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Abstract

Singular value thresholding (SVT) is a basic subroutine in many popular numerical schemes for solving
nuclear norm minimization that arises from low-rank matrix recovery problems such as matrix completion.
The conventional approach for SVT is first to find the singular value decomposition (SVD) and then to
shrink the singular values. However, such an approach is time-consuming under some circumstances,
especially when the rank of the resulting matrix is not significantly low compared to its dimension. In
this paper, we propose a fast algorithm for directly computing SVT for general dense matrices without
using SVDs. Our algorithm is based on matrix Newton iteration for matrix functions, and the convergence
is theoretically guaranteed. Numerical experiments show that our proposed algorithm is more efficient
than the SVD-based approaches for general dense matrices.

1 Introduction

Singular value thresholding (SVT) introduced in [7] is a key subroutine in many popular numerical schemes
(e.g. [7, 12, 13, 52, 54, 66]) for solving nuclear norm minimization that arises from low-rank matrix recovery
problems such as matrix completion [13–15,60]. Let Y ∈ R

m×n be a given matrix, and Y = UΣV T be its
singular value decomposition (SVD), where U and V are orthonormal matrices and Σ = diag(σ1, σ2, . . . , σs)
is the diagonal matrix with diagonals being the singular values of Y . Then, the SVT of Y is defined as

Dτ (Y ) := U







(σ1 − τ)+
. . .

(σs − τ)+






V T , where (σi − τ)+ =

{

σi − τ, if σi − τ > 0,

0, otherwise.
(1)

In other words, in Dτ (Y ), the singular vectors of Y are kept and the singular values are shrunk by the
soft-thresholding [25]. In this paper, we aim at developing fast numerical algorithms for computing the SVT
of general dense matrices.

This topic is strongly motivated by the rapidly growing interest in the recovery of an unknown low-rank or
approximately low-rank matrix from very limited information. The problem of low-rank matrix recovery has
many different settings in a variety of applications. A large source of low-rank matrix recovery problems is
in machine learning [5,63]. The solution techniques developed in the machine learning community can often
be reformulated as methods for solving low-rank recovery problems. For example, the principle component
analysis (PCA) [40] is a fundamental tool for data analysis and dimension reduction; though it is derived from
a statistical point of view, it can be understood as a low-rank matrix recovery from noisy data. Furthermore,
variants of PCA, for instances, sparse PCA [22,78] and robust PCA [12], can be formulated as low-rank matrix
recovery under different settings. More examples of low-rank matrix recovery techniques in machine learning
include clustering [24,37,43,69], multi-task learning [2,59], metric learning [74], collaborative filtering [16,55],
and etc. Low-rank matrix recovery problems arise from many other areas in applied science and engineering
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as well, e.g., signal processing [45,46], computer algebra [41], computer vision [19,67], imaging [29,48], image
and video processing [38, 39], control [27, 28], and bioinformatics [1, 44].

We start with an illustrative example of low-rank matrix recovery — matrix completion — and its
numerical solutions. Matrix completion refers to recovering a matrix from a sampling of its entries. This
routinely comes up whenever one collects partially filled out surveys, and one would like to infer the many
missing entries. The issue is of course that the matrix completion problem is extraordinarily ill posed
since with fewer samples than entries, we have infinitely many completions. Therefore, it is apparently
impossible to identify which of these candidate solutions is indeed the “correct” one without some additional
information. In many instances, however, the matrix we wish to recover is of low rank or approximately low
rank. The premise that the unknown has (approximately) low rank radically changes the problem, making
the search for solutions feasible since the lowest-rank solution now tends to be the right one. Let M ∈ R

m×n

be a low rank matrix whose rank is r satisfying r ≪ min{m,n}, and Ω ⊂ {1, 2, . . . ,m}× {1, 2, . . . , n} be the
set of indices of its sampled entries. The authors in [14, 15] showed that most low rank matrices M can be
perfectly recovered by solving the optimization problem

minX ‖X‖∗
s.t. Xij = Mij , (i, j) ∈ Ω,

(2)

provided that the number of samples is great enough. Here ‖ · ‖∗ stands for the nuclear norm, i.e., the
summation of all singular values. The minimization problem (2) is convex and can be recast as a semidefinite
programming [28]. Therefore, (2) can be solved by conventional semidefinite programming solvers such as
SDPT3 [65] and SeDeMi [64]. However, such solvers are usually based on interior-point methods, and can not
deal with large matrices because they need to solve huge systems of linear equations to compute the Newton
direction. Usually, they can only solve problems of size at most hundreds by hundreds on a moderate PC.
Interested readers are referred to [53] for some recent progress on interior-point methods concerning some
special nuclear norm-minimization problems.

People then turn to customized algorithms for solving (2). One class of popular methods are based on
the SVT Dτ in (1), which was first introduced in [7]. In these algorithms, the SVT operator Dτ serves as a
basic and key tool that forces the iteration converges to a low-rank matrix, and it is required to be computed
in each iteration. The major computational cost is on the application of the SVT operator. Here we give
several examples of such SVT-based algorithms for solving (2) which are popular and recently developed.

• The first example is the SVT algorithm in [7]. In the SVT algorithm, the minimization (2) is first
approximated by

minX τ‖X‖∗ + 1

2
‖X‖2F

s.t. Xij = Mij , (i, j) ∈ Ω,

with a large parameter τ , and then we use a gradient ascent algorithm applied to its dual problem.
It has been shown in [47, 76] that the SVT algorithm with a finite τ can get the perfect matrix
completion as (2) does. The SVT algorithm is reformulated as Uzawa’s algorithm [4] or linearized
Bregman iteration [9, 10, 58, 73]. The iteration is

{

Xk = Dτ (Yk−1),

Yk = Yk−1 + δkPΩ(M −Xk),
(3)

whereDτ is the SVT operator defined in (1). The SVT algorithm was shown to be an efficient algorithm
for matrix completion, especially for huge low rank matrices.

• The second example is the FPCA algorithm in [54], which combines the fixed point continuation [32]
(also known as proximal forward-backward splitting [20]) with Bregman iteration [57]. The iteration
is











Iterate on i to get Xk

{

Xi = Dτ (Yi−1),

Yi = Xi−1 + δiPΩ(M +Zk−1 −Xi),

Zk = Zk−1 + PΩ(M −Xk)

(4)
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Here again Dτ is the SVT operator. The FPCA algorithm is in fact a gradient ascent algorithm applied
to an augmented Lagrangian of (2).

• The third example is the augmented Lagrangian method (ALM) in [50]. The problem (2) is first
reformulated into

min
X

‖X‖∗ s.t. X +E = PΩ(M), PΩ(E) = 0,

where E is an auxiliary variable representing the error. Then the corresponding (partial) augmented
Lagrangian (ALM) function is

L(X,E,Y , µ) = ‖X‖∗ + 〈Y ,PΩ(M)−X −E〉+ µ

2
‖PΩ(M)−X −E‖2F , with PΩ(E) = 0.

An inexact gradient ascent algorithm applying to the ALM leads to











Xk = Dµ−1

k

(PΩ(M) −Ek−1 + µ−1

k Yk−1),

Ek = PΩc(−Xk + µ−1

k Yk),

Yk = Yk−1 + µk(PΩM −Xk −Ek).

(5)

Once again here Dµ−1

k

is the SVT operator, and it is the key to make the algorithm converge to low

rank matrices. This algorithm is also known as the split Bregman method [11, 30] in the imaging
community, and it is extended to the decomposition of a matrix into a low-rank matrix plus a sparse
matrix in [12, 50, 75].

There are many other low-rank matrix recovery problems that can be solved via nuclear norm minimiza-
tion, and SVT could play a fundamental role in the resulting numerical algorithms. In [60], the authors
considered the problem of recovering a low-rank matrix from its linear samples. It was shown that the
low-rank matrix can be recovered exactly by solving nuclear norm minimization if the sampling operator
satisfies a restricted isometry property. In robust PCA [12], a minimization involving both the nuclear norm
and the ℓ1-norm is used to separate a low-rank matrix and a sparse one. Other examples that use nuclear
norm minimization to recover low-rank matrices can be found in, e.g., [2,51,59,74]. SVT is a crucial tool in
numerical algorithms for solving these resulting nuclear norm minimization problems, due to the fact that
Dτ is the proximal operator [36] of the nuclear norm function, i.e.,

Dτ (Y ) = arg min
X∈Rm×n

1

2
‖Y −X‖2F + τ‖X‖∗, (6)

where ‖·‖F is the matrix Frobenius norm. The proximal operator has its origins in convex optimization theo-
ry, and it has been widely used for non-smooth convex optimization problems. Recently, proximal algorithms
received much attention in solving ℓ1-norm minimization problems arising from compressed sensing [17, 26]
and related areas. It is well known that the proximal operator of the ℓ1-norm is the soft-thresholding op-
erator, and soft-thresholding based algorithms for solving ℓ1 norm minimization problems include iterative
thresholding [23], proximal forward-backward splitting (PFBS) [20], split Bregman method [11,30], linearized
Bregman method [9, 10, 58, 73], Bregmanized operator splitting [77], accelerated proximal gradient [3, 68],
alternating-direction method of multipliers [72], and so on. These algorithms are efficient and very popular
in solving ℓ1 norm minimization problems. Due to the analogous between the ℓ1 and nuclear norms, it is
natural to extend the soft-thresholding algorithms to solving nuclear norm minimizations for low-rank matrix
recovery, and we expect them to have excellent performances too. Indeed, since Dτ is the proximal operator
of the nuclear norm, every soft-thresholding based algorithm for ℓ1 norm minimization can be extended to
nuclear norm minimizations without too much difficulty by replacing the soft-thresholding operator by Dτ .

Therefore, finding Dτ (Y ) efficiently for a given matrix Y is crucial in algorithms for solving nuclear norm
minimization arising from low-rank matrix recovery problems. One natural way is to use the definition (1).
We first compute SVD of Y and then obtain Dτ (Y ) according to (1). This approach is very popular in the
literature (c.f. [7, 50, 52, 66]), and it depends highly on the SVD package used. When the rank of Dτ (Y ) is
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extremely low compared to its dimension, one can use partial SVD algorithms [62] that are extremely efficient.
However, as the rank of Dτ (Y ) increases, partial SVD algorithms becomes less and less efficient. In fact, it
was observed in [50] that when we want to compute more than 0.2 ·min{m,n} singular vectors/values, using
PROPACK [49], one of the most popular and efficient partial SVD packages, is often slower than computing
the full SVD. This finally slows down the algorithm. Note that Y is some intermediate iterate matrix and
Dτ (Y ) is not necessarily of low rank in general.

We aim at developing fast algorithms for computing Dτ (Y ) when Y is a general dense matrix and partial
SVDs have no advantage over the full SVD. Our idea is to compute Dτ (Y ) as a single matrix instead of
using SVD, by employing methods developed for computing matrix functions (see [35] for a survey). In
particular, we will use matrix Newton iteration, which has been used extensively in numerical linear algebra
for, e.g., matrix inversions [8, 70] and polar decomposition [33, 34]. Throughout the paper, we assume that
the matrix size m × n satisfies m ≥ n, and the case m < n can be done completely analogously since
Dτ (Y ) = (Dτ (Y

T ))T . The outline of our proposed algorithm is as follows.

1. Compute the polar decomposition [31] Y = WZ by the method in [33–35]. Here W is a unitary
matrix and Z is a symmetric nonnegative definite matrix.

2. Project Z into the 2-norm ball, i.e., compute Pτ (Z) := argmin‖X‖2≤τ ‖X−Z‖F , by a matrix Newton
iteration.

3. Then Dτ (Y ) = Y −WPτ (Z).

There are only matrix inversions and additions are involved in our proposed iterations. Both these
operations can be done by basic linear algebra subroutine (BLAS), which are highly optimized on computers
to achieve the best performance. Furthermore, we will show that the iterations involved in our algorithm
all converge quadratically. Therefore, the proposed algorithm is efficient in finding Dτ (Y ). Numerical
experiments shows that our algorithm is generally a few times faster than the algorithm via the full SVD.

We remark that, for matrix completion, there are some algorithms available that do not use the ex-
pensive SVDs. These algorithms usually use non-convex formulations instead of the convex nuclear norm
minimization (2), and they can be fast and have comparable recoverability to those based on nuclear norm
minimization in practice; see, e.g., [6, 21, 42, 56, 71].

The rest of the paper is organized as follows. In Section 2, we give the proposed algorithm. We first
describe our algorithm for scalars in order to see the idea clearly, and the matrix version is a natural extension
of the scalar case. Numerical experiments are shown in Section 3. Then, finally, we conclude our paper in
Section 4 and give some discussions on possible extensions of our algorithm.

2 Algorithms

In this section, we propose our algorithm for finding Dτ (Y ). Instead of computing Dτ (Y ) directly, we
compute the projection of Y into the 2-norm balls in the matrix space. This procedure can be seen as
the solution to the dual problem of (6). Then, by using relations between primal and dual variables, we
can easily recover Dτ (Y ). This is done in Section 2.1. Then, we propose our algorithm for computing the
projection. For better understanding of our algorithm, we first describe our algorithm for scalars in Section
2.2, and then the scalar iteration is naturally extended to the matrix iteration for the projection in Section
2.3.

2.1 Primal-dual reformulation of D
τ
(Y )

We do not compute Dτ (Y ) directly. Instead, we compute the projection Pτ (Y ) of Y into the 2-norm ball,
i.e.,

Pτ (Y ) = arg min
‖X‖2≤τ

‖X − Y ‖F , (7)
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where ‖ · ‖2 is the 2-norm (the maximum singular value) of a matrix. Since the 2-norm and the Frobenius
norm involved in (7) are all invariant under any unitary transformation, there is an explicit expression of
Pτ (Y ) as follows

Pτ (Y ) = U







min(σ1, τ)
. . .

min(σs, τ)






V T . (8)

In views of (1) and (8), we have the following relation between Dτ (Y ) and Pτ (Y )

Y = Dτ (Y ) + Pτ (Y ). (9)

Therefore, if we can find Pτ (Y ), then Dτ (Y ) can be obtained by (9). In other words, the problem of finding
the SVT Dτ (Y ) is transferred to the problem of finding the projection Pτ (Y ).

Note that (7) is the dual problem of (6) and (9) is the relation between the primal and dual variables.
Let us derive all these from the primal-dual perspective. Recall that ‖ · ‖∗ and ‖ · ‖2 are the 1-norm and the
∞-norm of the vector of singular values. Similar to the vector 1-norm and ∞-norm which are dual to each
other, ‖ · ‖∗ and ‖ · ‖2 are dual to each other under the inner product in matrix space. In particular, we can
write the nuclear norm into an equivalent form

‖X‖∗ = max
‖Z‖2≤1

〈X,Z〉, (10)

where 〈X,Z〉 := trace(XTZ) is the inner product in the Hilbert space of matrices. By (6), Dτ (Y ) is a
solution of minX

1

2
‖Y − X‖2F + τ‖X‖∗. Substituting (10) into this equation, we have that Dτ (Y ) is a

solution of the primal problem

min
X∈Rm×n

(

max
‖Z‖2≤1

1

2
‖Y −X‖2F + τ〈X,Z〉

)

. (11)

The dual problem is obtained by interchanging the min-max

max
‖Z‖2≤1

(

min
X∈Rm×n

1

2
‖Y −X‖2F + τ〈X,Z〉

)

, (12)

which is equivalent to

max
‖Z‖2≤1

−1

2
‖Y − τZ‖2F .

It is obvious that 1

τPτ (Y ) is a solution of the dual problem. The relation between the solutions of the
primal and dual problems is obtained by solving either the inner maximization problem in (11) or the inner
minimization problem in (12). This is exactly (9).

In summary, instead of solving the primal problem (6) directly, we first solve its dual problem (7) and
then use the primal-dual relation (9) to get the SVT Dτ (Y ). This strategy was also used in [18] for the
Rudin-Osher-Fatemi model [61] in total variation based image denoising. There are more general theory
for the decomposition (9). Indeed, Dτ (Y ) is also known as the Moreau-Yosida proximal operator [36] of
the nuclear norm, and (9) is the Moreau’s decomposition of Y with respect to the nuclear norm and its
conjugate.

2.2 Algorithm for scalars

Now we present our algorithm for finding Pτ (Y ). To see our idea more clearly, we start from the simplest
case when n = m = 1, i.e., matrices are scalars. In this case, the problem of finding Pτ (Y ) becomes: given
a number y, we want to find

Pτ (y) = sign(y) ·min{|y|, τ}. (13)

Since our final algorithm is for matrices where only addition, multiplication, and inversion are available,
only those operations are allowed in our algorithm for scalars. We deal with the two factors sign(y) and
min{|y|, τ} in (13) separately. Namely, our algorithm is divided into two steps as follows.
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1. Find w := sign(y) and z := |y|.

2. Find p := Pτ (z) = min{z, τ} and set Pτ (y) = w · p.

Both these two steps are derived from Newton’s method for solving quadratic equations. We assume that
y 6= 0.

For the first step, notice that w takes the value either −1 or 1 which are one solution of the equation
w2 = 1. Applying Newton’s method to solving w2 = 1 yields

wk+1 =
1

2
(wk + w−1

k ). (14)

We have to find a proper initial guess w0 so that wk converges to the correct sign of y. The following lemma
ensures that (14) with w0 = y always converges to the correct solution and the convergence rate is quadratic.

Lemma 1 Assume that y 6= 0. Let w = sign(y) and w0 = y. Then, wk generated by (14) is well-defined

and satisfies

|wk+1 − w| ≤ min

{

1

2
|wk − w|2, 1

2
|wk − w|

}

.

Proof. We show the lemma by two cases, namely, y > 0 and y < 0. If y > 0, then w = 1. Since w0 = y 6= 0,

w1 is well-defined and w1 = 1

2
(w0 + w−1

0 ) ≥ 1

2
(2
√

·w0 · w−1
0 ) = 1. Therefore, w1 6= 0. Consequently, w2 is

well-defined, w2 ≥ 1, and w2 6= 0. Repeating this argument, we conclude that wk is well-defined and wk ≥ 1
for all k. Moreover, by (14),

|wk+1 − 1| =
∣

∣

∣

∣

1

2
(wk + w−1

k )− 1

∣

∣

∣

∣

=
1

|2wk|
|wk − 1|2 ≤ 1

2
|wk − 1|2,

and

|wk+1 − 1| = 1

|2wk|
|wk − 1|2 = 1

2
(1− 1

wk
)|wk − 1| ≤ 1

2
|wk − 1|.

The case of y < 0 is proved analogously.

In the second step, we want to find p = min{z, τ}. We notice that p must be a solution of the following
quadratic equation

(p− z)(p− τ) = 0.

Again, we use Newton’s iteration to solve the above equation and obtain the following iteration:

pk+1 =
p2k − τz

2pk − z − τ
. (15)

With the initial guess p0 = 0, we can show that pk always converges to the desired solution p = min{z, τ}.
Moreover, the convergence rate is quadratic if z 6= τ and linear if z = τ . The results are summarized in the
next lemma.

Lemma 2 Let z = |y| and p = min{z, τ}. Set p0 = 0. Then, pk generated by (15) is well-defined and

satisfies

• When z 6= τ :

|pk+1 − p| ≤ min

{

1

|τ − z| |pk − p|2, 1
2
|pk − p|

}

, (16)

• When z = τ :

|pk+1 − p| ≤ 1

2
|pk − p|. (17)
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Proof. We first prove by induction that 0 ≤ pk < p for all k, and therefore, 2pk − τ − z < 0 and pk+1 is well
defined. For this purpose, it is obvious that 0 ≤ p0 < p. Assume that pk ∈ [0, p). Now we show pk+1 ∈ [0, p).
Since pk ∈ [0, p), both the denominator and the nominator in (15) are negative. So pk+1 ≥ 0. The upper
bound of pk+1 is derived as follows. If z > τ , then p = τ and, therefore,

pk+1 − p =
p2k − τz

2pk − z − τ
− τ =

(pk − τ)2

2pk − z − τ
=

(pk − p)2

2pk − z − τ
< 0. (18)

If z < τ , then p = z and, therefore,

pk+1 − p =
p2k − τz

2pk − z − τ
− z =

(pk − z)2

2pk − z − τ
=

(pk − p)2

2pk − z − τ
< 0. (19)

Consequently, pk+1 < p and pk+1 ∈ [0, p).
It remains to show (16) and (17). By (18) and (19), we have

|pk+1 − p| = −1

2pk − z − τ
|pk − p|2 ≤ −1

2p− z − τ
|pk − p|2 =

1

|z − τ | |pk − p|2

and

|pk+1 − p| = 1

2

pk − p

pk − (z + τ)/2
|pk − p| ≤ 1

2
|pk − p|.

2.3 Algorithm for matrices

Now we derive our algorithm for finding Pτ (Y ). The algorithm for matrices is more complicated than that
for scalars. But the outline is the same. Similarly, our algorithm is divided into two steps. In the first
step, we factorize the matrix Y into the product of its “signum” and “absolute value”; then, in the second
step, we project the “absolute value” onto the 2-norm ball. The matrix correspondence of the “signum” and
“absolute value” factorization is called the polar decomposition [31,33]. It factorizes a given matrix into the
product of a unitary matrix, which is the “signum”, and a symmetric nonnegative definite matrix, which is
the “absolute value”. More precisely, for the matrix Y , we factorize it into

Y = WZ, where W is unitary, Z is symmetric nonnegative definite. (20)

With the polar decomposition, now we transfer the problem of finding Pτ (Y ) defined in (7) to a problem of
finding the projection of Z onto the 2-norm ball. Since all the norms involved in (7) are unitary invariant,
(7) is equivalent to

Pτ (Y ) = W ·
(

arg min
‖X‖2≤τ

‖Z −X‖2F
)

= W · Pτ (Z), where Y = WZ. (21)

Therefore, finding Pτ (Y ) is identical to finding W · Pτ (Z). We use the relation (9) to get the SVT Dτ (Y ).
We write the outline of our algorithm for the SVT Dτ (Y ) as follows. The details of the two subroutines are
discussed in the following two subsections.

Algorithm 1: Algorithm for SVT without SVD.
Input: Y

Output: Dτ (Y )
(1) Compute the polar decomposition Y = WZ defined in (20).
(2) Compute the projection Pτ (Z) = argmin‖X‖2≤τ ‖Z −X‖F .
(3) Set Dτ (Y ) = Y −WPτ (Z).

7



2.3.1 Computing the Polar Decomposition

In this subsection, we give the algorithm to compute the polar decomposition (20). The algorithm is
from [33, 34]. The polar decomposition has an explicit expression. Let Y = UΣV T be the SVD of Y .
Then, Y = WZ, where W = UV T ∈ R

m×n and Z = V ΣV T ∈ R
n×n, is the polar decomposition of Y .

We temporarily assume that the matrix Y is nonsingular and square. We use an iteration which is a
natural extension of (14) to compute the polar decomposition of Y . The iteration is

Wk+1 =
1

2

(

Wk +W−T
k

)

, k = 0, 1, . . . , W0 = Y , (22)

where W−T
k stands for the inverse and transpose ofWk. This algorithm is essentially the algorithm proposed

in [33, 34]. It was also shown there that the iteration always converges quadratically to the polar factor.
Here we give a very brief proof of the theorem for completeness.

Theorem 1 Assume that Y is square and nonsingular. Let W be the polar factor of Y in (20). Then Wk

generated by (22) is well-defined and satisfies

‖Wk+1 −W ‖2 ≤ min

{

1

2
‖Wk −W ‖22,

1

2
‖Wk −W ‖2

}

.

Proof. Let Y = UΣV T be the SVD of Y . Then W0 = UΣV T has the left singular vectors U and the
right singular vectors V . Consequently, W1 = 1

2
(W0 + W−T

0 ) = U(1
2
(Σ +Σ−1))V T . Therefore, W1 has

the same singular vectors as Y . Repeating this argument, we find that Wk for any k has the same left and
right singular vectors as Y . As a result, (22) changes only the singular values which are governed by (14).
The lemma follows immediately from Lemma 1.

In order to further accelerate the convergence of (22), the matrix is scaled in each iteration, as done
in [33,34]. When the matrix Y is singular or rectangular, the iteration (22) is not available since W0 = Y is
not invertible. Following [33], we reduce Y to a nonsingular square matrix by using a complete orthogonal
decomposition (COD). More specifically, given an arbitrary matrix Y ∈ R

m×n, we can decompose it into

Y = O

[

R 0

0 0

]

QT , (23)

where O ∈ R
m×m and Q ∈ R

n×n are orthogonal matrices, and R ∈ R
s×s is an invertible upper triangular

matrix. The COD can be done by, e.g., the QR decomposition; see [34] for details. Once we obtain R,

we have Dτ (Y ) = Y − O

[

Pτ (R) 0

0 0

]

QT . Therefore, we only need to find the projection Pτ (R) for a

nonsingular square matrix. So, we apply the iteration (22) by replacing Y by R. Of course, in addition to
that, we need to change Step 3 in Algorithm 1 accordingly in order to get Dτ (Y ). We omit the details here.
The final algorithm to compute the polar decomposition is described in Algorithm 2.

Algorithm 2: Algorithm for the polar decomposition Y = WZ [33, 34].
Input: Matrix Y

Output: the polar factor W , the symmetric nonnegative matrix Z

(1) If necessary, compute COD of Y in (23) and set W0 = R; otherwise, set W0 = Y .
(2) for k = 0 to maximum number of iteration
(3) Compute W−T

k

(4) Set γk =
(

‖W−1

k
‖1‖W

−1

k
‖∞

‖Wk‖1‖Wk‖∞

)1/4

(5) Set Wk+1 = 1

2
(γkWk + γ−1

k W−T
k )

(6) if ‖Wk+1 −Wk‖F ≤ ǫ‖Y ‖F
(7) return W = Wk+1 and Z = W TY
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2.3.2 Computing the projection Pτ (Z)

To find Pτ (Z) = argmin‖X‖2≤τ ‖Z −X‖F , we extend (15) to the matrix case. The iteration is

Pk+1 = (2Pk −Z − τI)−1(P 2
k − τZ), k = 0, 1, 2, . . . , P0 = 0. (24)

Similar to the scalar case, the iteration (24) always converges to Pτ (Z). Furthermore, when Z − τI is
invertible, the convergence rate is quadratic; while when Z − τI is not invertible, the convergence rate is
linear. We summarize the results in the following theorem and give an outline of the proof.

Theorem 2 Let Y = WZ be the polar decomposition and P = Pτ (Z). Then Pk generated by (24) is well

defined and satisfies

• When Z − τI is invertible:

‖Pk+1 − P ‖2 ≤ min

{

‖(Z − τI)−1‖2 · ‖Pk − P ‖22,
1

2
‖Pk − P ‖2

}

,

• When Z − τI is not invertible:

‖Pk+1 − P ‖2 ≤ 1

2
‖Pk − P ‖2.

Proof. Since Y = WZ is the polar decomposition of Y , the matrix Z is a symmetric nonnegative definite
matrix. Let Z = Ṽ Σ̃Ṽ T be the eigen-decomposition of Z. Then, Σ̃ is a diagonal matrix with nonnegative
diagonals. So, Y = (WṼ )Σ̃Ṽ T is an SVD of Y . This implies that the eigenvalues of Z are the singular
values of Y , and the eigenvectors are the right singular values of Y . Recall that the SVD of Y is Y = UΣV T .
In order to save notations, we write Z = V ΣV T .

By induction on (24), one can easily see that Pk for any k is a symmetric matrix whose eigenvalues are
the same as Z. Therefore, in (24), we keep the eigenvectors and change only the eigenvalues of Pk as k
varies. Moreover, the changing of the eigenvalues is governed by (15). The theorem follows immediately
from this observation.

The above theorem indicates that the iteration converges very fast to Pτ (Z) due to the quadratic con-
vergence rate. In the following, we discuss several issues to further accelerate the convergence, to reduce the
computational cost per iteration, and to enhance the numerical stability.

First of all, in each iteration of (24), we need one matrix-matrix product P 2
k and one inversion (2Pk−Z−

τI)−1, which both are computed in O(n3) operations. The remaining operations are matrix additions and
subtractions, whose computational costs are only O(n2). Therefore, the main computations of (24) are the
matrix-matrix product and the inversion. By carefully checking the iteration, we find that the matrix-matrix
product is not necessary in each iteration. In fact, we can rewrite the iteration in (24) into an equivalent
formulation

Pk+1 =
1

2
Pk +

1

4
Z +

3

4
I − (2Pk −Z − τI)−1(Pk −

1

4
Z2 − 3

4
I). (25)

In the above formulation, the only matrix-matrix product Z2 is a constant during the whole iteration and
we only need to compute it once at the beginning of the iteration. Therefore, the inversion (2Pk−Z−τI)−1

is the only O(n3) operation that needs to be computed in each step. By this trick, the computational cost
is reduced significantly compared to (24).

Secondly, notice that all matrices involved in the iteration (25) are symmetric. We can take this advantage
to further reduce the computational cost per step. More specifically, since the matrices (2Pk − Z − τI)−1

and Pk − 1

4
Z2 − 3

4
I are all symmetric and have the same eigenvectors as shown in the proof of Theorem 2,

their product (2Pk −Z − τI)−1(Pk − 1

4
Z2 − 3

4
I) shares the same eigenvectors with them and, therefore, is

symmetric. This, in turn, implies that only half of the entries are required to be computed in the inversion.
This helps us further reduce half of the computational cost per iteration.

Finally, we use a “deflation” technique [62] to accelerate the convergence of (24) (or equivalently (25))
and enhance its numerical stability. As shown in Theorem 2, the convergence speed of (24) depends on
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‖(Z − τI)−1‖2, i.e., the reciprocal of the gap between the threshold τ and the singular values of Y . The
smaller the gap is, the slower the algorithm converges. In the extreme case where τ is a singular value
of Y , the convergence rate degenerate from quadratic to linear as stated in Theorem 2. In order to get a
faster convergence speed of (24), we need to enlarge the gap between the threshold and the singular values.
Another reason that we have to enlarge this gap is for the numerical stability. As seen in (24), we need to
invert the matrix 2Pk − Z − τI in each iteration. Recall that Pk converges to P , whose eigenvalues are
2p(σi) − σi − τ . If the gap between the threshold and the singular values is very small, then there exists
an i such that p(σi), σi and τ are very close to each others. Therefore, the matrix 2Pk − Z − τI becomes
more and more close to the singular as the iteration goes on. As a result, the error contained in P 2

k − τZ
is amplified by the inversion of 2Pk − Z − τI. This, in turn, makes the computation of Pk+1 numerically
unstable when it is close to P . Therefore, for a faster convergence and a more stable numerical scheme, we
require that the gap between the threshold τ and the singular values of Y is not small.

In order to enlarge the gap between the threshold and the singular values, here we use a technique similar
to the deflation in eigenvalue computations. The idea is to remove those singular values around the threshold
τ . From the definition of Pτ (Z), we see that Pτ (Z) is separable according to its eigenvectors. More precisely,
Pτ (Z) has the following property. Let the eigen decomposition of Z be V ΣV T , and we partition V into
V = [V1 V2] and Σ into Σ = diag(Σ1,Σ2). So we have

Z = V1Σ1V
T
1 + V2Σ2V

T
2 . (26)

With this decomposition, we have

Pτ (Z) = Pτ (V1Σ1V
T
1 ) + Pτ (V2Σ2V

T
2 ). (27)

Based on this property, our deflation technique is as follows. Once we obtained the matrix “absolute value”
Z, we computes its eigenvalues around the threshold τ and their corresponding eigenvectors, and denote
the eigenvalues be the diagonals of Σ1 and the eigenvectors be V1. Then, we can write Z into (26), where
Σ2 and V2 are the eigenvalues far away from the threshold τ and there associated eigenvectors. According
to (27), we can compute the projection of these two parts separately. The computation of Pτ (V1Σ1V

T
1 ) is

straightforward. In order to get Pτ (V2Σ2V
T
2 ), we use the iterative algorithm (25). Since Σ2 contains only

eigenvalues which are far from the threshold, the iteration converges quadratically which is very rapid due
to Theorem 2. Moreover, the iteration is numerically more stable since the matrices to be inverted is well
conditioned.

Combining all together, the algorithm for computing Pτ (Z) is summarized in the following algorithm.

Algorithm 3: Algorithm for computing Pτ (Z)

Input: a symmetric nonnegative definite matrix Z, a positive number δ
Output: the projection P = Pτ (Z)
(1) Compute the eigenvalues Σ1 of Z in the interval [τ(1−δ), τ(1+δ)], and their associated eigenvectors

V1.
(2) Set Z := Z − V1Σ1V

T
1 , and Pk = 0.

(3) for k = 0 to maximum number of iterations
(4) Compute Pk+1 = 1

2
Pk +

1

4
Z + 3

4
I − (2Pk −Z − τI)−1(Pk − 1

4
Z2 − 3

4
I)

(5) if ‖Pk+1 − Pk‖F ≤ ǫ‖Z‖F
(6) return P = Pk+1 + V1Pτ (Σ1)V

T
1

3 Numerical Experiments

In this section, we give some numerical results to show that our proposed algorithm is very efficient to
compute Dτ (Y ) when Y is dense and the full SVD is required. The algorithm is implemented in matlab
using mex programming. The full SVD for comparison is computed by the matlab build-in function “svd”.
The computer is with an Intel Core i5 CPU at 2.50GHz (4 cores) and 6.00GB of memory, and the matlab
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Figure 1: Distribution of singular values of a 500× 500 Gaussian random matrix
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Table 1: Computational results for nonsingular square matrices. All results are averages of 10 runs.

Our algorithm (Alg. 1) Full SVD
n # iter’s in Alg. 2 # eig’s removed # iter’s in Alg. 3 total time (s) total time (s)
500 7 9.5 9 0.310 0.677
1000 7 18.8 9 2.02 10.4
1500 7 27.2 9 6.45 37.1
2000 7 37.2 9 14.9 91.0
2500 7 46.1 9 26.4 181
3000 7 55.4 9 47.3 337

version is 7.6.0(R2008a). Our numerical examples show that our proposed algorithm is generally a few times
faster than SVT via the full SVD for general dense matrices.

First, we test our algorithm for square matrices. The test matrices are random Gaussian matrices, whose
entries are randomly drawn from the standard Gaussian distribution. As predicted by Theorem 2, the
computational speed of our algorithm depends on the distribution of singular values, in particular, on the
gap between the threshold τ and the singular values. Therefore, we plot the singular values of test matrices
and the threshold τ in Figure 1. We choose τ =

√
n/2. We see that there is no obvious gap between τ and

the singular values, so the SVT for Gaussian random matrices are not trivial examples for our algorithm
to solve. Even though, our algorithm still performs very well. In Table 1, we list the number of iterations
required for both the two steps in Algorithm 1, where we stop the iterations whenever the relative change
of two successive steps is less than 10−6. We remark that, though 10−6 is used in the stopping criteria,
the relative error between the final result and Pτ (Y ) is of precision of order 10−10 for the tested examples.
From Table 1, we see that both steps of our algorithm converges very fast: they need only 7 and 9 iterations
respectively to converge, and the number of iterations keeps constant as the matrix size increases. The
numbers of eigen pairs removed in the deflation step, where δ = 0.03, in Algorithm 3 are also listed in Table
1. To compare our algorithm with the method via the full SVD, we report in Table 1 the computational time
of both these two algorithms. We see that our algorithm is generally a few times faster than the method via
the full SVD. For example, when n = 2000, the computational time for our algorithm is 47.3 seconds, and
that for SVT via the full SVD is 337 seconds.

Next, we test our algorithm for rectangular and singular matrices respectively. The results are shown
in Table 2. We use rectangular Gaussian random matrices as test rectangular matrices, and we choose
τ =

√

max{m,n}/2. For singular test matrices, we generate them by Y = MLMR, where ML and MR are
Gaussian random matrices of size n × r and r × n respectively. We choose r = 0.9n and τ = n/2. Due to
the distribution of singular values of Gaussian random matrices, these test problems are not trivial examples
for our algorithm to solve as well. From Table 2, we see again that our algorithm takes a small number of
iterations to converge and is much faster than the method via the full SVD.

Finally, we use one example to illustrate that our algorithm can accelerate low-rank matrix reconstruc-
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Table 2: Computational results for rectangular and singular matrices. All results are averages of 10 runs.

Our algorithm (Alg. 1) Full SVD
size # iter’s in Alg. 2 # eig’s removed # iter’s in Alg. 3 total time (s) total time (s)

1000× 500 5 12.4 9 0.338 0.925
2000× 1000 5 25 9 2.39 13.7
3000× 1500 5 37.9 9 7.54 49.7
1000× 1000 7 15.9 9 1.70 7.88
2000× 2000 7 32 9 12.6 71.1
3000× 3000 7 44.7 9 39.7 288

Table 3: Computational results of matrix completion using (5) with different SVT subroutines.

Unknown Matrix Alg. 1 + PROPACK Full SVD + PROPACK
sample # Alg. 1 # PROPACK # full SVD # PROPACKn rank
ratio time (s) called called time (s) called called

500 25 4.7 4 39 5.7 2 41
1000 50 24.6 4 39 44.8 2 41
1500 75 70.8 4 39 144 2 41
2000 100 0.39 146 4 39 340 2 41
2500 125 278 4 39 712 2 41
3000 150 447 4 39 1181 2 41

tion algorithms. In particular, we show that Algorithm 1 can improve the computational speed of matrix
completion via the inexact augmented Lagrangian method (5). We generate the n× n underlying low-rank
matrix by M = MLMR where ML ∈ R

n×r and MR ∈ R
r×n with r = 0.05n are Gaussian random matrices.

Then we use (5) to reconstruct M from its randomly sampled entries (the sample ratio is 39% which is 4
times of the degree of freedoms). We choose µk = 5/n in (5). Since Algorithm 1 is developed for accelerating
SVT only when full SVD is necessary, it is called only when the rank of Dτ (Y ) is great enough. When the
rank of Dτ (Y ) is small, we use partial SVD package PROPACK [49], as done in, e.g., [7, 50]. According to
our test, when the rank of Dτ (Y ) is greater than 0.1n, Algorithm 1 is faster than PROPACK. Therefore, we
use Algorithm 1 to compute Dτ (Y ) if its rank is larger than 0.1n, and PROPACK otherwise. The results are
reported in Table 3 and referred to “Algorithm 1 + PROPACK”. To see the performance improvement by
Algorithm 1, we compare the results of “Algorithm 1 + PROPACK” with “full SVD + PROPACK”, where
the SVT is done by either matlab build-in function “svd” or PROPACK, whichever is faster. According to
our experiments, matlab build-in function “svd” is faster than PROPACK when more than 0.25n leading
singular values/vectores are computed. Therefore, matlab build-in function “svd” is used if the rank of
Dτ (Y ) exceeds 0.25n and PROPACK otherwise in “full SVD + PROPACK”. From Table 3, we see that
“Algorithm 1 + PROPACK” uses much less computational time than “full SVD + PROPACK”. In other
words, Algorithm 1 does accelerate the computational speed of low-rank matrix reconstruction algorithms.

4 Conclusion and Discussion

In this paper, we proposed an algorithm to compute the singular value thresholding (SVT) for a given dense
matrix. The algorithm is in two steps, namely, the polar decomposition step and the projection step, and
both steps are done by matrix Newton iteration. Numerical experiments show that our algorithm is much
faster than the method via the full singular value decomposition (SVD). Our algorithm is generally a few
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times faster than the method via the full SVD.
For the future research, we may develop fast algorithms for Dτ (Y ) when Y is structured (e.g. sparse)

and/or partial SVDs are more efficient than the full SVD. One possible way is to use the Krylov subspace
method. More precisely, we can first project the matrix Y into the Krylov subspace via the Lanczos
bidiagonalization procedure to get Y ≈ SBT T , where S and T are “tall” and “thin” orthonormal matrices
and B is a bidiagonal matrix; then we apply the algorithm in this paper to compute Dτ (B); finally we
have Dτ (Y ) ≈ SDτ (B)T T . The difficulty is how to determine the dimension of the Krylov subspace. If the
dimension is too high, the computational speed will be slow, and if the dimension is too low, the approximate
precision will be not good.

References

[1] O. Alter, P. Brown, and D. Botstein, Singular value decomposition for genome-wide expression

data processing and modeling, Proceedings of the National Academy of Sciences, 97 (2000), pp. 10101–
10106.

[2] A. Argyriou, T. Evgeniou, and M. Pontil, Convex multi-task feature learning, Machine Learning,
73 (2008), pp. 243–272.

[3] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse prob-

lems, SIAM Journal on Imaging Sciences, 2 (2009), pp. 183–202.

[4] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.

[5] C. Bishop et al., Pattern recognition and machine learning, vol. 4, Springer New York, 2006.

[6] N. Boumal and P. Absil, Rtrmc: A riemannian trust-region method for low-rank matrix completion,
Advances in Neural Information Processing Systems, 24 (2011), pp. 406–414.

[7] J.-F. Cai, E. J. Candès, and Z. Shen, A singular value thresholding algorithm for matrix completion,
SIAM J. Optimiz., 20 (2010), pp. 1956–1982.

[8] J.-f. Cai, M. K. Ng, and Y.-m. Wei, Modified Newton’s algorithm for computing the group inverses

of singular Toeplitz matrices, J. Comput. Math., 24 (2006), pp. 647–656.

[9] J.-F. Cai, S. Osher, and Z. Shen, Convergence of the linearized Bregman iteration for ℓ1-norm
minimization, Math. Comp., 78 (2009), pp. 2127–2136.

[10] J.-F. Cai, S. Osher, and Z. Shen, Linearized Bregman iterations for compressed sensing, Math.
Comp., 78 (2009), pp. 1515–1536.

[11] J.-F. Cai, S. Osher, and Z. Shen, Split Bregman methods and frame based image restoration, Mul-
tiscale Modeling & Simulation, 8 (2009), pp. 337–369.

[12] E. Candes, X. Li, Y. Ma, and J. Wright, Robust principal component analysis?, Journal of ACM,
(2011), pp. 1–37.

[13] E. Candes and Y. Plan, Matrix completion with noise, Proceedings of the IEEE, (2009).

[14] E. Candes and B. Recht, Exact matrix completion via convex optimization, Foundations of Compu-
tational Mathematics, 9 (2009), pp. 717–772.

[15] E. Candès and T. Tao, The power of convex relaxation: Near-optimal matrix completion, IEEE
Transactions on Information Theory, 56 (2010), pp. 2053–2080.

[16] E. J. Candès and J. Romberg, Quantitative robust uncertainty principles and optimally sparse

decompositions, Found. Comput. Math., 6 (2006), pp. 227–254.

13



[17] E. J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: exact signal reconstruction

from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489–509.

[18] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging
Vision, 20 (2004), pp. 89–97. Special issue on mathematics and image analysis.

[19] P. Chen and D. Suter, Recovering the missing components in a large noisy low-rank matrix: Appli-

cation to SFM, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004), pp. 1051–1063.

[20] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale
Model. Simul., 4 (2005), pp. 1168–1200 (electronic).

[21] W. Dai, E. Kerman, and O. Milenkovic, A geometric approach to low-rank matrix completion,
IEEE Transactions on Information Theory, 58 (2012), pp. 237–247.

[22] A. d’Aspremont, L. El Ghaoui, M. Jordan, and G. Lanckriet, A direct formulation for sparse

pca using semidefinite programming, SIAM review, 49 (2007), pp. 434–448.

[23] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for linear inverse

problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), pp. 1413–1457.

[24] C. Ding and X. He, K-means clustering via principal component analysis, in Proceedings of the
twenty-first International Conference on Machine Learning, ACM, 2004, p. 29.

[25] D. L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inform. Theory, 41 (1995), pp. 613–627.

[26] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306.

[27] M. Fazel, H. Hindi, and S. Boyd, A rank minimization heuristic with application to minimum order

system approximation, in American Control Conference, 2001. Proceedings of the 2001, vol. 6, IEEE,
2001, pp. 4734–4739.

[28] M. Fazel, H. Hindi, and S. Boyd, Log-det heuristic for matrix rank minimization with applications

to hankel and euclidean distance matrices, in American Control Conference, 2003. Proceedings of the
2003, vol. 3, 2003.

[29] H. Gao, J.-F. Cai, Z. Shen, and H. Zhao, Robust principle component analysis based four-

dimensional computed tomography, Physics in Medicine and Biology, 56 (2011), pp. 3181–3198.

[30] T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems, SIAM Journal
on Imaging Sciences, 2 (2009), pp. 323–343.

[31] G. H. Golub and C. F. Van Loan, Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Johns Hopkins University Press, Baltimore, MD, third ed., 1996.

[32] E. Hale, W. Yin, and Y. Zhang, Fixed-point continuation for ℓ1-minimization: Methodology and

convergence, SIAM Journal on Optimization, 19 (2008), pp. 1107–1130.

[33] N. Higham, Computing the polar decomposition – with applications, SIAM J. Sci. Stat. Comput., 7
(1986), pp. 1160–1174.

[34] N. Higham and R. Schreiber, Fast polar decomposition of an arbitrary matrix, SIAM J. Sci. Stat.
Comput., 11 (1990), pp. 648–655.

[35] N. J. Higham, Functions of matrices, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2008. Theory and computation.

14
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