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Abstract

Estimates for the rank of A}fw NV —-U A}rw  and more general displacement of A}fw N

are presented,where A}ru ~ is the weighted pseudoinverse of a matrix A.The results are
applied to the close-to-Toeplitz,close-to-Vandermonde and close-to-Cauchy matrices. We
extend the results due to G. Heinig and F. Hellinger in 1994.
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1 Introduction

The modern study of structured matrices was largely motivated by [6, 7],in which a basic
concept of the displacement rank was introduced.If the rank of a matrix’s displacement is
small,fast algorithms for the matrix are available. If the UV -displacement of matrix A fulfills

a Sylvester equation
AU - VA=EFE,

we call it Sylvester UV -displacement.If it fulfills a Stein equation
A-VAU =EF,

we call it Stein UV -displacement.For example,a Toeplitz matrix T have Stein displacement
T - Z7}TZ, = E and the rank of the displacement is 2,so fast algorithms have been con-
structed.For Sylvester and Stein displacement,if A is invertible, it is easy to show that the
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rank of VU-displacement of A~! is same to the rank of UV-displacement of A. In [2, 3, 18]
the VU-displacement of pseudoinverse and group inverse were discussed if A is not invert-
ible.In our paper,we are interested in generalized inverses with as small as possible rank.

We present the representation of the weighted pseudoinverse A;rw n of the matrix A.This

means we study the so-called displacement A}LVI NV-U A;rw N Or A;r\/[ U A}LV[ NV for structured
matrix A.The detail of the weighted pseudoinverse and weighted linear least squares solution
can be found in [4, 5, 9, 11-17].

Let M € C"™ ™M N € C™" be Hermitian positive definite matrices.We define the
weighted inner product in C" and C™ :

(T, y)m =y Mz, z,ye€C™,
(z,y)v =y"Nz, z,yeC™
So,the weighted conjugate transpose matrix Af = N~1A*M of A € C™*" can be defined by

(Axvy)M = (xaAﬁy)N Vo € Cm7y eC”.

The weighted pseudoinverse of A € C™*™ is the unique solution A}LM ~ (1] of the following
four equations:

AAL VA=A, AL GAAL L = ALy, (A4 )= A4l (AL A=Al A

From the weighted singular value decomposition (SVD)[10],we know that for any m x n
matrix A with rank r,there exist two weighted unitary matrices R € C"™*™ S € C™*" such

that s 0
AzR(O O)S’ (1)

and R*MR = I,,,S*N~-1S = I,,where ¥ = diag(c1,09,-+-,0,) and 01 > 09 > -0, > 0
are nonzero eigenvalues of A*A.The weighted pseudoinverse A}r\/[ n has an explicit expression
given by:

10

Al :le( 0o

) R*M. 2)
We introduce
Q(MN) = AMNA, Q(MN)* = AAFWN, P(MN) =1In — Q(MN)> P(MN)* =Im — Q(MN)*-
It is easy to show that

Im(Qrny) = Im(A%) = Im(Al, ), Im(Quarny.) = Im(A);

Im(Pasny) = Ker(A),  Im(Puasny.) = Ker(Aly) = Ker(A").



2 Displacement structure for Sylvester displacement

At first,we discuss the Sylvester displacement structure of the weighted pseudoinverse A}L\/[ N
of A e C™*™,

Proposition 2.1. Let A € C"™*" U € C™" and V €™*"™ then

ALV = UAL = ANV Pounye — PounyUAL y — Al n (AU = VA AL o (3)

Proof.  Since
Al (AU = V)AL = (T = Pany)UAL = ALy VI = Pasy),
we can immediately draw the conclusion. O

Lemma 2.1. The VU-displacement rank of A;rw y satisfies the following estimate:

rcmk(A}fV[NV—UA;[WN) < rank(Q vy V Parnys) +rank(PoyvmyUQny) +rank(AU -V A).
(4)
Proof.
Tank:(AJ]rV[NVP(MN)*) = 7“cml<:(A;r\/[NVP(MN)*)li = dim[P(MN)*VﬂIm(A}LV[N)ﬁ]
= dim[PnyV Im(Qnys)] = rank(QarnysV Py )?
= rank(Qun)«V Parnys)

Tank(P(MN)UAJ]r\([N) = dim[P(MN)UIm(A}L\/[N)] = dim[PnyUIm(Q )]
= rank(PnUQ )

Taking these two into account,we obtain (4). O
Proposition 2.2. Let A € C™*".U € C™*" and V €™*™ then
rank(PonyUQny) + rank(QuinyV Parnys) < rank(AU* — VEA), (5)

where Uf = N"'U*N and V! = M—1V*M.
Proof. We set F = AU? — V¥A Let

Y0\ .
aon(Z s

be the weighted SVD of A.Partition

Vit Viz ~1 Ui U2
R*MV*R = ( ) S*UINTLS = ( )
Vor Voo Ua1 U
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where U1, Vi1 € C™*" and r = rank(A).Therefore,

PUEN-TS <2U11 — Vs zUm) |

Vo1 X 0

Since 0 U
QuumU*Pony = N7'S ( 52> S*

and
(M N)* (MN)x Va1 0 )

it follows from [8] that

rank(F) = rank(R*MFN™'S)
rank(XUi2) + rank(Va1X)

(R
(
rank(Uy2) + rank(Vay)
(
(

v

rank(Qun U Piarny) + rank(Pauny Vi Qarny)
rank(PonyUQuny) + rank(Quny«V Parny«)-

g
From Proposition 2.1,2.2 and Lemma 2.1,we conclude that
Theorem 2.1. Let A € C™*" and A}r\/l y its weighted pseudoinverse.Then
Tank:(A}rV[NV - UAJ][MN) < rank(AU — V A) + rank(AU* — V#A). (6)
a

Corollary 2.1. If U,V are both weighted self-adjoint U = U,V = V* or weighted
unitary U~! = UF, V=1 = V¥ then

Tank‘(A}fV[NV — UA}L\é,N) <2 rank(AU — V A). (7)

a

3 Displacement structure for generalized displacement

In order to generalize Theorem 2.1 we introduce a generalized displacement concept[2].Let
a = [a;;]} denote a nonsingular 2 x 2 matrix.We associate a with the polynomial in two

variables .
A\ ) = Z aig N\
i,j=0



and the linear fractional function
alo + a1
ago + a01)\'

For any fixed U € C™*™ and V' € C™*"™ the generalized (a, U, V') displacement of A € C™*"
generated by a(\, ) is defined by

fa()‘) =

1
a(V,U)A= > ayV'AU’.

i,j=0
If ‘o0 1T
a=d=1_1 o]
we just get Sylvester displacement that we have discussed in Section 2.If
_[1 0]
a = d = 1 ] s
we get Stein displacement.
Lemma 3.1.[2] Let a = [a;]4,b = [biylh,c = [eiy]h,d = [dij]§ be nonsingular 2 x 2
matrices such that
a=blde, (8)
then
(boo + borA) " a(A, 1) (coo + corp) ™t = d(f5(N), fe()). (9)
O
Lemma 3.2.[2] Letd = {_01 (1)} ,sthen there exist 2 x 2 matrices b,c such that (8)
holds and bgy 4+ bg1V and cyg + cg1U are invertible. O

Taken Lemma 3.1 and Lemma 3.2 together,we obtain the following

Proposition 3.1.[2] Let b and ¢ be matrices satisfying the conditions in Lemma
3.2,then for A € C"™*",

a(V, U)A = (b()o + b()lV) [AfC(U) — fb(V)A] (Coo + ColU).
O

The following is very important to generalize Theorem 2.1 for general (a, U, V') displace-
ment.

Proposition 3.2.
(a) If p = [gbij](l) is nonsingular and ¢gg + ¢o1U is invertible,then

rank(PovyUQn)) = rank(PoanyUQ ),
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where U = fo(U).
(b) If 1 = [10;]$ is nonsingular and oo + 101V ,then
rank(Q )V Poinys) = rank(QarnysV Parns),
where V = f, (V).
Proof.  We define

S =Ker(A)NKer(AU®) |, S = Ker(A)©S.

We show that Q(MN)Uﬁ is one-to-one on &;.If Q(MN)U% =0 and z € S;,then Utz ¢
Ker(Qvny) = Ker(A). That means AU%z = 0.Noting that x € Ker(A),we conclude = €
S.Thus z = 0.

Furthermore,Q /) Utz = 0 for all z € S.Hence
rank(P(MN)UQ(MN)) = rank(Q(MN)UﬂP(MN)) = dzm(Sl) (10)

Analogously we define

S=Ker(A)NKer(AU*) |, S = Ker(A) oS,
and we will get

Now we show that the invertible matrix ¢gy + ¢oU* bijectively maps S onto S.Suppose
that € S.Then z, Utz € Ker(A).Hence y = (¢19 + .U and 2z = (dgy + ¢ U are
all contained in Ker(A).Thus y = Uz and we conclude that z, Uz € Ker(A),which implies
z € 8.Convesely,with the same arguments we get (oo + b U*) "1z € S forall z € S.

This implies

dim(8y) = dim[Ker(A)] — dim(S) = dim[Ker(A)] — dim(S) = dim(Sy).

According to (10) and (11),we get assertion (a).
Assertion (b) is proved analogously. O
Now we can generalize Theorem 2.1 for general (a,U, V') displacement.

Theorem 3.1.  Let a,b be 2 X 2 nonsingular matrices,then

rank[a(U, V)A}rv[N)] < rank[a® (V,U)A] + rank[b(V* U*)A]. (12)



Proof. According to Lemma 3.2 there exist 2x2 matrices w,z,y,z such that wgog+we1 U,
zoo + 201V, Yoo + yo1U, zoo + 201V are invertible and

a=w'dz,

b=zx"dy.

Hence,

rank[a(U,V)A MN]—rank:[ Tv,u)4]

[
= rank[fu(U)Aly — Alyy (V)] = rank[f.(V)A = Af.,(U)]
< rank[Poyny fu(U)Quun] + rank[Qarny«f-(V) Par vy
= rank[Pony fy(U)Quiny] + rank[Qnysfo (V) Parny
< rank[fz(V)A - Afy(U?)]

[

= rank[b(V*,U%)A].

a
Corollary 3.1. If U,V are weighted unitary or weighted self-adjoint matrix,then
rank[a(U, V)A}LWN] < 2 rankla (V,U)A]. (13)
Proof. Let
o HUP=UVI=V,
p_ ) ia” if Ut = Uvﬁ 7
) J HUP=ULVE= V,
iali HUt=UVE=V,
where i denote the matrix [(1) 0} .We immediately obtain (13) from Theorem 3.1. O

4 Computation of the displacement

For practical purpose it is important to know not only the displacement rank of A}r\/l N but
the explicit form of the displacement.For simplicity we restrict our explantation to the case
of Sylvester displacement and to the case of a matrix A.

Our starting point is (3).

(1) If we know the full-rank decomposition (For many structured matrices,it is easy to
get the decomposition.)

AU ~VA=GF =Y gff,



we only need to compute the weighted least squares solutions[1, 15] A}r\/[ Ngi and fz-*AJ]rw N to
get
Al (AU =V A)AL .

(2) For the purpose to get AE\/[ NV Puny«swe start with another full-rank decomposition
AV —UA* = KL*.

A*M1/2

We denote C' = [L*Ml/Z]'It is obvious that Ker(C) € M~1/2Ker(A*),s0 we can find an

orthonormal system of vectors wi,---,w, forming a basis of the orthogonal complement of
Ker(C) in M~Y2Ker(A*).If we introduce the matrix W = [wy, - - -, wp),then we have

M~Y2Ker(A*) = Ker(C) & Im(W).

Proposition 4.1. Let R = M~ Y2WW*M'/2 then

RPyny. = R. (14)

Proof. It is obvious that
Im(RQ(a).) = RIm(Qun).) = RIm(A) = Im(RA) = Im(M ™ /*WW*M"'/?4).
Noting that Im(W) C M~Y2Ker(A*),we get
A MVPW =0

Hence, W*MY2A = 0.So,we conclude RQ vy« = 0.Taking Piarnvye = Im — Q)+ into
account,we obtain (14). O

Proposition 4.2.  Let R be defined as Proposition 4.1,then

Al vV I — R) Py = 0. (15)

Proof.  In view of Im(Pn)«) = Ker(A¥),one can easily check

Im[AY NV (I — R)Pornye] = Ay VM Y21, — WWH) MY 2 Ker(AF)
= Al VM TVA(L, - WWH M Y2 Ker(A*).

For all z € M~'/2Ker(A*) there exists a unique decomposition 2 = y + z such that y €
Ker(C) and z € Im(W). Noting WW™* is an orthogonal projection onto Im(W),we get
(L, —WW?*)(y+ 2) =y € Ker(C).Hence

Im[AY, NV (I — R) Py € Al nVM Y2 Ker(O). (16)
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Now we show A}LWNVMl/QKer(C) = 0.Surpose x € Ker(C).Then
A MY =0 and L*M %z = 0.

Hence,
AWM Y2y —UAM Y2 = KL*M Y22 = 0.

Thus,
AWM Y2 —UAM Y2 = UN“TA* MY 22 = 0.

So,we have VM 12z € Ker(Af) = Ker(AErWN).This means A}VINVM*IMKeT(C’) =0.
Noting (16),we obtain (15). O

According to Proposition 4.1 and 4.2,we have

Al NV Parny. = Al VM2 W M2,

—1/2
(3) We proceed analogously for P(MN)UAR/IN. Let C, = éj*le/z ] and S = N~1/277*N1/2,
where Z = [21,---, 2] and 21, -- -, 2, is an orthonormal basis of the orthogonal complement

of Ker(C,) in Ker(AN—'/2).The result obtained is

PornyUAYy = SUAY, y = NTY2Z22*NY2U A .

In order to compute the displacement,one have to find 2r weighted least squares solutions
AJ][V[ N and fi*A}Lw ~oWhere r = rank(AU — V A),and p + ¢ weighted least squares solutions

AJJFWNVM*UQUJZ' (t=1,---,p) and z;le/QUA}LWN (j=1,---,q),where p+ ¢ < rank(A*V —
U A®).

5 Full rank matrices

In this section we consider a special case that A has full rank.If this condition is fulfilled,then
A}rv[N has an explicit form given by A}r\/[N = AHAAM) ! or A}r\/[N = (ABA)1 AL,

We show that under the assumption made above one can find a more general estimate for
the displacement rank.In fact,in the case under consideration the U#V#-displacement can be
displaced by the UIWi-displacement for arbitrary W € C™*™ or by the W#V*-displacement
for arbitrary W € C™*™ . This is important for a series of applications.

We will start with Sylvester displacement as we have done in Section 2. Then we generalize
it to the generalized displacement.



Proposition 5.1.  Let A,U,V, PNy, PN« be defined as before and Wy € C™*"W; €
C™*™ are arbitrary,then

Al NV —UAL = (APA+ Poyny) "HAPV — Wi AP Py
+ P(MN)(AﬁW2 — UAF)(AA* + Pounys) = AEWN(AU - VA)AEWN.

Proof. By the weighted SVD,we have P(MN)Att =0 and AﬁP(MN)* = 0.Hence,
P(MN)AﬁWQ(AAﬁ + P(MN)*)il =0 and (AﬁA + P(MN))ilwlAﬂP(MN)* = 0.
According to the weighted SVD,one can easily check that
A}LMN = (A"A+ P(MN))AAti = AM(AA* + Porny)
Taking this into account and noting (3),we get the result. O

We can immediately get the following two theorems through Proposition 5.1.

Theorem 5.1. Let A € C™*™ be of row full rank and m < n,then for any arbitrary
W e mem’

rank(A}rV[NV — UAR/[N) < rank(AU — V A) + rank(AU* — W*A). (17)

O

Theorem 5.2. Let A € C™*™ be of column full rank and m > n,then for any
arbitrary W € C"™*"™,

mnk(A}WVV - UALN) < rank(AU — V A) + rank(AW* — V#A). (18)

O

Now we turn to the generalized displacement.

Theorem 5.3. Let A € C™*™ be of full rank and m < n,let a,b be nonsingular 2 x 2
matrices,then for any arbitrary W € C™*™,

rank[a(U, V)A}LMN] < rank[aT (V,U)A] + rank[b(W*, U*) A]. (19)

Proof. Under the assumptions there exist 2 x 2 matrices w and z such that a = w’ dz
and the matrices wog + we1U and zgg + 201V are invertible. Furthermore,

a(U, V) A}y = (woo + wor U)[Aly x £2(V) = Fu(U) Al x] (200 + 201 V)

together with
A}L\/[Nfz(v) - fw(U)A}[\/[N = _P(MN)fw(U)Q(MN) - A}LWN[Afw(U) - fz(V)A]A}LMN
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implies
rank[a(U, V) A}, 5] < rank[Pasny fo(U)Qarn)] + rank[Af,(U) — f2(V)A].
Noting a” = —2Tdw,we get
rank[Af,(U) — f.(V)A] = rank[a (V,U)A].

Under the assumptions there also exist 2 x 2 matrices = and y such that a = z”dy and the
matrices xgo + xo1W and yoo + yo1U are invertible.Then

rank[Pouny fu(U)Quun] = rank[Porny fy(U)Q ]

rank[ Py fy(U)Q ] + 1ank[Qany« fo (W) Parnys
rank[Afz(U?) — fa(WF)A]

= rank[b(W? U%)A].

IN

The following theorem can be proved analogously.

Theorem 5.4. Let A € C™*" be of full column rank and m > n,let a,b be nonsingular
2 x 2 matrices,then for any arbitrary W € C™*",

rank[a(U, V)A}LV[N] < rank[aT (V,U)A] + rank[b(V*, W) A]. (20)

a

6 Applications

In this section we apply the theorems proved before to many classical structured matri-
ces,including Toeplitz,Hankel, Cauchy and Vandermonde matrices.

6.1 Close-to-Toeplitz matrices

Close-to-Toeplitz matrices are a class of matrices whose UV -displacement ranks are small
compared with the sizes of the matrices for U and V' being (forward or backward) (block)
shifts,including Toeplitz,Hankel matrices,more geneal block matrices with Toeplitz or Hankel
blocks,and sums,products,and inverses of these matrices.

We consider the case

U=27,= —_— eCc™" | V=2

11



and let
ry =rank(A— Z) AZ,) ,r_ =rank(A— Z,AZ}).

Choosing

ams=]1 0]

0 -1
in Theorem 3.1 and noting

rank(A — (Z3)*AZY) = rank(MAN ™Y — Z,,MAN~'Z"),
we obtain the following

Theorem 6.1.1.  Let ry;ay—1 = rank(MAN—' — Z,, MAN~1Z*) then
rcmk(AFWN — ZnA}-MNZ:n) S T+ + T"MAN-1 -

a

If the estimate of Theorem 6.1.1 is small for a close-to-matrices A,then it lead to the the
famous representation formula of Gohberg-Semencul type of A}L\/[ N

T
Alyn =Y LUy,
k=1
where 7 is the displacement rank of A;W Nob-e,ry 4+ 1y an-1 here.

The importance of the representations consists the fact that with their help weighted
least squares solutions AEWN for a close-to-Toeplitz matrix A can be computed with the
complexity O((m + n)log(m + n)) if the FFT is applied.

Corollary 6.1.1.
rank(AT — Z,AYZ%) <ry +r_.
Corollary 6.1.2.  Let ry = rank(M — Z,, M Z"),ry = rank(N — Z}N Z,),then

rank(Al, v — Z, AL N Z5) < 2ry +rar 47

Proof. By [6],we have
rank(N — ZXNZ,) = rank(N~* — Z,N~1Z7).
We immediately obtain the corollary by the following
MAN™' — Z, MAN~'Z*
= (M~ Z,MZ})AN' + Z,MZ} AN -~ Z,N'Z*) — Z,,M(A — Z} AZ,)N' Z*.
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a

However,the estimate in Corollary 6.1.2 is not always small,but if we choose the weight
matrices M ,N such that rp;,ry is very small compared to the size of A,then the rank of
the VU-displacement of A}LM n is also very small.For example,let M,N be Hermite positive
definite Toeplitz matrices,then the displacement rank of the weighted pseudoinverse for a
Toeplitz matrix is less than or equal to 8 through Corollary 6.1.2.

6.2 Close-to-Vandermonde matrices

Let D(c) = diag(c1, - - -, ¢m) It is well known that the displacement rank r = rank[Vany,(c) Z,—
D(c)Vany(c)] of a Vandermonde matrix Vany,(c) = [c] _1];1’?’].:1 is equal to one,except for
the trivial case r = 0.Hence,an m x n matrix is said to be close-to-Vandermonde if,for certain

¢ € C™ the displacement rank rank[AZ,, — D(c)A] is small compared with m and n.

We denote
r =rank[AZ, — D(c)A] , ' =rank[A— D(c)AZ}].

It is easily to check that a close-to-Vandermonde matrix admits a representation
T
A= Z D;Vany(c)T; + DoVany(c), (21)
i=1

where D; are diagonal matrices and T; are upper triangular Toeplitz matrices with zeros
at the main diagonal.Note that the matrices D; and 7; can be found via the full-rank
decomposition of AZ,, — D(c)A,and Dy is related to the first column of A.

With the representation (21),we can show r’ < r+1 and in particular,if A is Vandermonde
matrix,r’ = r = 1.

Theorem 6.2.1.  Let rpyjay-1 = MAN~' — D(¢c)MAN~'Z* Suppose that ¢; € R or
lcil =1 foralli=1,--- ,m,then

rank[AfnD(c) — Zn Al y] <7+ rapan-t.

Proof. Set b = [(1) _01] if c; € R and set b = {_01 (1)] if |¢;/ = 1 in Theorem
3.1.Since
rank[AZF — D(c)*A] = rank[MAN~*Z — D(c)* MAN™!]
and
rank[A — D(c)*AZ}] = rank[M AN~ — D(c)* M AN 1 Z7],
we immediately get the result. O

We give the following corollary.
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Corollary 6.2.1.  Suppose that ¢; € R or |¢;] =1 for all i = 1,---,m,then
rank[ATD(c) — Z,AT] <r 47 < 2r +1.
O

Theorem 6.2.2. Let ry = rank(N—Z NZ,),r; = rank[M — D(c)M D(c)*].Suppose
that |¢;| =1 for all i = 1,-- -, m,then

Tank:[A}rV[ND(C) - ZnA}r\/[N] <2r+ry+rTN.

Proof. Since

MAN™' — D(c)MAN~'Z*
= (M —D(c)MD(c))AN™* + D(¢)MD(c)*A(N~! — Z,N~1Z%)
—D(¢)M(A— D(c)*AZ,)N~1Z*,

noting D(c)* = D(c)~! and by [6],we have
rank(N — ZXNZ,) = rank(N~' — Z,N71Z7),

we obtain the theorem. O

Theorem 6.2.3.  Let ry = rank(NZ, — Z:N),ry; = rank[MD(c) — D(c) M].Suppose
that ¢; € Rfor all i =1,---,m,then

rank[A}-\/[ND(C) - ZnA;r\/[N] S 2r + 7“;\4 + ’I";V.

0 1

Proof. Set b = [_1 0

} in Theorem 3.1.Therefore,
rank:[A}rwND(c) - ZnA}rV[N} < r+rank[AZ} — D(c)*A]
= r+rank[MAN'Z: — D(c)*MAN™'].
Since

MAN™YZ* — D(¢)*MAN~1
= (MD(c)— D(c)*M)AN™' + MA(N"'Z} — Z,N™Y) + M(AZ, — D(c)A)N~},

noting D(c)* = D(c) and
rank(NZ, — Z:N) = rank(N~'Z — Z,N1),

we obtain the theorem. O
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6.3 Generalized Cauchy matrices

Let U,V be diagonal matrices,
U= D(d) =diag(di,---,dn) , V = D(c)=diag(c1, -, Cm).

A matrix A is said to be a generalized Cauchy matrix if for certain ¢ and d,rank[AD(d) —
D(c)A] is small compared with m and n.In case ¢; # d; for all 7 and j,it has an explicit form

G djli1

where f;,g9; € C" and r = rank[AD(d) — D(c)A].

In particular,ifr = 1, f; = g1 = 1, Ais classical Cauchy Matrix.If fi = a = (a1, -+, am)*, fo =

(=1,---,=1)* g1 = (1,---,1)*, 92 = b = (b1,---,by)*,A is Loewner matrix,which has the
form
m,n
¢ — d; i=1,j=1

We assume that ¢; € R or |¢;| = 1 for all i,and the same for d;.In case ¢ € R™,we have
D(c)* = D(c);in case |¢;| = 1,we have D(c)* = D(c)~!.

Theorem 6.3.1. Let ryjan-1 = rank[MAN~'D(d) — D(c)M AN~1].Suppose that
ci€Rorlgl=1foralli=1,---,mand dj € Ror |dj| =1for all j =1,---,n.Then

mnk[AEFWND(c) — D(d)A;MN] <r+4+ryan-t ,

where r = rank[AD(d) — D(c)A].

Proof.  Set
1 0 .
0 -1 if ;€ Rd; € Ror || =1,|d;| =1
b= N
{_01 (1)] ifCiER,|di|=1OI‘ ‘Ci|=1,di€R
in Theorem 3.1,we immediately obtain the theorem. O

Corollary 6.3.1. If ¢; € R or |¢;| =1 for all ¢,and the same for d;.Then
rank[ATD(c) — D(d)AT] < 2r,
where r = rank[AD(d) — D(c)A]. O

Corollary 6.3.2.  Let ry = rank[MD(c) — D(c)M],rny = rank[ND(d) — D(d)N].If
¢ € Ror |¢;| =1 for all 4,and the same for d;,then

rank[Al,yD(c) — D(d)Al, ] < 2r + ras + 7,
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where r = rank[AD(d) — D(c)A].
Proof.  Since
MAN™'D(d) — D(c) M AN~}
= MA(N'D()— D(d)N") + M(AD(d) — D(c)A)N~' — (D(¢)M — MD(c))AN~!

and
rank[N~'D(d) — D(d)N~'] = rank[ND(d) — D(d)N],

we obtain
PMAN-L ST TN T

a

With Theorem 6.3.1,we conclude that A}L\/l ~ has the form (22).It indicates that one can

construct a fast algorithm to compute the weighted least squares solution x = AR/[ Ny for a
generalized Cauchy system if r + ry;4n—1 is small.

6.4 Upper bound for full rank matrices

In the above subsections,we give displacement estimates of A by the displacement of weight
matrices M and N.In this subsection,we give an upper bound of the displacement ranks
independent of the displacement of weight matrices.At first,we consider the case that A has
full column rank and the Sylvester displacement.

Our start point is (3).Assume m > n.Because A has full column rank,so (3) can be
written into

Al NV = UAL = ALV Posnye — Al (AU — VA AT

Set
K = Al W VP

We consider the system K%z = 0.This system can be written into the form
PornyVEHAL p)fz = 0.
Since Im[(A}rwN)ﬂ] = Im(A),we get
rank(P(MN)*VﬁA) = Tank[P(MN)*Vu(AEMN)ﬁ].
Hence,the dimension of the solution space of Kz = 0 is equivalent to the dimension of the

solution space of the following
PV Az = 0. (23)
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Now we consider another equation
(VEA—AW)z =0 , W e ™", (24)
If x is a solution of (24),then
ViAz = AWz € Im(A) = Ker(Pny«)-

It means the solution space of (24) is a subset of solution space of (23).Therefore,if we give
a lower bound of the solution space’s dimension of (24),let it be d,then n — d is the upper
bound of rank(K).In fact,if we set W = ATV#A (24) is changed into

0 0

CAAN AL —
(I, — AANVi Az R{O L

} R'ViAz = 0.

Then we obtain d = n — (m — n) = 2n — m,therefore,

rank(K) <n—(2n —m) =m —n.

We generalize it to the generalized displacement a(U, V)A}Lw n-By Lemma 3.2, there exist
nonsingular 2 x 2 matrices w and z such that a = w? dz and wog + we1U and zgg + 201V are
invertible. Then

a(U, V) Ay = (w00 + worU)[ Ay f(V) = fulU) Al (o0 + 201 V).
Noting (3) and Py = 0,we obtain
A F-(V) = Fu(U) Ay = Ay (V) Py = Ay [Afu(U) = £-(V)AJAL .
Because rank[Af,(U) — f.(V)A] = rankla™ (V,U)A],s0
rank|a(U, V)ALN] < rank[AEWNfZ(V)P(MN)*] + rank[a® (V,U)A.
Now we estimate the upper bound of rank[AEWNfZ(V)P(MN)*].In fact,

rank[ Al f-(V) Poarny) = rank(Qaunye = (V) Pyl = rank[QuarnyV Py = rank(K).

The same as the case for A has full row rank and m < n,we obtain

rank:(P(MN)UAEWN) <n-—m.

Theorem 6.4.1. Let A € C™*" be of full rank,then

rank[a(U, V)ALN] < min{m, n,rank[a® (V,U)A] + |m — n|}.
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a

The upper bound can be attained.For example,let T' be a 20 x 12 full column rank Toeplitz
matrix,

a=(3,2,3,4,51,2,3,5,3,2,7)
be the first row of T and

b=(3,4,2,3,4,6,2,5,3,4,5,6,1,2,3,6,7,8,3,4)T
be the first column of T.The weight matrices

M = diag(1,2,7,5,6,2,4,3,4,6,4,8,4,2,2,5,6,2,5,4),

and
N = diag(4,1,1,5,3,6,4,8,7,8,4,5).
We obtain
mnk(TLN — ZnTJL[NZ:n) =10 =rank(T — Z} TZ,) + m — n.
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