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Abstract

Estimates for the rank of A†
MNV − UA†

MN and more general displacement of A†
MN

are presented,where A†
MN is the weighted pseudoinverse of a matrix A.The results are

applied to the close-to-Toeplitz,close-to-Vandermonde and close-to-Cauchy matrices.We
extend the results due to G. Heinig and F. Hellinger in 1994.
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1 Introduction

The modern study of structured matrices was largely motivated by [6, 7],in which a basic
concept of the displacement rank was introduced.If the rank of a matrix’s displacement is
small,fast algorithms for the matrix are available. If the UV -displacement of matrix A fulfills
a Sylvester equation

AU − V A = E,

we call it Sylvester UV -displacement.If it fulfills a Stein equation

A− V AU = E,

we call it Stein UV -displacement.For example,a Toeplitz matrix T have Stein displacement
T − Z∗

mTZn = E and the rank of the displacement is 2,so fast algorithms have been con-
structed.For Sylvester and Stein displacement,if A is invertible, it is easy to show that the
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rank of V U -displacement of A−1 is same to the rank of UV -displacement of A. In [2, 3, 18]
the V U -displacement of pseudoinverse and group inverse were discussed if A is not invert-
ible.In our paper,we are interested in generalized inverses with as small as possible rank.

We present the representation of the weighted pseudoinverse A†
MN of the matrix A.This

means we study the so-called displacement A†
MNV−UA

†
MN orA†

MN−UA
†
MNV for structured

matrix A.The detail of the weighted pseudoinverse and weighted linear least squares solution
can be found in [4, 5, 9, 11-17].

Let M ∈ Cm×m,N ∈ Cn×n be Hermitian positive definite matrices.We define the
weighted inner product in Cm and Cn :

(x, y)M = y∗Mx, x, y ∈ Cm,

(x, y)N = y∗Nx, x, y ∈ Cn.

So,the weighted conjugate transpose matrix A] = N−1A∗M of A ∈ Cm×n can be defined by

(Ax, y)M = (x,A]y)N ∀x ∈ Cm, y ∈ Cn.

The weighted pseudoinverse of A ∈ Cm×n is the unique solution A†
MN [1] of the following

four equations:

AA†
MNA = A, A†

MNAA
†
MN = A+

MN , (AA†
MN )] = AA†

MN , (A†
MNA)] = A†

MNA.

From the weighted singular value decomposition (SVD)[10],we know that for any m× n
matrix A with rank r,there exist two weighted unitary matrices R ∈ Cm×m,S ∈ Cn×n such
that

A = R

(
Σ 0
0 0

)
S∗, (1)

and R∗MR = Im,S∗N−1S = In,where Σ = diag(σ1, σ2, · · · , σr) and σ1 ≥ σ2 ≥ · · ·σr > 0
are nonzero eigenvalues of A]A.The weighted pseudoinverse A†

MN has an explicit expression
given by:

A†
MN = N−1S

(
Σ−1 0
0 0

)
R∗M. (2)

We introduce

Q(MN) ≡ A†
MNA, Q(MN)∗ ≡ AA†

MN , P(MN) ≡ In −Q(MN), P(MN)∗ ≡ Im −Q(MN)∗.

It is easy to show that

Im(Q(MN)) = Im(A]) = Im(A†
MN ), Im(Q(MN)∗) = Im(A);

Im(P(MN)) = Ker(A), Im(P(MN)∗) = Ker(A†
MN ) = Ker(A]).
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2 Displacement structure for Sylvester displacement

At first,we discuss the Sylvester displacement structure of the weighted pseudoinverse A†
MN

of A ∈ Cm×n.

Proposition 2.1. Let A ∈ Cm×n,U ∈ Cn×n and V ∈m×m,then

A†
MNV − UA†

MN = A†
MNV P(MN)∗ − P(MN)UA

†
MN −A†

MN (AU − V A)A†
MN . (3)

Proof. Since

A†
MN (AU − V A)A†

MN = (I − P(MN))UA
†
MN −A†

MNV (I − P(MN)∗),

we can immediately draw the conclusion. 2

Lemma 2.1. The V U -displacement rank of A†
MN satisfies the following estimate:

rank(A†
MNV −UA

†
MN ) ≤ rank(Q(MN)∗V P(MN)∗)+rank(P(MN)UQ(MN))+rank(AU−V A).

(4)

Proof.

rank(A†
MNV P(MN)∗) = rank(A†

MNV P(MN)∗)
] = dim[P(MN)∗V

]Im(A†
MN )]]

= dim[P(MN)∗V
]Im(Q(MN)∗)] = rank(Q(MN)∗V P(MN)∗)

]

= rank(Q(MN)∗V P(MN)∗)

rank(P(MN)UA
†
MN ) = dim[P(MN)UIm(A†

MN )] = dim[P(MN)UIm(Q(MN))]
= rank(P(MN)UQ(MN))

Taking these two into account,we obtain (4). 2

Proposition 2.2. Let A ∈ Cm×n,U ∈ Cn×n and V ∈m×m,then

rank(P(MN)UQ(MN)) + rank(Q(MN)∗V P(MN)∗) ≤ rank(AU ] − V ]A), (5)

where U ] = N−1U∗N and V ] = M−1V ∗M .

Proof. We set F ≡ AU ] − V ]A.Let

A = R

(
Σ 0
0 0

)
S∗

be the weighted SVD of A.Partition

R∗MV ]R =
(
V11 V12

V21 V22

)
, S∗U ]N−1S =

(
U11 U12

U21 U22

)
,
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where U11, V11 ∈ Cr×r and r = rank(A).Therefore,

R∗MFN−1S =
(

ΣU11 − V11Σ ΣU12

V21Σ 0

)
.

Since
Q(MN)U

]P(MN) = N−1S

(
0 U12

0 0

)
S∗

and
P(MN)∗V

]Q(MN)∗ = R

(
0 0
V21 0

)
R∗M,

it follows from [8] that

rank(F ) = rank(R∗MFN−1S)
≥ rank(ΣU12) + rank(V21Σ)
= rank(U12) + rank(V21)
= rank(Q(MN)U

]P(MN)) + rank(P(MN)∗V
]Q(MN)∗)

= rank(P(MN)UQ(MN)) + rank(Q(MN)∗V P(MN)∗).

2

From Proposition 2.1,2.2 and Lemma 2.1,we conclude that

Theorem 2.1. Let A ∈ Cm×n and A†
MN its weighted pseudoinverse.Then

rank(A†
MNV − UA†

MN ) ≤ rank(AU − V A) + rank(AU ] − V ]A). (6)

2

Corollary 2.1. If U, V are both weighted self-adjoint U = U ], V = V ] or weighted
unitary U−1 = U ], V −1 = V ],then

rank(A†
MNV − UA†

MN ) ≤ 2 rank(AU − V A). (7)

2

3 Displacement structure for generalized displacement

In order to generalize Theorem 2.1 we introduce a generalized displacement concept[2].Let
a = [aij ]10 denote a nonsingular 2 × 2 matrix.We associate a with the polynomial in two
variables

a(λ, µ) =
1∑

i,j=0

aijλ
iµj
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and the linear fractional function

fa(λ) =
a10 + a11λ

a00 + a01λ
.

For any fixed U ∈ Cn×n and V ∈ Cm×m,the generalized (a, U, V ) displacement of A ∈ Cm×n

generated by a(λ, µ) is defined by

a(V,U)A =
1∑

i,j=0

aijV
iAU j .

If
a = d ≡

[
0 1
−1 0

]
,

we just get Sylvester displacement that we have discussed in Section 2.If

a = d ≡
[
1 0
0 −1

]
,

we get Stein displacement.

Lemma 3.1.[2] Let a = [aij ]10,b = [bij ]10,c = [cij ]10,d = [dij ]10 be nonsingular 2 × 2
matrices such that

a = bTdc, (8)

then
(b00 + b01λ)−1a(λ, µ)(c00 + c01µ)−1 = d(fb(λ), fc(µ)). (9)

2

Lemma 3.2.[2] Let d =
[

0 1
−1 0

]
,then there exist 2 × 2 matrices b,c such that (8)

holds and b00 + b01V and c00 + c01U are invertible. 2

Taken Lemma 3.1 and Lemma 3.2 together,we obtain the following

Proposition 3.1.[2] Let b and c be matrices satisfying the conditions in Lemma
3.2,then for A ∈ Cm×n,

a(V,U)A = (b00 + b01V )[Afc(U)− fb(V )A](c00 + c01U).

2

The following is very important to generalize Theorem 2.1 for general (a, U, V ) displace-
ment.

Proposition 3.2.

(a) If φ = [φij ]10 is nonsingular and φ00 + φ01U is invertible,then

rank(P(MN)UQ(MN)) = rank(P(MN)ŨQ(MN)),
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where Ũ ≡ fφ(U).

(b) If ψ = [ψij ]10 is nonsingular and ψ00 + ψ01V ,then

rank(Q(MN)∗V P(MN)∗) = rank(Q(MN)∗Ṽ P(MN)∗),

where Ṽ ≡ fψ(V ).

Proof. We define

S = Ker(A) ∩Ker(AU ]) , S1 = Ker(A)	 S.

We show that Q(MN)U
] is one-to-one on S1.If Q(MN)U

]x = 0 and x ∈ S1,then U ]x ∈
Ker(Q(MN)) = Ker(A).That means AU ]x = 0.Noting that x ∈ Ker(A),we conclude x ∈
S.Thus x = 0.

Furthermore,Q(MN)U
]x = 0 for all x ∈ S.Hence

rank(P(MN)UQ(MN)) = rank(Q(MN)U
]P(MN)) = dim(S1). (10)

Analogously we define

S̃ = Ker(A) ∩Ker(AŨ ]) , S̃1 = Ker(A)	 S̃,

and we will get

rank(P(MN)ŨQ(MN)) = rank(Q(MN)Ũ
]P(MN)) = dim(S̃1). (11)

Now we show that the invertible matrix φ00 + φ01U
] bijectively maps S onto S̃.Suppose

that x ∈ S.Then x,U ]x ∈ Ker(A).Hence y ≡ (φ10 + φ11U
])x and z ≡ (φ00 + φ01U

])x are
all contained in Ker(A).Thus y = Ũ ]z and we conclude that z, Ũ ]z ∈ Ker(A),which implies
z ∈ S̃.Convesely,with the same arguments we get (φ00 + φ01U

])−1z ∈ S for all z ∈ S̃.

This implies

dim(S1) = dim[Ker(A)]− dim(S) = dim[Ker(A)]− dim(S̃) = dim(S̃1).

According to (10) and (11),we get assertion (a).

Assertion (b) is proved analogously. 2

Now we can generalize Theorem 2.1 for general (a, U, V ) displacement.

Theorem 3.1. Let a,b be 2× 2 nonsingular matrices,then

rank[a(U, V )A†
MN )] ≤ rank[aT (V,U)A] + rank[b(V ], U ])A]. (12)
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Proof. According to Lemma 3.2 there exist 2×2 matrices w,x,y,z such that w00+w01U ,
x00 + x01V , y00 + y01U , z00 + z01V are invertible and

a = wTdz,

b = x∗dy.

Hence,

rank[a(U, V )A†
MN ]− rank[aT (V,U)A]

= rank[fw(U)A†
MN −A†

MNfz(V )]− rank[fz(V )A−Afw(U)]
≤ rank[P(MN)fw(U)Q(MN)] + rank[Q(MN)∗fz(V )P(MN)∗]
= rank[P(MN)fy(U)Q(MN)] + rank[Q(MN)∗fx(V )P(MN)∗]

≤ rank[fx(V ])A−Afy(U ])]
= rank[b(V ], U ])A].

2

Corollary 3.1. If U ,V are weighted unitary or weighted self-adjoint matrix,then

rank[a(U, V )A†
MN ] ≤ 2 rank[aT (V,U)A]. (13)

Proof. Let

b =


aT if U ] = U ,V ] = V ,
iaT if U ] = U ,V ] = V −1,
aT i if U ] = U−1,V ] = V ,
iaT i if U ] = U−1,V ] = V −1,

where i denote the matrix
[
0 1
1 0

]
.We immediately obtain (13) from Theorem 3.1. 2

4 Computation of the displacement

For practical purpose it is important to know not only the displacement rank of A†
MN but

the explicit form of the displacement.For simplicity we restrict our explantation to the case
of Sylvester displacement and to the case of a matrix A.

Our starting point is (3).

(1) If we know the full-rank decomposition (For many structured matrices,it is easy to
get the decomposition.)

AU − V A = GF ∗ =
r∑
i=1

gif
∗
i ,
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we only need to compute the weighted least squares solutions[1, 15] A†
MNgi and f∗i A

†
MN to

get
A†
MN (AU − V A)A†

MN .

(2) For the purpose to get A†
MNV P(MN)∗,we start with another full-rank decomposition

A]V − UA] = KL∗.

We denote C ≡
[
A∗M1/2

L∗M−1/2

]
.It is obvious that Ker(C) ⊆M−1/2Ker(A∗),so we can find an

orthonormal system of vectors w1, · · · , wp forming a basis of the orthogonal complement of
Ker(C) in M−1/2Ker(A∗).If we introduce the matrix W = [w1, · · · , wp],then we have

M−1/2Ker(A∗) = Ker(C)⊕ Im(W ).

Proposition 4.1. Let R ≡M−1/2WW ∗M1/2,then

RP(MN)∗ = R. (14)

Proof. It is obvious that

Im(RQ(MN)∗) = RIm(Q(MN)∗) = RIm(A) = Im(RA) = Im(M−1/2WW ∗M1/2A).

Noting that Im(W ) ⊆M−1/2Ker(A∗),we get

A∗M1/2W = 0 .

Hence,W ∗M1/2A = 0.So,we conclude RQ(MN)∗ = 0.Taking P(MN)∗ = Im − Q(MN)∗ into
account,we obtain (14). 2

Proposition 4.2. Let R be defined as Proposition 4.1,then

A†
MNV (Im −R)P(MN)∗ = 0. (15)

Proof. In view of Im(P(MN)∗) = Ker(A]),one can easily check

Im[A†
MNV (Im −R)P(MN)∗] = A†

MNVM
−1/2(Im −WW ∗)M1/2Ker(A])

= A†
MNVM

−1/2(Im −WW ∗)M−1/2Ker(A∗).

For all x ∈ M−1/2Ker(A∗),there exists a unique decomposition x = y + z such that y ∈
Ker(C) and z ∈ Im(W ). Noting WW ∗ is an orthogonal projection onto Im(W ),we get
(Im −WW ∗)(y + z) = y ∈ Ker(C).Hence

Im[A†
MNV (Im −R)P(MN)∗] ⊆ A†

MNVM
−1/2Ker(C). (16)

8



Now we show A†
MNVM

1/2Ker(C) = 0.Surpose x ∈ Ker(C).Then

A∗M1/2x = 0 and L∗M−1/2x = 0.

Hence,
A]VM−1/2x− UA]M−1/2x = KL∗M−1/2x = 0.

Thus,
A]VM−1/2x = UA]M−1/2x = UN−1A∗M1/2x = 0.

So,we have VM−1/2x ∈ Ker(A]) = Ker(A†
MN ).This means A†

MNVM
−1/2Ker(C) = 0.

Noting (16),we obtain (15). 2

According to Proposition 4.1 and 4.2,we have

A†
MNV P(MN)∗ = A†

MNVM
−1/2WW ∗M1/2.

(3) We proceed analogously for P(MN)UA
†
MN . Let C∗ ≡

[
AN−1/2

K∗N1/2

]
and S ≡ N−1/2ZZ∗N1/2,

where Z = [z1, · · · , zq] and z1, · · · , zq is an orthonormal basis of the orthogonal complement
of Ker(C∗) in Ker(AN−1/2).The result obtained is

P(MN)UA
†
MN = SUA†

MN = N−1/2ZZ∗N1/2UA†
MN .

In order to compute the displacement,one have to find 2r weighted least squares solutions
A†
MNgi and f∗i A

†
MN ,where r = rank(AU − V A),and p + q weighted least squares solutions

A†
MNVM

−1/2wi (i = 1, · · · , p) and z∗jN
1/2UA†

MN (j = 1, · · · , q),where p+ q ≤ rank(A]V −
UA]).

5 Full rank matrices

In this section we consider a special case that A has full rank.If this condition is fulfilled,then
A†
MN has an explicit form given by A†

MN = A](AA])−1 or A†
MN = (A]A)−1A].

We show that under the assumption made above one can find a more general estimate for
the displacement rank.In fact,in the case under consideration the U ]V ]-displacement can be
displaced by the U ]W ]-displacement for arbitrary W ∈ Cm×m,or by the W ]V ]-displacement
for arbitrary W ∈ Cn×n.This is important for a series of applications.

We will start with Sylvester displacement as we have done in Section 2.Then we generalize
it to the generalized displacement.
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Proposition 5.1. LetA,U ,V ,P(MN),P(MN)∗ be defined as before andW1 ∈ Cn×n,W2 ∈
Cm×m are arbitrary,then

A†
MNV − UA†

MN = (A]A+ P(MN))
−1(A]V −W1A

])P(MN)∗

+ P(MN)(A
]W2 − UA])(AA] + P(MN)∗)

−1 −A†
MN (AU − V A)A†

MN .

Proof. By the weighted SVD,we have P(MN)A
] = 0 and A]P(MN)∗ = 0.Hence,

P(MN)A
]W2(AA] + P(MN)∗)−1 = 0 and (A]A+ P(MN))

−1W1A
]P(MN)∗ = 0.

According to the weighted SVD,one can easily check that

A†
MN = (A]A+ P(MN))

−1A] = A](AA] + P(MN)∗)
−1.

Taking this into account and noting (3),we get the result. 2

We can immediately get the following two theorems through Proposition 5.1.

Theorem 5.1. Let A ∈ Cm×n be of row full rank and m < n,then for any arbitrary
W ∈ Cm×m,

rank(A†
MNV − UA†

MN ) ≤ rank(AU − V A) + rank(AU ] −W ]A). (17)

2

Theorem 5.2. Let A ∈ Cm×n be of column full rank and m > n,then for any
arbitrary W ∈ Cn×n,

rank(A†
MNV − UA†

MN ) ≤ rank(AU − V A) + rank(AW ] − V ]A). (18)

2

Now we turn to the generalized displacement.

Theorem 5.3. Let A ∈ Cm×n be of full rank and m < n,let a,b be nonsingular 2× 2
matrices,then for any arbitrary W ∈ Cm×m,

rank[a(U, V )A†
MN ] ≤ rank[aT (V,U)A] + rank[b(W ], U ])A]. (19)

Proof. Under the assumptions there exist 2×2 matrices w and z such that a = wTdz
and the matrices w00 + w01U and z00 + z01V are invertible. Furthermore,

a(U, V )A†
MN = (w00 + w01U)[A†

MNfz(V )− fw(U)A†
MN ](z00 + z01V )

together with

A†
MNfz(V )− fw(U)A†

MN = −P(MN)fw(U)Q(MN) −A†
MN [Afw(U)− fz(V )A]A†

MN
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implies

rank[a(U, V )A†
MN ] ≤ rank[P(MN)fw(U)Q(MN)] + rank[Afw(U)− fz(V )A].

Noting aT = −zTdw,we get

rank[Afw(U)− fz(V )A] = rank[aT (V,U)A].

Under the assumptions there also exist 2× 2 matrices x and y such that a = xTdy and the
matrices x00 + x01W and y00 + y01U are invertible.Then

rank[P(MN)fw(U)Q(MN)] = rank[P(MN)fy(U)Q(MN)]
= rank[P(MN)fy(U)Q(MN)] + rank[Q(MN)∗fx(W )P(MN)∗]

≤ rank[Afȳ(U ])− fx̄(W ])A]
= rank[b(W ], U ])A].

2

The following theorem can be proved analogously.

Theorem 5.4. Let A ∈ Cm×n be of full column rank and m > n,let a,b be nonsingular
2× 2 matrices,then for any arbitrary W ∈ Cn×n,

rank[a(U, V )A†
MN ] ≤ rank[aT (V,U)A] + rank[b(V ],W ])A]. (20)

2

6 Applications

In this section we apply the theorems proved before to many classical structured matri-
ces,including Toeplitz,Hankel,Cauchy and Vandermonde matrices.

6.1 Close-to-Toeplitz matrices

Close-to-Toeplitz matrices are a class of matrices whose UV -displacement ranks are small
compared with the sizes of the matrices for U and V being (forward or backward) (block)
shifts,including Toeplitz,Hankel matrices,more geneal block matrices with Toeplitz or Hankel
blocks,and sums,products,and inverses of these matrices.

We consider the case

U = Zn ≡


0
1 0

. . . . . .
1 0

 ∈ Cn×n , V = Z∗
m
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and let
r+ ≡ rank(A− Z∗

mAZn) , r− ≡ rank(A− ZmAZ
∗
n).

Choosing

a = b =
[
1 0
0 −1

]
in Theorem 3.1 and noting

rank(A− (Z∗
m)]AZ]n) = rank(MAN−1 − ZmMAN−1Z∗

n),

we obtain the following

Theorem 6.1.1. Let rMAN−1 = rank(MAN−1 − ZmMAN−1Z∗
n),then

rank(A†
MN − ZnA

†
MNZ

∗
m) ≤ r+ + rMAN−1 .

2

If the estimate of Theorem 6.1.1 is small for a close-to-matrices A,then it lead to the the
famous representation formula of Gohberg-Semencul type of A†

MN :

A†
MN =

r∑
k=1

LkUk ,

where r is the displacement rank of A†
MN ,i.e.,r+ + rMAN−1 here.

The importance of the representations consists the fact that with their help weighted
least squares solutions A†

MN for a close-to-Toeplitz matrix A can be computed with the
complexity O((m+ n)log(m+ n)) if the FFT is applied.

Corollary 6.1.1.
rank(A† − ZnA

†Z∗
m) ≤ r+ + r−.

2

Corollary 6.1.2. Let rM = rank(M − ZmMZ∗
m),rN = rank(N − Z∗

nNZn),then

rank(A†
MN − ZnA

†
MNZ

∗
m) ≤ 2r+ + rM + rN .

Proof. By [6],we have

rank(N − Z∗
nNZn) = rank(N−1 − ZnN

−1Z∗
n).

We immediately obtain the corollary by the following

MAN−1 − ZmMAN−1Z∗
n

= (M − ZmMZ∗
m)AN−1 + ZmMZ∗

mA(N−1 − ZnN
−1Z∗

n)− ZmM(A− Z∗
mAZn)N

−1Z∗
n.
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2

However,the estimate in Corollary 6.1.2 is not always small,but if we choose the weight
matrices M ,N such that rM ,rN is very small compared to the size of A,then the rank of
the V U -displacement of A†

MN is also very small.For example,let M ,N be Hermite positive
definite Toeplitz matrices,then the displacement rank of the weighted pseudoinverse for a
Toeplitz matrix is less than or equal to 8 through Corollary 6.1.2.

6.2 Close-to-Vandermonde matrices

LetD(c) = diag(c1, · · · , cm).It is well known that the displacement rank r = rank[V ann(c)Zn−
D(c)V ann(c)] of a Vandermonde matrix V ann(c) = [cj−1

i ]m,ni=1,j=1 is equal to one,except for
the trivial case r = 0.Hence,an m×n matrix is said to be close-to-Vandermonde if,for certain
c ∈ Cm,the displacement rank rank[AZn −D(c)A] is small compared with m and n.

We denote
r ≡ rank[AZn −D(c)A] , r′ ≡ rank[A−D(c)AZ∗

n].

It is easily to check that a close-to-Vandermonde matrix admits a representation

A =
r∑
i=1

DiV ann(c)Ti +D0V ann(c), (21)

where Di are diagonal matrices and Ti are upper triangular Toeplitz matrices with zeros
at the main diagonal.Note that the matrices Di and Ti can be found via the full-rank
decomposition of AZn −D(c)A,and D0 is related to the first column of A.

With the representation (21),we can show r′ ≤ r+1 and in particular,if A is Vandermonde
matrix,r′ = r = 1.

Theorem 6.2.1. Let rMAN−1 = MAN−1 −D(c)MAN−1Z∗
n.Suppose that ci ∈ R or

|ci| = 1 for all i = 1, · · · ,m,then

rank[A†
MND(c)− ZnA

†
MN ] ≤ r + rMAN−1 .

Proof. Set b =
[
1 0
0 −1

]
if ci ∈ R and set b =

[
0 1
−1 0

]
if |ci| = 1 in Theorem

3.1.Since
rank[AZ]n −D(c)]A] = rank[MAN−1Z∗

n −D(c)∗MAN−1]

and
rank[A−D(c)]AZ]n] = rank[MAN−1 −D(c)∗MAN−1Z∗

n],

we immediately get the result. 2

We give the following corollary.

13



Corollary 6.2.1. Suppose that ci ∈ R or |ci| = 1 for all i = 1, · · · ,m,then

rank[A†D(c)− ZnA
†] ≤ r + r′ ≤ 2r + 1.

2

Theorem 6.2.2. Let rN = rank(N−Z∗
nNZn),rM = rank[M−D(c)MD(c)∗].Suppose

that |ci| = 1 for all i = 1, · · · ,m,then

rank[A†
MND(c)− ZnA

†
MN ] ≤ 2r + rM + rN .

Proof. Since

MAN−1 −D(c)MAN−1Z∗
n

= (M −D(c)MD(c)∗)AN−1 +D(c)MD(c)∗A(N−1 − ZnN
−1Z∗

n)
−D(c)M(A−D(c)∗AZn)N−1Z∗

n,

noting D(c)∗ = D(c)−1 and by [6],we have

rank(N − Z∗
nNZn) = rank(N−1 − ZnN

−1Z∗
n),

we obtain the theorem. 2

Theorem 6.2.3. Let r
′
N = rank(NZn−Z∗

nN),r
′
M = rank[MD(c)−D(c)M ].Suppose

that ci ∈ R for all i = 1, · · · ,m,then

rank[A†
MND(c)− ZnA

†
MN ] ≤ 2r + r

′
M + r

′
N .

Proof. Set b =
[

0 1
−1 0

]
in Theorem 3.1.Therefore,

rank[A†
MND(c)− ZnA

†
MN ] ≤ r + rank[AZ]n −D(c)]A]

= r + rank[MAN−1Z∗
n −D(c)∗MAN−1].

Since

MAN−1Z∗
n −D(c)∗MAN−1

= (MD(c)−D(c)∗M)AN−1 +MA(N−1Z∗
n − ZnN

−1) +M(AZn −D(c)A)N−1,

noting D(c)∗ = D(c) and

rank(NZn − Z∗
nN) = rank(N−1Z∗

n − ZnN
−1),

we obtain the theorem. 2
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6.3 Generalized Cauchy matrices

Let U ,V be diagonal matrices,

U ≡ D(d) = diag(d1, · · · , dn) , V ≡ D(c) = diag(c1, · · · , cm).

A matrix A is said to be a generalized Cauchy matrix if for certain c and d,rank[AD(d) −
D(c)A] is small compared with m and n.In case ci 6= dj for all i and j,it has an explicit form

A =

[
f∗i gj
ci − dj

]m,n
i=1,j=1

, (22)

where fi, gj ∈ Cr and r = rank[AD(d)−D(c)A].

In particular,if r = 1,f1 = g1 = 1, A is classical Cauchy Matrix.If f1 = a = (a1, · · · , am)∗, f2 =
(−1, · · · ,−1)∗, g1 = (1, · · · , 1)∗, g2 = b = (b1, · · · , bn)∗,A is Loewner matrix,which has the
form

A =

[
ai − bj
ci − dj

]m,n
i=1,j=1

.

We assume that ci ∈ R or |ci| = 1 for all i,and the same for dj .In case c ∈ Rm,we have
D(c)∗ = D(c);in case |ci| = 1,we have D(c)∗ = D(c)−1.

Theorem 6.3.1. Let rMAN−1 = rank[MAN−1D(d) − D(c)MAN−1].Suppose that
ci ∈ R or |ci| = 1 for all i = 1, · · · ,m and dj ∈ R or |dj | = 1 for all j = 1, · · · , n.Then

rank[A†
MND(c)−D(d)A†

MN ] ≤ r + rMAN−1 ,

where r = rank[AD(d)−D(c)A].

Proof. Set

b =


[
1 0
0 −1

]
if ci ∈ R,di ∈ R or |ci| = 1,|di| = 1[

0 1
−1 0

]
if ci ∈ R,|di| = 1 or |ci| = 1,di ∈ R

in Theorem 3.1,we immediately obtain the theorem. 2

Corollary 6.3.1. If ci ∈ R or |ci| = 1 for all i,and the same for dj .Then

rank[A†D(c)−D(d)A†] ≤ 2r,

where r = rank[AD(d)−D(c)A]. 2

Corollary 6.3.2. Let rM = rank[MD(c) −D(c)M ],rN = rank[ND(d) −D(d)N ].If
ci ∈ R or |ci| = 1 for all i,and the same for dj ,then

rank[A†
MND(c)−D(d)A†

MN ] ≤ 2r + rM + rN ,

15



where r = rank[AD(d)−D(c)A].

Proof. Since

MAN−1D(d)−D(c)MAN−1

= MA(N−1D(d)−D(d)N−1) +M(AD(d)−D(c)A)N−1 − (D(c)M −MD(c))AN−1

and
rank[N−1D(d)−D(d)N−1] = rank[ND(d)−D(d)N ],

we obtain
rMAN−1 ≤ r + rN + rM .

2

With Theorem 6.3.1,we conclude that A†
MN has the form (22).It indicates that one can

construct a fast algorithm to compute the weighted least squares solution x = A†
MNy for a

generalized Cauchy system if r + rMAN−1 is small.

6.4 Upper bound for full rank matrices

In the above subsections,we give displacement estimates of A by the displacement of weight
matrices M and N .In this subsection,we give an upper bound of the displacement ranks
independent of the displacement of weight matrices.At first,we consider the case that A has
full column rank and the Sylvester displacement.

Our start point is (3).Assume m > n.Because A has full column rank,so (3) can be
written into

A†
MNV − UA†

MN = A†
MNV P(MN)∗ −A†

MN (AU − V A)A†
MN .

Set
K ≡ A†

MNV P(MN)∗.

We consider the system K]x = 0.This system can be written into the form

P(MN)∗V
](A†

MN )]x = 0.

Since Im[(A†
MN )]] = Im(A),we get

rank(P(MN)∗V
]A) = rank[P(MN)∗V

](A†
MN )]].

Hence,the dimension of the solution space of K]x = 0 is equivalent to the dimension of the
solution space of the following

P(MN)∗V
]Ax = 0. (23)

16



Now we consider another equation

(V ]A−AW )x = 0 , W ∈ Cn×n. (24)

If x is a solution of (24),then

V ]Ax = AWx ∈ Im(A) = Ker(P(MN)∗).

It means the solution space of (24) is a subset of solution space of (23).Therefore,if we give
a lower bound of the solution space’s dimension of (24),let it be d,then n − d is the upper
bound of rank(K).In fact,if we set W = A†V ]A,(24) is changed into

(Im −AA†)V ]Ax = R

[
0 0
0 Im−n

]
R∗V ]Ax = 0.

Then we obtain d = n− (m− n) = 2n−m,therefore,

rank(K) ≤ n− (2n−m) = m− n.

We generalize it to the generalized displacement a(U, V )A†
MN .By Lemma 3.2,there exist

nonsingular 2× 2 matrices w and z such that a = wTdz and w00 +w01U and z00 + z01V are
invertible.Then

a(U, V )A†
MN = (w00 + w01U)[A†

MNfz(V )− fw(U)A†
MN ](z00 + z01V ).

Noting (3) and P(MN) = 0,we obtain

A†
MNfz(V )− fw(U)A†

MN = A†
MNfz(V )P(MN)∗ −A†

MN [Afw(U)− fz(V )A]A†
MN .

Because rank[Afw(U)− fz(V )A] = rank[aT (V,U)A],so

rank[a(U, V )A†
MN ] ≤ rank[A†

MNfz(V )P(MN)∗] + rank[aT (V,U)A].

Now we estimate the upper bound of rank[A†
MNfz(V )P(MN)∗].In fact,

rank[A†
MNfz(V )P(MN)∗] = rank[Q(MN)∗fz(V )P(MN)∗] = rank[Q(MN)∗V P(MN)∗] = rank(K).

The same as the case for A has full row rank and m < n,we obtain

rank(P(MN)UA
†
MN ) ≤ n−m.

Theorem 6.4.1. Let A ∈ Cm×n be of full rank,then

rank[a(U, V )A†
MN ] ≤ min{m,n, rank[aT (V,U)A] + |m− n|}.
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2

The upper bound can be attained.For example,let T be a 20×12 full column rank Toeplitz
matrix,

a = (3, 2, 3, 4, 5, 1, 2, 3, 5, 3, 2, 7)

be the first row of T and

b = (3, 4, 2, 3, 4, 6, 2, 5, 3, 4, 5, 6, 1, 2, 3, 6, 7, 8, 3, 4)T

be the first column of T .The weight matrices

M = diag(1, 2, 7, 5, 6, 2, 4, 3, 4, 6, 4, 8, 4, 2, 2, 5, 6, 2, 5, 4),

and
N = diag(4, 1, 1, 5, 3, 6, 4, 8, 7, 8, 4, 5).

We obtain

rank(T †
MN − ZnT

†
MNZ

∗
m) = 10 = rank(T − Z∗

mTZn) +m− n.
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