ
uk, we obtain the final

linearized Bregman iteration (1.12)

{
vk+1 = vk − AT (Auk − f),

uk+1 = Tµδ,ǫ(δv
k+1),

where u0 = v0 = 0. We see that iteration (1.5), which has been illustrated by [28],
an extremely fast algorithm, is just (1.12) with ǫ = 0. Note that Tλ,0 equals Tλ, the
soft thresholding operator in (1.6), and that Tλ,ǫ is essentially Tλ numerically, when
ǫ is sufficiently small. Hence, iteration (1.12) is essentially the same as iteration (1.5)
numerically, when ǫ is sufficiently small.

By applying Theorems 3.2 and 3.3, we have the following convergence result for
(1.12).

Corollary 4.1. Let ǫ > 0, and 0 < δ < 2
‖AAT ‖ . Then the sequence {uk}k∈N

generated by (1.12) converges to the unique solution of (1.10), i.e.,

min
u∈Rn

{
µJǫ(u) +

1

2δ
‖u‖2 : Au = f

}
.

Proof. From (4.5), we see that F ′
ǫ is a Lipshitz function with constant 1

ǫ
. There-

fore, ∂Jǫ(u) satisfies (1.3) with β = 1
ǫ
. The rest follows immediately from Theorems

3.2 and 3.3.
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Furthermore, by Theorem 3.3, we have the following corollary for ǫ = 0.
Corollary 4.2. Let ǫ = 0. Assume that the sequence {uk}k∈N generated by

(1.12), or equivalently (1.5), converges. Then the limit is the unique solution of (1.9),
i.e.,

min
u∈Rn

{
µ‖u‖1 +

1

2δ
‖u‖2 : Au = f

}
.

Proof. Since ∂J0(u) ∈ [−1, 1]n and pk ∈ ∂J0(u
k), {pk}k∈N is bounded. Therefore,

the corollary follows from Theorem 3.3.

4.2. Approximation. Let u∗
ǫ,µ = limk→∞ uk, where uk is generated by (1.12).

Then u∗
ǫ,µ for ǫ > 0 is the unique solution of (1.10). This subsection is to show that

u∗
ǫ,µ can be a good approximation to a solution of (1.8).

First, we show that for fixing µ, u∗
ǫ,µ tends to the unique solution of (1.9) as

µǫ → 0.
Theorem 4.3. Let u∗

ǫ,µ, where ǫ > 0, be the limit of (1.12), and u∗
0,µ the unique

solution of (1.9). Then

‖u∗
0,µ − u∗

ǫ,µ‖ ≤
√

δµnǫ. (4.8)

Proof. Let Hǫ(u) = µJǫ(u)+ 1
2δ
‖u‖2 and H0(u) = µ‖u‖1 + 1

2δ
‖u‖2. Since, for any

u(i), |Fǫ(u(i)) − |u(i)|| ≤ ǫ
2
, we obtain that, for any u,

|Hǫ(u) − H0(u)| ≤ 1

2
µnǫ. (4.9)

This, together with H0(u
∗
0,µ) ≤ H0(u

∗
ǫ,µ) and Hǫ(u

∗
0,µ) ≥ Hǫ(u

∗
ǫ,µ), implies that

0 ≤ H0(u
∗
ǫ,µ) − H0(u

∗
0,µ)

= (H0(u
∗
ǫ,µ) − Hǫ(u

∗
ǫ,µ)) + (Hǫ(u

∗
ǫ,µ) − Hǫ(u

∗
0,µ)) + (Hǫ(u

∗
0,µ) − H0(u

∗
0,µ))

≤ (H0(u
∗
ǫ,µ) − Hǫ(u

∗
ǫ,µ)) + (Hǫ(u

∗
0,µ) − H0(u

∗
0,µ))

≤ |H0(u
∗
ǫ,µ) − Hǫ(u

∗
ǫ,µ)| + |Hǫ(u

∗
0,µ) − H0(u

∗
0,µ)|

≤ µnǫ.

Define the indicator function

I(u) =

{
0, if Au = f,

+∞, otherwise.

Let K(u) = H0(u) + I(u). Since the set {u : Au = f} is a nonempty convex set, the
function I(u) is a proper, lower semi-continuous and convex function. This, together
with H0(u) is a strongly convex function, implies that K(u) is a strongly convex
function. In particular, for any element pK(u) ∈ ∂K(u), we have

K(v) − K(u) − 〈v − u, pK(u)〉 ≥ 1

δ
‖u − v‖2. (4.10)

On the other hand, it is obvious that the minimization problem minu {K(u)} is
equivalent to (1.9). By the first-order optimality condition, 0 ∈ ∂K(u∗

0,µ). Thus, by
(4.10),

K(u∗
ǫ,µ) − K(u∗

0,µ) ≥ 1

δ
‖u∗

ǫ,µ − u∗
0,µ‖2.
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However, K(u∗
ǫ,µ) = H0(u

∗
ǫ,µ), due to the fact that Au∗

ǫ,µ = f . Similarly, K(u∗
0,µ) =

H0(u
∗
0,µ). Therefore,

‖u∗
ǫ,µ − u∗

0,µ‖2 ≤ δ|H0(u
∗
ǫ,µ) − H0(u

∗
0,µ)| ≤ δµnǫ.

The above result says that when µǫ is sufficiently small, the limit of (1.12) is
sufficiently close to the unique solution of (1.9). Next, we show that when µ is
sufficiently large, the unique solution of (1.9) is sufficiently close to a solution of
(1.8).

Let S be the set of all solutions of (1.8) and define

u1 := arg min
u∈S

{‖u‖2}, (4.11)

where, as always, ‖ · ‖ denotes the ℓ2 norm. Since the set S is convex, and ‖u‖2

is coercive and strongly convex, u1 is uniquely determined. We have the following
result.

Theorem 4.4. Let u∗
0,µ be the unique solution of (1.9) and u1 be given in (4.11).

Then

lim
µ→∞

‖u∗
0,µ − u1‖ = 0. (4.12)

Proof. Since u∗
0,µ and u1 are solutions of (1.9) and (1.8) respectively, we have

that

‖u∗
0,µ‖1 +

1

2µδ
‖u∗

0,µ‖2 ≤ ‖u1‖1 +
1

2µδ
‖u1‖2 (4.13)

and

‖u1‖1 ≤ ‖u∗
0,µ‖1. (4.14)

Since 1
2µδ

> 0, summing the above two equations gives

‖u∗
0,µ‖ ≤ ‖u1‖. (4.15)

This means that ‖u∗
0,µ‖ is uniformly bounded in µ, which leads to the fact that ‖u∗

0,µ‖1

is also uniformly bounded by the norm equivalence in finite dimensional space. By
letting µ → ∞ in (4.13), we see that

lim sup
µ→∞

‖u∗
0,µ‖1 ≤ ‖u1‖1.

By letting µ → ∞ in (4.14), we see that

‖u1‖1 ≤ lim inf
µ→∞

‖u∗
0,µ‖1.

Therefore, limµ→∞ ‖u∗
0,µ‖1 exists, and

lim
µ→∞

‖u∗
0,µ‖1 = ‖u1‖1. (4.16)
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Next, we show that, if a sequence {u∗
0,µk

}k∈N, where limk→∞ µk = ∞, converges, then
it must converge to u1. Let uc be the limit of {u∗

0,µk
}k∈N, i.e.,

lim
k→∞

‖u∗
0,µk

− uc‖ = 0.

Since Au∗
0,µk

= f for all k, and A is a continuous linear operator, we must have that
Auc = f . This, together with (4.16), implies that uc is a solution of (1.8). Therefore,

‖uc‖ ≥ ‖u1‖, (4.17)

by the definition of u1. On the other hand, ‖u∗
0,µk

‖ ≤ ‖u1‖ by (4.15). Letting k → ∞
leads to ‖uc‖ ≤ ‖u1‖. This, together with (4.17), implies that ‖uc‖ = ‖u1‖. Since uc

is a solution of (1.8) with ‖uc‖ = ‖u1‖, we conclude that uc = u1 due to the fact that
u1 is uniquely defined.

Finally, we prove (4.12) by contradiction. Suppose that u∗
0,µ does not converge

to u1. Then there exists a σ > 0 and a sequence {µk}k∈N with limk→∞ µk = ∞ such
that

‖u∗
0,µk

− u1‖ > σ, ∀k. (4.18)

Since the sequence {u∗
0,µk

}k∈N is bounded, there is a convergent subsequence that
must converge to u1 by the discussions above. This leads to a contradiction.

Combining Theorems 4.3 and 4.4 together, we conclude that, by properly choos-
ing µ and µǫ, one can use the limit of the linearized Bregman iteration (1.12) to
approximate to a special solution of the basis pursuit problem (1.8).

Theorem 4.5. Let u1 be given in (4.11). For given σ > 0, one can choose µ,

and ǫ ≤ σ2

4nδµ
, such that

‖u∗
ǫ,µ − u1‖ ≤ σ,

where u∗
ǫ,µ is the limit of (1.12) and the unique solution of (1.10).

Proof. By Theorem 4.4, there exists a µ such that

‖u∗
0,µ − u1‖ ≤ σ

2
.

Fixing this µ, since we choose ǫ ≤ σ2

4nδµ
, we have

√
δµnǫ ≤ σ

2
. By Theorem 4.3, we

have

‖u∗
0,µ − u∗

ǫ,µ‖ ≤ σ

2
.

This leads to

‖u∗
ǫ,µ − u1‖ ≤ ‖u∗

ǫ,µ − u∗
0,µ‖ + ‖u∗

0,µ − u1‖ ≤ σ.

4.3. Sparsity. The ultimate goal of all these efforts is to find a sparse solution
of the equation Au = f . The sparsest solution amounts to solving the problem

min
u

{‖u‖0 : Au = f}, (4.19)

where ‖u‖0 is the number of nonzero entries in u. As pointed out by [2], it is a
conceptually challenging and computationally hard problem. Due to the combinatory
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complexity of (4.19), it is usually relaxed to its “nearest” convex counterpart (1.8).
In fact, the equation (1.8) can lead to a much sparser solution than the least square
solution given by u = AT (AAT )−1f . This paper proves that the simple and fast
iteration given in (1.12) converges and its limit can be a good approximation of
a solution of (1.8). Recently, there have been a vast number of papers (e.g., see
[8, 19, 23, 24, 29, 33, 34]) concentrating on proving the equivalence between (1.8) and
(4.19) under suitable assumptions. A recent survey article [2] gives a detailed account
of this, and interested readers should consult [2] and the literature cited there for
details. One of the results in this direction (e.g., Theorem 4 in [2]) roughly says that,
if the columns of the matrix A are incoherent, then (1.8) is equivalent to (4.19). The
following result indicates the same flavor of this. It says that, to have a sparse solution
of (1.9), the columns of matrix A have to be incoherent.

Theorem 4.6. Assume that the columns Ai of A are normalized to 1, i.e.,

‖Ai‖ = 1 for all i. Let u∗
0,µ be the unique solution of (1.9), and ρij = 〈Ai, Aj〉 be the

correlation between Ai and Aj. Then, if u∗
0,µ(i)u∗

0,µ(j) > 0, there exists a constant κ
such that

|u∗
0,µ(i) − u∗

0,µ(j)| ≤ κ
√

2(1 − ρij).

Proof. In the Lagrange multiplier formulation, solving (1.9) is equivalent to solv-
ing

{
0 ∈ ∂(µ‖u∗

0,µ‖1) + 1
δ
u∗

0,µ + AT w,

Au∗
0,µ = f,

(4.20)

where w is the Lagrange multiplier for the constraint Au = f . By the first equation
in (4.20), we have for each i, j,

0 ∈ ∂µ|u∗
0,µ(i)| + 1

δ
u∗

0,µ(i) + 〈Ai, w〉 (4.21)

and

0 ∈ ∂µ|u∗
0,µ(j)| + 1

δ
u∗

0,µ(j) + 〈Aj , w〉. (4.22)

By the assumption that u∗
0,µ(i)u∗

0,µ(j) > 0, both ∂µ|u∗
0,µ(i)| and ∂µ|u∗

0,µ(j)| contain
only one element. Hence, the “∈” in (4.21) and (4.22) can be replaced by “=”, and
∂µ|u∗

0,µ(i)| = ∂µ|u∗
0,µ(j)|. Subtracting (4.21) from (4.22) gives

|u∗
0,µ(i) − u∗

0,µ(j)| = δ|〈Ai − Aj , w〉| ≤ δ‖Ai − Aj‖‖w‖. (4.23)

Since ‖Ai‖ = ‖Aj‖ = 1, we have ‖Ai − Aj‖2 = 2(1 − 〈Ai, Aj〉) = 2(1 − ρij).
Next we estimate ‖w‖. The first equation in (4.20) gives

AT w ∈ −∂(µ‖u∗
0,µ‖1) −

1

δ
u∗

0,µ.

To have a solution, there must exist a vector p ∈ ∂(‖u∗
0,µ‖1) such that

AT w = −µp − 1

δ
u∗

0,µ.
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Hence, the right hand side belongs to the range of AT . Then, by multiplying both
sides by A, we have that

w = −µ(AAT )−1Ap − 1

δ
(AAT )−1Au∗

0,µ

= −µ(AAT )−1Ap − 1

δ
(AAT )−1f.

Therefore,

‖w‖ ≤ µ‖(AAT )−1A‖‖p‖ +
1

δ
‖(AAT )−1‖‖f‖. (4.24)

Because each entry of p ∈ ∂(‖u∗
0,µ‖1) is in [−1, 1], we have

‖p‖ ≤
√

n. (4.25)

Note that we also have

‖(AAT )−1A‖ =
√
‖((AAT )−1A)T (AAT )−1A‖ =

√
‖AT (AAT )−2A‖ =

√
‖(AAT )−1‖.

(4.26)
By combining (4.23), (4.24), (4.25) and (4.26) together, we finally obtain that

|u∗
0,µ(i) − u∗

0,µ(j)| ≤
(

δµ
√

n‖(AAT )−1‖ + ‖(AAT )−1‖‖f‖
)√

2(1 − ρij).

This result indicates that the entries of the solution of (1.9) corresponding to
strongly correlated columns tend to be close. This may affect the sparsity of the solu-
tion (1.9), when the columns of A have a strong coherence. The similar phenomenon
is known for the solution of (1.8) (see, e.g., [2]).

Finally, we remark that the minimization of the cost functional µ‖u‖1 + 1
2δ
‖u‖2

in (1.9) is known as the elastic net [35] in variable selections in statistics. The proof
of Theorem 4.6 is motivated by the corresponding results of [35].

4.4. Simulations. Although numerical simulations are not the major focus of
this paper, as a comprehensive numerical study on the linearized Bregman iteration
based on (1.5) for compressed sensing given in [28], we give some numerical results
to show that iteration (1.12) for (1.10) is numerically the same as iteration (1.5) for
(1.9) when ǫ is sufficiently small, as the analysis of this paper already says. Hence, we
can foresee that iteration (1.12) will be widely used in compressed sensing as (1.5),
since it is also shown to be a convergent iteration with a rate.

In the numerical experiments, we choose A to be partial discrete cosine transform
(DCT) matrices, whose rows are randomly chosen from the n × n DCT matrices.
These matrices are known to be efficient for compressed sensing. We store A in the
computer implicitly. Only the indices for the chosen rows are stored, so that the
matrix-vector multiplications Au and AT u can be computed very efficiently by the
fast DCT or the fast inverse DCT.

The numbers of nonzeroes of the tested original sparse signals ū are 0.05n or 0.02n
rounded to the nearest integers. The positions of the nonzeroes of ū are randomly
selected, and the values of the nonzeroes are randomly drawn from the uniform distri-
bution in the interval (−0.2, 0.2)± 1, where the signs + and − are randomly selected
with equal probabilities. Then the observed data f are computed by f = Aū. Since ū
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# of iters for ǫ = ‖u∗
ǫ,µ − ū‖/‖ū‖ for ǫ = time(s) for ǫ =

n m ‖ū‖0
0 10−8 10−4 0 10−8 10−4 0 10−8 10−4

4000 2000 51.4 51.4 51.4 9.1e-6 9.1e-6 1.7e-4 0.21 0.21 0.22
20000 10000 53 53 53 8.3e-6 8.3e-6 1.7e-4 1.22 1.19 1.18
50000 25000

0.05n

78.4 78.4 78.4 1.1e-5 1.1e-5 2.4e-4 4.48 4.42 4.51
4000 1327 68.1 68.1 68.1 9.3e-6 9.3e-6 2.8e-4 0.31 0.29 0.28
20000 7923 57.4 57.4 57.4 7.6e-6 7.6e-6 2.2e-4 1.23 1.25 1.26
50000 21640

0.02n

50.2 50.2 50.2 8.0e-6 8.0e-6 1.9e-4 2.81 2.77 2.72
Table 4.1

Experiment results for partial DCT matrices.

is sparse enough, we expect that the solution of (1.8), which is approximated by our
algorithms (1.5) and (1.12), can yield ū.

We choose µ = 10 and δ = 1.9. The stopping criterion is

‖Auk − f‖
‖f‖ < 10−5.

The results are summarized in Table 4.1, where all the quantities are the averages of
the outputs obtained from 10 random instances. From Table 4.1, we see that both
iteration (1.5) and iteration (1.12) with small ǫ = 10−8 are very effective in solving
(1.1) arising from compressed sensing. Furthermore, as predicted, when ǫ = 10−8,
that is, very close to 0, the results obtained by (1.12) are almost identical to that
obtained by (1.5) (the case ǫ = 0). However, if we choose a larger ǫ = 10−4, then the
difference between the results obtained by (1.5) (the case ǫ = 0) and those by (1.12)

becomes larger; see the errors
‖u∗

ǫ,µ−ū‖

‖ū‖ for different ǫ’s in the table.

As illustrated in [28], algorithm (1.12) is robust to noise. Next, we show that,
similar to algorithm (1.5), algorithm (1.12) is also robust to noise. The settings are
the same as those in the previous experiment, but we add a Gaussian noise of standard
deviation σ = 0.03 into Aū to obtain f . We choose µ = 10 and δ = 1.9. We stop the
iteration when the square error is less than the variance of the noise, i.e., when

‖Auk − f‖2 ≤ mσ2.

We show the results in Table 4.2. From this table, we see that both iteration (1.5) and
iteration (1.12) with small ǫ are robust to noise. Furthermore, again, when ǫ = 10−8,
that is, very close to 0, the results obtained by (1.12) are almost identical to that
obtained by (1.5) (the case ǫ = 0).

In this simulation, ū has a relatively small dynamic range. When ū has a large
dynamic range, a new and simple numerical device called “kicking” (which resembles
line search) is introduced and used in [28] to speed up convergence of (1.5) numeri-
cally. A similar “kicking” device can also be applied to iteration (1.12) to speed up
the convergence numerically for a large dynamic range of ū. We forgo the detailed
discussions of the “kicking” device here, since it is not the focus of this paper. The
interested readers should consult [28] for details.

Acknowledgement. We thank Bin Dong from the Department of Mathematics at
UCLA, for helpful discussions on the numerical simulation part of this paper.
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# of iters for ǫ = ‖u∗
ǫ,µ − ū‖/‖ū‖ for ǫ = time(s) for ǫ =

n m ‖ū‖0
0 10−8 10−4 0 10−8 10−4 0 10−8 10−4

4000 2000 44.4 44.4 44.4 4.9e-2 4.9e-2 4.9e-2 0.19 0.19 0.19
20000 10000 42.4 42.4 42.4 5.4e-2 5.4e-2 5.4e-2 0.99 0.98 1.03
50000 25000

0.05n

42.2 42.2 42.2 5.4e-2 5.4e-2 5.4e-2 2.38 2.31 2.38
4000 1327 78.9 78.9 78.2 6.4e-2 6.4e-2 6.4e-2 0.36 0.35 0.33
20000 7923 49.9 49.9 49.8 5.2e-2 5.2e-2 5.2e-2 1.13 1.08 1.08
50000 21640

0.02n

43.3 43.3 43.1 4.9e-2 4.9e-2 5.0e-2 2.43 2.37 2.39
Table 4.2

Experiment results for noisy f with noise σ = 0.03 for partial DCT matrices.
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[1] L. M. Brègman, A relaxation method of finding a common point of convex sets and its appli-

cation to the solution of problems in convex programming, Z̆. Vyčisl. Mat. i Mat. Fiz., 7
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