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DATA RECOVERY ON A MANIFOLD FROM LINEAR SAMPLES:
THEORY AND COMPUTATION

JIAN-FENG CAI, YI RONG, YANG WANG, AND ZHIQIANG XU

Abstract. Data recovery on a manifold is an important problem in many appli-
cations. Many such problems, e.g. compressive sensing, involve solving a system
of linear equations knowing that the unknowns lie on a known manifold. The aim
of this paper is to survey theoretical results and numerical algorithms about the
recovery of signals lying on a manifold from linear measurements. Particularly, we
focus on the case where signals lying on an algebraic variety. We first introduce
the tools from algebraic geometry which plays an important role in studying the
minimal measurement number and also show its applications. We finally introduce
the numerical algorithms for solving it.

1. Introduction

Solving systems of linear equations Ax = b is ubiquitous in all areas of science and

engineering. This problem has been well studied even before Gauss introduced the

Gaussian elimination method. Thus one may even wonder whether there is anything

we don’t already know about solving a system of linear equations.

Traditional systems of linear equations typically assume that the number of equa-

tions is no less than the number of unknowns. Failing it we have an under-determined

system of linear equations where the solution will not be unique. Solving an under-

determined system would require additional regularization. However, in recent years

there has been an explosion in the study of compressive sensing where under the

condition of sparsity one may solve a significantly under-determined system of linear

equations, see e.g. [1, 2, 3] among the vast literature.
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It turns out that there is a more general framework in which an under-determined

system of linear equations can be solved, namely we know a priori that the solution

to the system lies on certain subset of the Euclidean space. For example, often the

solution may lie on a lower dimensional manifold. There are many applications under

this general framework, and here we list some of the best known ones.

Example 1: Phase Retrieval. The classical phase retrieval problem concerns

the reconstruction of a function (typically the density or structure function of cer-

tain material) from the magnitude of its Fourier transform (X-ray diffraction). In

recent years this problem has been broadened to encompass all problems involving

the recovery of a function or signal from the magnitude of its samples (usually linear

samples). Such problems arise in many important applications in imaging, optics,

communication, audio signal processing and more [4, 5, 6, 7, 8, 9, 10].

The precise statement of the phase retrieval problem in this setting is:

The Phase Retrieval Problem. Let {fj}Nj=1 be a set of vectors in Fd, where F = C
or R. Can we reconstruct any x ∈ Fd up to a unimodular scalar from {|〈x, fj〉|2}, and

if so, how?

We say that {fj}Nj=1 in Fd have the phase retrieval property, or are phase retrievable,

if any x ∈ Fd can be recovered up to a unimodular scalar from {|〈x, fj〉|2}.

Note that in phase retrieval one cannot distinguish x from cx, where c is a uni-

modular constant in F. This ambiguity can be removed by re-formulating the phase

retrieval problem as recovering the rank one Hermitian matrix X = xx∗ ∈ Fd×d.
Given the magnitude measurements |〈x, fj〉|2 = bj, j = 1, . . . , N , set Fj = fjf

∗
j . Then

we have

(1.1) bj = |〈x, fj〉|2 = x∗fjf
∗
j x = tr(x∗Fjx) = tr(FjX), j = 1, . . . , N.

Thus the phase retrieval problem is an example of a system of linear equations L(X) =

b where X ∈ Fd×d is a rank one Hermitian matrix.

A more general version of the phase retrieval problem is to recover a vector x ∈ Fd

from a finite number of quadratic measurements {x∗Ajx}Nj=1 where each Aj is a

Hermitian matrix in Fd×d. Again, we say a set of Hermitian matrices {Aj}Nj=1 in Fd×d
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have the phase retireval property if any x ∈ Fd can be recovered up to a unimodular

scalar from the quadratic measurements {x∗Ajx}Nj=1. This generalized version is

studied in [11], and in special cases such as for orthogonal projection matrices {Aj}Nj=1

in other papers [8, 10, 12]. Let bj = x∗Ajx and X = xx∗. Then we have similarly

(1.2) bj = x∗Ajx = tr(x∗Ajx) = tr(AjX), j = 1, . . . , N.

Like the original phase retrieval problem, the generalized phase retrieval problem also

solves a system of linear equations where the unknown X is a rank one Hermitian

matrix.

Example 2: Low Rank Matrix Recovery. The matrix recovery problem is

an active topic recently. The general formulation of the problem is that there is

a X ∈ Fp×q where F = R or C and we are given some measurements (also called

samples) of X. We would like to recover the matrix X from those measurements or

samples. Matrix recovery is widely used in image processing, system identification and

control, Euclidean embedding, and recommender systems (see [15, 16, 17]). We state

the problem as follows: For 1 ≤ j ≤ N let Lj : Fp×q−→F be linear functions, where

F = R or C. Suppose that for an X ∈ Fp×q with rank(X) ≤ r we are given the values

Lj(X) for 1 ≤ j ≤ N . The question is: can we recover X? This problem is another

example of solving a system of linear equations L(X) = b where X ∈ Fp×q, but with

the a priori knowledge that X is in the manifold consisting of rank r or less matrices.

Note that we can always represent the linear function Lj by Lj(X) = tr(ATj X) for

some Aj ∈ Fd×d.

Example 3: Compressive Sensing. In compressive sensing, we aim to solve a

system of linear equations Ax = b, where A ∈ FN×d and x ∈ FN ,b ∈ Fd with F = C
or R, with the knowledge that x being sparse with sparsity ‖x‖0 ≤ k � d. Here ‖x‖0

denotes the number of nonzero entries of x (the sparsity). Let

Fdk =
{

x ∈ Fd : ‖x‖0 ≤ k
}
.

Clearly Fdk is a finite union of k-dimensional subspaces in Fd. Thus compressive

sensing is equivalent to solving a system of linear equations where the solution x is

known to lie on Fdk.
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Example 4: The Projection Retrieval Problem. Assume that we have a real or

complex orthogonal projection matrix P ∈ Fd×d with rank r which means P satisfies

P ∗ = P and P 2 = P . The Projection Retrieval Problem considers the following

question: Let v1, . . . ,vN ∈ Fd be sample points where we measure ‖Pvj‖ = aj for

1 ≤ j ≤ N . Can we determine the projection matrix P from these measurements

{aj}Nj=1?

This problem is related to both phase retrieval and low rank matrix recovery (see

[13, 14]). It is also an example of solving a system of linear equations on a manifold.

Let Aj = vjv
∗
j . Note that P 2 = P and P ∗ = P from the orthogonal projection

property. We have

a2
j = ‖Pvj‖2 = v∗jP

∗Pvj = tr(v∗jPvj) = tr(FjP ) for all j.

The Projection Retrieval Problem is thus an example of solving a system of linear

equations where the unknown P lies on the set of all rank r orthogonal projections.

Example 5: The Missing Distance Problem. Consider a set of points S =

{xj}Nj=0 in Fd and let aij := ‖xi−xj‖2 for all 0 ≤ i, j ≤ N . It is well known and easy

to show that the values {aij} uniquely determine the point set S up to an Euclidean

isometry. The Missing Distance Problem asks whether S can be uniquely determined

up to an Euclidean isometry from only a subset of {aij}.

The Missing Distance Problem can also be formulated as solving a system of linear

equations on a manifold. First through a translation we can normalize the set S by

having x0 = 0. Under this normalization let

FS := [x1,x2, . . . ,xN ], and X = F ∗SFS,

i.e. FS ∈ Fd×N has xj as its j-th column. Then the missing distance problem is

equivalent to recovering the N by N matrix X from a subset of {aij}.

Now observe that aij = aji and we have

a0j = ‖xj − x0‖2 = ‖xj‖2 = xjj if j ≥ 1,

aij = ‖xi − xj‖2 = x∗ixi + x∗jxj − x∗ixj − x∗jxi

= xii + xjj − xij − xji if i, j ≥ 1.
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Thus each aij is a linear measurement of X, and the Missing Distance Problem is also

a problem of solving a system of linear equations where the unknown X ∈ FN×N is

on the manifold of positive semi-definite Hermitian matrices of rank at most d.

In this paper we examine the general problem of recovering an unknown X on a

manifold from a system of its linear measurements, from both the theoretical and

computational angle. We assume that X is in the Euclidean space Fd where F = C
or R, and it lies on a lower dimensional manifold M in Fd. A main question we ask

is whether we can recover X ∈ M from a significantly under-determined system of

linear measurements. This question, putting in the context of phase retrieval and

low rank matrix recovery, is one of the fundamental questions still being actively

studied today. Of course with enough measurements, e.g. when the system is not

under-determined in Fd, we can always recover X. So the real question is: Can we

still fully recover X ∈M with significantly reduced number of linear measurements?

The answer is yes in many cases. We may also ask a weaker question: Can we recover

X for almost all X ∈ M (but not all) with even fewer linear measurements? Both

questions have been studied for phase retrieval and matrix recovery.

Definition 1.1. Let M⊂ Fd where F = C or R. Let L : Fd−→FN be a linear map.

We say L has the M-recovery property if L is injective on M. It has the almost

everywhere M-recovery property if for almost every X ∈ M, we have L−1
(
L(X)

)
∩

M = {X}.

In other words L has theM-recovery property if anyX ∈M is uniquely determined

by L(X), and L has the almost everywhereM-recovery property if almost all X ∈M
is uniquely determined by L(X). Here the easiest way to define “almost everywhere”

and “almost all” is through the Hausdorff measure on M. But since our study only

focuses onM that are “nice” such as manifolds or algebraic varieties there should be

no ambiguity.

The theoretical part of this paper studies the following questions: Let M ⊂ Fd

where F = C or R. Let L : Fd−→FN be a linear map. How large should N be so

that L has theM-recovery property or the almost everywhereM-recovery property?

For example, there is an extensive literature in phase retrieval on choosing the mea-

surement vectors {fj} to be i.i.d. Gaussian. Here we will provide a framework for
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answering these questions. For phase retrieval and matrix completion we have devel-

oped techniques to make substantial progresses recently [21, 11, 18]. Our goal for this

paper is more appropriately described as the combination of a survey and putting

past work into a more unified framework. We also include some new results, such as

for projection retrieval. On the computational part of this paper, we present some

new techniques developed in [29, 30]. We hope that this paper will provide useful

ideas and techniques to those researchers working in these aforementioned areas.

2. The Algebraic Geometry Connection

The manifold recovery problem essentially comes down to examining the intersec-

tion of a set of hyperplanes defined by the system of linear equations with the manifold

on which the unknown data lie. This is one of the classical areas in algebraic geom-

etry, provided that the manifold in question is an algebraic variety. Fortunately this

is precisely the case in most of the applications we are interested in. For example, for

low rank matrix recovery we are studying recovery on the setM of all rank r or less

matrices

(2.1) Mp×q,r(F) :=
{
Q ∈ Fp×q : rank(Q) ≤ r

}
, F = R or C,

which is known as a determinantal variety for F = C . In our study instead of con-

sidering general manifolds, our manifolds will actually be projective varieties. Before

proceeding to the main results, we first introduce some basic notations related to

projective spaces and varieties.

An algebraic variety (affine variety) V ⊆ Cd is the locus of a finite collection of poly-

nomials in C[x]. In this paper we shall primarily consider projective varieties. They

lie in the projective space P(Cd), which is the space of all one dimensional subspaces

of Cd. Let σ : Cd \ {0}−→P(Cd) be the canonical map σ(x) = [x], where [x] ∈ P(Cd)

denotes the line through x. We shall also often consider the projectivization of a set

S ⊂ Cd \ {0}, to be [S] = σ(S). A projective variety is the projectivization of an

affine variety defined by homogeneous polynomials. But for simplicity, in this paper

we adopt a looser terminology. Whenever there is no confusion, the phrase projective

variety in Cd means an affine variety in Cd that is the locus of a finite collection of

homogeneous polynomials. We shall use a projective variety in P(Cd) to describe a
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true projective variety. A variety V is irreducible if it cannot be decomposed into

V =
⋃k
j=1 Vj where k > 1 and Vj are distinct proper subvarieties. A reducible variety

can be written as finite union of distinct irreducible subvarieties (irreducible compo-

nents). Throughout the paper, by a generic point x in an algebraic variety V we

mean x ∈ V \ Z where Z ⊂ V is a subvariety with dim(Z) < dim(V ).

A set U ⊂ Cd is a quasi-projective variety if there exist two projective varieties V

and Y with Y ⊂ V such that U = V \ Y . The concept of dimension for a quasi-

projective variety in Cd is very well defined (see [19]).

Note that a complex algebraic variety V may contain real points. We use VR to

denote the real points of V . The set VR is itself a real algebraic variety, and its

(real) dimension is well defined (see e.g. [20]). We use dimR(VR) to denote the real

dimension of VR. The following lemma is a key result in this area of study.

Lemma 2.1. [8, 11] Let V be an algebraic variety in Cd. Then dimR(VR) ≤ dim(V ).

The following theorem, which concerns the intersection of a hyperplane and a

projective variety in Cd, is well known and plays an important role in our study. Its

proof can be found in any standard textbook in algebraic geometry, see [19].

Theorem 2.2. Let V be a projective variety and P be a subspace in Cd with dim(P ) =

d − 1. Then dim(V ∩ P ) ≥ dim(V ) − 1. Furthermore, if P does not contain an

irreducible component of V then dim(V ∩ P ) = dim(V )− 1.

Note that the above theorem fails for real projective varieties. As a result, it is

often easier to prove results for data recovery on a complex projective variety. We

illustrate how the above results from algebraic geometry can be applied to give a very

simple proof to the following result for matrix recovery, which was first proved in

[21, 18]. The corresponding result does not hold for real matrix recovery.

Theorem 2.3. Assume that 1 ≤ r ≤ 1
2

min(p, q) and let A1, . . . , AN ∈ Cp×q. Define

L : Cp×q−→CN by L(X) = (tr(AT1X), . . . , tr(ATNX)).

(1) If N < 2r(p+ q)− 4r2 then L does not have the Mp×q,r(C)-recovery property.
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(2) Let N ≥ 2r(p+ q)−4r2 and {Aj}Nj=1 be independently randomly chosen under

an absolutely continuous probability distribution in Cq×p. Then with probability

one L does have the Mp×q,r(C)-recovery property.

Proof. First it is well known that dimMp×q,r(C) = r(p+ q)− r2 ([19, Prop. 12.2]).

Note that L is injective onMp×q,r(C) if and only if L(X − Y ) 6= 0 for any X 6= Y in

Mp×q,r(C), which is equivalent to L(Z) = 0 for Z ∈Mp×q,2r(C) if and only if Z = 0.

Now the set

W =
{
Z ∈Mp×q,2r(C) : L(Z) = 0

}
is the intersection ofMp×q,2r(C) with N subspaces of dimension p×q−1. By Theorem

2.2 it has dimension at least

dimW ≥ dimMp×q,r(C)−N = 2r(p+ q)− 4r2 −N.

For (1) we have dimW > 0, and hence it contains a nonzero element. So L cannot

be injective on Mp×q,r(C).

For (2) by choosing {Aj} independently, with probability one for each k the sub-

space defined by tr(ATkZ) = 0 does not contain an irreducible component of the

projective variety

Wk−1 =
{
Z ∈Mp×q,2r(C) : tr(ATj Z) = 0 for j = 1, . . . , k − 1

}
.

In fact this holds for any given projective variety, not just for Wk−1. By Theorem

2.2, with probability one we have dimW = 0, which implies that W = {0} (see [19]).

Hence L is injective on Mp×q,r(C) with probability one.

Tying the recovery property with the dimension of varieties we easily have

Theorem 2.4. LetM be a projective variety in Cd with dim(M) = K. Let `1(x), . . . , `N(x)

be linear functions on Fd where F = C or R. Set L(x) = (`1(x), . . . , `N(x))T and

Y :=
{

(x,y) : x,y ∈M, x 6= y, `j(x− y) = 0 for 1 ≤ j ≤ N
}
.

(A) For F = C, L has the M-recovery property if and only if Y = ∅. If the

(complex) quasi-projective variety Y has dim(Y ) < K then L has the almost

everywhere M-recovery property.
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(B) For F = R letMR and YR be the set of real points inM and Y , respectively.

Then L has the MR-recovery property if and only if YR = ∅. If dim(M) =

dimR(MR) = K and dim(Y ) < K then L has the almost everywhere MR-

recovery property.

Proof. For both (A) and (B), the conclusions on M-recovery and MR-recovery

are rather clear. For the almost everywhere recovery in the complex case, let Z

denote the set of x ∈ M such that there exists a y 6= x in M such that `j(y) =

`j(x) for all 1 ≤ j ≤ N . Observe that the set Z is the projection of Y onto the

first coordinate. Since projections cannot increase dimension (see [19, Cor.11.13]), it

follows that dimZ < K = dimM. Hence Z is a null set in M (with respect to the

Hausdorff measure).

For F = R, we already stated that the real dimension of YR is no larger than the

(complex) dimension of Y . Thus dimR(YR) < K = dimR(MR). The same argument

now applies to show that ZR is a null set in MR. The theorem is proved.

In many of the data recovery problems the measurements are restricted to special

settings. Often the measurement vectors are on a projective variety themselves. Such

are the cases for phase retrieval, matrix recovery, and projection retrieval among the

examples we listed. Techniques presented above cannot be straightforwardly extended

in these special settings. To extend the techniques broadly we introduce the notion

of an admissible algebraic variety with respect to a family of linear functions. This

was first done in [11], and it proves to be very useful for the study of data recovery

on projective varieties.

Definition 2.1 ([11]). Let V be the zero locus of a finite collection of homoge-

neous polynomials in Cd with dimV > 0 and let {`α(x) : α ∈ I} be a family of

(homogeneous) linear functions. We say V is admissible with respect to {`α(x)} if

dim(V ∩ {`α(x) = 0}) < dimV for all α ∈ I.

It is well known in algebraic geometry that if V is irreducible in Cd then dim(V ∩
Y ) = dim(V ) − 1 for any hyperplane Y that does not contain V . Thus the above

admissible condition is equivalent to the property that no irreducible component of

V of dimension dimV is contained in any hyperplane `α(x) = 0. In general without
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the irreducibility condition, admissibility is equivalent to that for a generic point

x ∈ V , any small neighborhood U of x has the property that U ∩V is not completely

contained in any hyperplane `α(x) = 0. The following theorem plays a fundamental

role in our study. It was proved in [18]. For completeness we also present the original

proof here.

Theorem 2.5 ([18]). For j = 1, . . . , N let Lj : Cn × Cm → C be bilinear functions

and Vj be projective varieties in Cn. Set V := V1×· · ·×VN ⊆ (Cn)N . Let W,Y ⊂ Cm

be a projective varieties in Cm and consider the quasi-projective variety W \ Y . For

each fixed j, assume that Vj is admissible with respect to the linear functions {fw(·) =

Lj(·,w) : w ∈ W \ Y }.

(A) Assume that N ≥ dimW . There exists an algebraic subvariety Z ⊆ V with

dim(Z) < dim(V ) such that for any x = (vj)
N
j=1 ∈ V \ Z, the subvariety Xx

given by

Xx :=
{

w ∈ W \ Y : Lj(vj,w) = 0 for all 1 ≤ j ≤ N
}

is the empty set.

(B) Assume that N < dimW . There exists an algebraic subvariety Z ⊂ V with

dimZ < dimV such that for any x = (vj)
N
j=1 ∈ V \ Z, the subvariety Xx

given by

Xx :=
{

w ∈ W \ Y : Lj(vj,w) = 0 for all 1 ≤ j ≤ N
}

has dimXx = dimW −N .

Proof. We include the original proof from [18] for self-containment. First we prove

(A). For x = (vj)
N
j=1 ∈ V , define Φx : W \ Y → CN by Φx(w) = (Lj(vj,w))Nj=1. Let

G be the subset of [V ]× [W \Y ] ⊂ P((Cn)N)×P(Cm) such that ([X], [W ]) ∈ G if and

only if Φx(w) = 0, i.e. Lj(vj,w) = 0 for all j. Note that G is a projective variety

of P((Cn)N)× P(Cm). We consider its dimension. Let π1 and π2 be projections from

P((Cn)N)× P(Cm) onto the first and the second coordinates, respectively, namely

π1([x], [w]) = [v1, . . . ,vN ], π2([x], [w]) = [w].

It is easy to check that π2(G) = [W \Y ], the projection of W \Y . Thus dim(π2(G)) =

dim(W \ Y )− 1.
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We next consider the dimension of the preimage of the π−1
2 ([w0]) ⊂ P((Cn)N) for

a fixed [w0] ∈ P(Cm). Let V ′j := Vj ∩ Hj where Hj := {y ∈ Cn : Lj(y,w0) = 0} is

a hyperplane. The admissibility property of Vj implies that dim(V ′j ) = dim(Vj) − 1.

Hence after projectivization the preimage π−1
2 ([w0]) has dimension

dimπ−1
2 ([w0]) =

N∑
j=1

(dim(Vj)− 1)− 1 = dim(V )−N − 1.

According to Cor.11.13 in [19], we have

dim(G) = dim(π2(G)) + dim(π−1
2 ([w0]))

= (dim(W \ Y )− 1) + (dim(V )−N − 1)

= dim(V ) + dim(W \ Y )−N − 2

≤ dim(V ) + dim(W )−N − 2.

If N ≥ dimW then

dim(π1(G)) ≤ dim(G) = dim(V ) + dim(W )−N − 2 ≤ dim(V )− 2.

Note that π1(G) is itself a projective variety. Let Z be the lift of π1(G) into the vector

space (Cn)N . Then

dimZ ≤ dimV − 1.

The definition of Z implies that Xx is an empty set provided x ∈ V \ Z.

Next we prove (B). Let K = dim(W \Y ). Noting K > N , we augment {Vj}Nj=1 and

{Lj(v,w)}Nj=1 to {Vj}Kj=1 and {Lj(v,w)}Kj=1 via Vj = V1 and Lj(v,w) = L1(v,w) for

all j > N . Set V̂ = V1 × · · · × VK ⊆ (Cn)K . By (A) there exists a subvariety Ẑ of V̂

with dim Ẑ < dim V̂ such that for any x̂ = (vj)
K
j=1 ∈ V̂ \ Ẑ and w ∈ W \ Y , we have

Lj(v,w) 6= 0 for all j. Now consider the sequence of nested varieties with Xx̂,0 = W

and

Xx̂,k :=
{

w ∈ W \ Y : Lj(vj,w) = 0 for all 1 ≤ j ≤ k
}
, k = 1, . . . , K.

Thus the above is equivalent to Xx̂,K = ∅ provided x̂ ∈ V̂ \ Ẑ.

Since for each fixed vj the equation Lj(vj,w) = 0 defines a hyperplane H in Cm,

it is well known that dim(U ∩ H) ≥ dim(U) − 1 for any variety U in Cm. Then we
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have a decreasing sequence of subvarieties of Cm

W \ Y = Xx̂,0 ⊇ Xx̂,1 ⊇ Xx̂,2 ⊇ · · · ⊇ Xx̂,K = ∅.

Now dim(Xx̂,0) = dimW \ Y = K. By Krull’s Principal Ideal Theorem, at each step

the dimension can only be reduced by at most 1, we must thus have dim(Xx̂,k−1)−1 =

dim(XÂ,k) for 1 ≤ k ≤ K. It follows that dim(Xx̂,N) = dimW −N = K −N .

Thus for any x = (vj)
N
j=1 ∈ V , if there exists vj ∈ Vj for N < j ≤ K such that

x̂ = (vj)
K
j=1 ∈ V̂ \ Ẑ we must have dim(Xx̂,N) = K − N . Since Xx̂,N = Xx we then

have dim(Xx) = K−N . Finally, let Z = {x = (vj)
N
j=1} ⊂ V be those such that there

exists no such extensions x̂ ∈ V̂ \ Ẑ. We have

Z =
{

x = (vj)
N
j=1 ∈ V : x̂ = (vj)

K
j=1 ∈ Ẑ for any vj ∈ Vj, j > N

}
.

Since Ẑ is variety in (Cn)K , Z is a variety. Clearly it has dim(Z) < dim(V ), for

otherwise we would have dim(Ẑ) = dim(V̂ ), which is a contradiction.

Remark: While the theorem may look abstract as far as the date recovery problem

go, it actually provides a general framework for many applications. One should

observe that with the exception of compressive sensing, in all other examples the

measurements are in the form of tr(ATX) for some matrix A. One can view tr(ATX)

as a bilinear function in A and X, so the measurements of X are in fact from a bilinear

function like tr(ATX) by taking suitable samples of A. In the general setting, any

linear function `(x) on Fd, where F = C or R, can be expressed in the form of

`(x) = L(v0,x) for some bilinear function L and sample point v0. As we move on,

this point will become more and more clear.

3. Data Recovery on a Projective Variety

Let M be a projective variety in Fd where F = C or R. Applying Theorem 2.5

and other results in the previous section we can now prove results for M-recovery

and almost everywhere M-recovery. First for any a = (a1, . . . , ad)
T ∈ Fd we define

φa : Fd−→F by

φa(x) :=
d∑
j=1

ajxj.
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Any linear function L(x) on Fd can be written uniquely as L(x) = φa(x) for some

a ∈ Fd. Note that φa(x) is a bilinear function of a and x.

We now examine the M-recovery property from linear samples. We shall first

consider the following setup: each linear measurement of x ∈ M is in the form of

φa(x) for some a ∈ Fd. This offers complete generality. In different problems, a may

be chosen from various special sets. Here we assume they are sampled from projective

varieties. Our main results concern the recovery property when the linear samples

are generic. First we consider the complex case. Our next two theorems are slightly

more general versions of Theorems 4.3 and 4.4 in [18], and we provide proofs here for

self-containment .

Theorem 3.1. Let M ⊆ Cd and Vj be projective varieties in Cd, j = 1, . . . , N .

Assume that each Vj is admissible with respect to the maps {φv : v ∈M−M,v 6= 0}.
For A = (aj)

N
j=1 with aj ∈ Vj denote LA = (φa1 , φa2 , . . . , φaN

)T .

(A) If N < dim(M−M) then LA does not have the M-recovery property. On

the other hand, if N ≥ dim(M−M) then for a generic A ∈ V1 × · · · × VN
the linear map LA has the M-recovery property.

(B) If N < dim(M) then LA does not have the almost everywhere M-recovery

property. On the other hand, if N > dim(M) then for a generic A ∈ V1 ×
· · · × VN the linear map LA has the almost everywhere M-recovery property.

Proof. Let K = dim(M). First we prove (B). If N < dim(M) then LA maps

smoothly the higher dimensional manifold M to the lower dimensional one CN . If

LA is almost everywhere injective, by looking atM locally we see that there exists a

smooth map Φ from a ball B in CK to CN that is almost everywhere injective. But

this is impossible by Lemma 4.2 of [18].

Now for N > dim(M) = K let X ⊂ Cd × Cd be the quasi-projective variety

X :=
{

(v,u) ∈M×M, v 6= u
}
.

For each (v,u) ∈ X denote ψ(v,u)(a) = φv−u(a). As in Theorem 2.4 set

(3.1) YA :=
{

(v,u) ∈ X, φaj
(v − u) = 0 for 1 ≤ j ≤ N

}
.
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Since each Vj is admissible with respect to the maps {ψ(v,u) : (v,u) ∈ X}. By

Theorem 2.5 for a generic A = (aj) ∈ V1 × V2 × · · · × VN we have dim(YA) =

dim(X) − N < 2K − K = dim(M). It follows from Theorem 2.4 that LA has the

almost everywhere M-recovery property.

To prove (A), for N < dim(M−M) the dimension of the projective variety YA

given in 3.1 is no less than dim(M−M)−N > 0 by Theorem 2.2. Thus YA is not

empty and LA does not have the M-recovery property.

In the caseN ≥ dim(M−M), we apply Theorem 2.5 withW = X = (M−M)\{0}
and Lj(aj,x) = φaj

(x) for all j. Let V = V1 × V2 × · · · × VN . Then for a generic

A = (aj) ∈ V we have YA = ∅. Hence LA has the M-recovery property.

For the real case the above theorem can be extended. Suppose that V ⊆ Rd is a

real variety. We next introduce a natural extension of V to a variety in Cd. The ideal

IR(V ) defining V generates an ideal IC(V ) in Cd, and the variety corresponding to

IC(V ) will be our extension, and we denote it by V̄ . A simple observation is that V

is clearly the restriction of V̄ to Rd, namely V = V̄R using the terminology in this

paper.

Theorem 3.2. Let M and Vj be projective varieties in Rd, j = 1, . . . , N . Assume

that each V̄j is admissible with respect to the maps {φv : v ∈ M̄ − M̄,v 6= 0}. For

A = (aj)
N
j=1 with aj ∈ Vj denote LA = (φa1 , φa2 , . . . , φaN

)T . Assume further that

dimR(M) = dim(M̄) and dimR(Vj) = dim(V̄j) for all j.

(A) If N < dimR(M) then LA does not have the almost everywhere M-recovery

property. On the other hand, if N > dimR(M) then a generic A = (aj) in

V1 × V2 × · · · × VN has the almost everywhere M-recovery property.

(B) Assume additionally that dimR(M−M) = dim(M̄ − M̄) = L. If N ≥ L

then a generic a generic A = (aj)
N
j=1 in V1×V2×· · ·×VN has theM-recovery

property.

Proof. Let V = V1 × V2 × · · · × VN . For (A), if N < dim(M) then the map LA

cannot be almost everywhere injective from the same argument as in the complex

case. If N > dim(M) we consider M̄ and V̄j. Let YA be the same as in Theorem 3.1,
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but in Rd, and let

X̄ :=
{

(v,u) ∈ M̄ × M̄, v 6= u
}
,

ȲA :=
{

(v,u) ∈ X̄, LA(x− y) = 0
}
.

By the argument from Theorem 3.1, and use Theorem 2.5 there exists a subvariety

Z̄ ⊂ V̄ with dim Z̄ < dim V̄ such that for any A = (aj) ∈ V̄ \ Z̄ we have dim(ȲA) =

dim(X) − N < 2K − K = dim(M̄). By assumption we have dimR V = dim V̄ so

the restriction Z = ZR of Z̄ to the reals must have dimZ < dimV . Furthermore,

dimR(YA) ≤ dim(ȲA) < K. It follows from Theorem 2.4 that any A = (aj) ∈ V \ Z
has the almost everywhere M-recovery property. In other words, a generic A = (aj)

in V gives LA the M-recovery property. This proves (A).

For (B) we follow the same strategy. Let V, V̄ be as in part (A). Since N ≥
dim(M̄− M̄) it follows from Theorem 3.1 and 2.5 that there exists a variety Z̄ ⊂ V̄

with dim Z̄ < dim V̄ such that for any A = (aj) ∈ V̄ \ Z̄ the map LA has the M̄-

recovery property. Thus LA has the M-recovery property for any A = (aj) ∈ V \ Z.

Since

dimR(Z) ≤ dim(Z̄) < dim(V̄ ) = dimR(V ),

it follows that a generic A = (aj) ∈ V has the M-recovery property.

Given that the admissibility condition plays a key role in our theorem, one may

ask whether this condition can be checked rather easily. Indeed, the condition is

rather easy to check, and for almost all situations that we encounter, the condition

holds. We list some examples. Note that many of the applications of interest involve

matrices, so we focus on admissibility in Cp×q. The lemma below is proved in [18],

Proposition 4.1.

Lemma 3.3. Let V be one of the following projective varieties in Cp×q. Then V is

admissible with respect to any set of nontrivial linear functions on Cp×q:

(A) V =Mp×q,s(C), the set of all p×q complex matrices of rank s or less, where

1 ≤ s ≤ min(p, q).

(B) q ≥ p and V is the set of all scalar multiples of matrices P satisfying

PP T = I.
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(C) p = q and V is the set of all scalar multiples of projection matrices P , i.e.

P 2 = P .

We can now apply Theorems 3.1 and 3.2 to various problems, some listed earlier in

the introduction, to answer questions concerning the number of measurements needed

for data recovery.

Matrix Recovery. We have already shown how basic algebraic geometry can be

applied to matrix recovery in Theorem 2.3. We can extend it to the more general

setting. Recall thatMp×q,r(F) denotes the set of all matrices in Fp×q having rank no

greater than r, where F = C or R.

Theorem 3.4. Assume that 1 ≤ r ≤ 1
2

min(p, q) and let V be a projective variety

in Cp×q that is admissible with respect to all nontrivial linear functions on Cp×q.

For A1, . . . , AN ∈ Fp×q, where F = C or R, define L : Fp×q−→FN by L(X) =

(tr(AT1X), . . . , tr(ATNX)).

(A) If N < r(p+ q)− r2 then L does not have the almost everywhere Mp×q,r(F)-

recovery property.

(B) For F = C, if N < 2r(p+q)−4r2 then L does not have theMp×q,r(C)-recovery

property. This result fails for F = R.

(C) For F = C and generic Aj ∈ V , L has the Mp×q,r(C)-recovery property if

N ≥ 2r(p + q) − 4r2, and L has the almost everywhere Mp×q,r(C)-recovery

property if N ≥ r(p+ q)− r2.

(D) For F = R and assuming that dimV = dimR VR. For generic Aj ∈ VR, L has

the Mp×q,r(R)-recovery property if N ≥ 2r(p+ q)− 4r2, and L has the almost

everywhere Mp×q,r(R)-recovery property if N ≥ r(p+ q)− r2.

The proof is clearly a straightforward application of Theorems 3.1 and 3.2, and we

omit it here.

We are also interested in the cases where the matrix recovery is on subsets of

Mp×q,r(F). For example, the Projection Retrieval problem is a special case of matrix

recovery problem, where the measurements are rank one matrices. Similarly we may

consider the recovery of a Hermitian matrix X from quadratic measurements v∗jXvj,
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j = 1, . . . , N . This, like the Projection Retrieval, is in fact recovery from linear

measurements on a manifold, as

bj := v∗jXvj = tr(v∗jXvj) = tr(vjv
∗
jX).

The measurement matrices are rank one Hermitian matrices here. Such problems

can be handled similarly. One complication is that although Hermitian matrices are

complex, they do not form a complex variety. Thus the theorems we have here on

complex recovery cannot be applied directly to the recovery of Hermitian matrices.

However, they can be formulated as the affine image of a real projective variety, and

from which our theorems can be applied.

Theorem 3.5. For A = (a1, a2, . . . , aN) where aj ∈ Cp for all j let LA : Cp×p−→CN

be define by LA(X) = (a∗1Xa1, . . . , a
∗
NXaN)T .

(A) LetM⊂ Rp×p be the set of all real symmetric matrices of rank at most r where

r ≤ p/2. For a generic A = (a1, . . . , aN) with aj ∈ Rp, if N ≥ 2pr − 2r2 + r

then LA has the M-recovery property. If N ≥ pr − r(r − 1)/2 + 1 then LA

has the almost everywhere M-recovery property.

(B) Let M ⊂ Cp×p be the set of all Hermitian matrices of rank at most r where

r ≤ p/2. For a generic A = (a1, . . . , aN) with aj ∈ Cp, if N ≥ 4pr− 4r2 then

LA has the M-recovery property. If N ≥ 2pr− r2 + 1 then LA has the almost

everywhere M-recovery property.

Proof. Part (A) follows from Theorem 3.2 and the fact that the projective variety of

all rank s complex symmetric matrices in Cp×p has dimension ps− s(s− 1)/2, which

is also the real dimension of M.

Part (B) is a bit more complicated becauseM is not a projective variety. However,

we use a technique that works also for other problems involving Hermitian matrices.

This technique is first used in [11]. Consider the map ϕ : Cp×p → Cp×p defined by

ϕ(A) =
1

2
(A+ AT ) +

i

2
(A− AT ).



18 JIAN-FENG CAI, YI RONG, YANG WANG, AND ZHIQIANG XU

Then ϕ is a isomorphism on Cp×p that maps Rp×p one-to-one to the set of all Hermitian

matrices in Cp×p. Let

N̄ =
{
A ∈ Cp×p : rank(ϕ(A)) ≤ r

}
N =

{
A ∈ Rp×p : rank(ϕ(A)) ≤ r

}
.

ThenN = N̄R. Observe thatM = ϕ(N ). Define L̃A(X) := LA(ϕ(X)). We only need

to show that L̃A has theN -recovery property if N ≥ 4pr−4r2, and almost everywhere

N -recovery property if N ≥ 2pr− r2 + 1. It is known that dimR(M) = 2pr− r2 and

dimR(M−M) = 4pr−4r2. Thus dimR(N ) = 2pr−r2 and dimR(N−N ) = 4pr−4r2.

Furthermore, dim(N̄ ) = dimR(N ) and dim(N̄−N̄ ) = dimR(N−N ), see [18]. Because

the projective variety of rank one or less is admissible with respect to all linear

functions on Cp×p, Theorems 3.1 and 3.2 now imply that for generic A, L̃A has the

N -recovery property if N ≥ 4pr − 4r2 and it has the almost everywhere N -recovery

property if N ≥ 2pr − r2 + 1. The theorem follows.

The above theorem can be applied immediately to phase retrieval to yield the

following

Corollary 3.6. Let {fj}Nj=1 be a generic set of vectors in Fd, where F = C or R.

Then {fj}Nj=1 have the phase retrieval property in Fd if N ≥ 2d − 1 for F = R, or if

N ≥ 4d− 4 for F = C.

The proof is a straightforward conclusion from Theorem 3.5 with r = 1. These

results are well known. While for F = R it is a rather straightforward to prove using

basic linear algebra [4], the case F = C is in fact quite nontrivial and was first proved

recently in [7]. The above results also extend to generalized phase retrieval under the

admissibility conditions [11], and in particular for fusion frame phase retrieval [8, 11].

Projection Retrieval. Projection Retrieval is a special case of the matrix recovery

problem in which the matrix we try to recover is an orthogonal projection. This

has been studied in recent years in e.g. [14]. Here we consider a slightly more

general setting where we try to recover a matrix Q from the measurements ‖Paj‖2,

j = 1, . . . , N , knowing that Q = aP where a > 0 and P is an orthogonal projection

matrix, namely P = P ∗ and P 2 = P . In other words, we try to recover a scalar



DATA RECOVERY ON A MANIFOLD 19

multiple of an orthogonal projection instead of just an orthogonal projection as in

the original Projection Retrieval problem. We shall focus on the real case. The

complex case is slightly more tedious, but can be handled with the same techniques

used to prove the complex case of Theorem 3.5.

Theorem 3.7. Let a1, a2, . . . , aN be generic vectors in Rd. If N ≥ 2r(d − r) + 2

then every Q = aP where a > 0 and P is an orthogonal projection matrix of rank

1 ≤ r < d can be recovered from {‖Qaj‖}Nj=1. If N ≥ r(d− r) + 2 then almost every

such Q = aP can be recovered from {‖Qaj‖}Nj=1.

Proof. We first observe that ‖Qaj‖2 = aTj Q
TQaj = tr(ATj X), where Aj = aja

T
j

and X = a2P . Thus proving the theorem is equivalent to proving that X = a2P is

uniquely determined by tr(ATj X), j = 1, . . . , N . Denote

M := {aP ∈ Cd×d : a ∈ C, P T = P, P 2 = P, rank(P ) = r, 1 ≤ r < d}.

Note thatMR is precisely the set of all scalar multiples of real orthogonal projections

of rank r. Furthermore,M is a projective variety. One can easily see thatM consists

of all matrices Q in Cd×d satisfying

QT = Q, Q2 =
1

r
tr(Q)Q.

We know that dim(M) = r(d − r) + 1, which is evident from counting degree of

freedoms. Furthermore, we also have dimR(MR) = r(d − r) + 1. As with Theorem

3.5 the required admissibility condition is also met for us to apply Theorem 3.2. It

follows that for N ≥ dim(M−M) we can recover X = a2P from {‖Qaj‖2}Nj=1. But

dim(M−M) ≤ 2 dim(M) = 2r(d − r) + 2. Of course we can now recover Q = aP

from X (since a > 0). The first part of the theorem now follows. The second part

follows immediately from the fact that dim(M) = r(d− r) + 1.

Remark: Right now we do not have a precise result for dim(M−M), and as a

result the first conclusion in the theorem may not be sharp. We can prove, however,

that dim(M−M) = 2r(d−r)+δ with δ = 1 or 2 (we omit the details in this paper).

Also, the original Projection Retrieval problem poses an additional challenge that the

set of orthogonal projections is not a projective variety. We leave these questions as

open problems for interested researchers.
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4. Computational Aspect of Data Recovery on a Manifold

For some special manifolds, the data recovery problem can be solved successfully

by convex programmings using very few linear measurements. For examples, the

low-rank matrix recovery and phase retrieval can be done by nuclear norm minimiza-

tion [22, 23], and compressed sensing uses `1 norm minimization to reconstruct the

sparse signal [24]. From convex geometry and sparse representation points of view,

[25] gives a unified convex optimization, called atomic norm minimization. How-

ever, the atomic norm minimization is sometimes computationally intractable, as it

is NP-hard for many data recovery problems on manifold (e.g. [26]). Moreover, the

convex optimization framework does not utilize the structure of the low-dimensional

manifold.

Here we provide a more general computational framework, by considering the fact

that the data are on a low-dimensional manifold. Since X satisfies L(X) = b and

X ∈ M, it is natural to recast the recover of X into the following constrained least

squares problem

(4.1) min
Z∈Fd

1

2
‖L(Z)− b‖2

2, s.t. Z ∈M.

In other words, we minimize the least square error of the linear measurements on the

manifold. Obviously, the underlying true data X is a global minimizer of (4.1), and

any global minimizer of (4.1) is a solution of the linear equation onM. Therefore, in

the case that L(X) = b has a unique solution onM, the recovery of X is equivalent

to finding the unique global minimizer of (4.1).

To better exploit the structure of the manifold, we employ numerical optimization

algorithms on manifold [27, 28] to solve (4.1). For this purpose, we assume the

manifold M is smooth, so that the tangent of M is well defined. For any Z ∈ M,

denote TZ the tangent ofM at Z. We endow the tangent space a Riemannian metric

the standard Euclidean metric. We consider the gradient descent algorithm on the

Riemannian manifold.

Let f(Z) be the objective function in (4.1), i.e.,

f(Z) =
1

2
‖L(Z)− b‖2
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Due to the Euclidean embedding, the gradient of f at Z on M is given by

∇Mf(Z) = PTZL∗(L(Z)− b),

where PTZ is the projection onto the tangent space TZ . With this, the Riemannian

gradient descent (RGrad) applied to (4.1) is

(4.2)

{
Gl = PTZl

L∗(L(Zl)− b),

Zl+1 = RM(Zl − αlGl),

where RM is the retraction onto the manifold M and αl is a step size. Since f is

quadratic, we may choose αk the steepest descent step size. More precisely, we may

define αl = arg minα f(Zl − αGl), which has a closed form

(4.3) αl =
〈L(Zl)− b,L(Gl)〉

‖L(Gl)‖2
=
‖Gl‖2

2

‖L(Gl)‖2
.

The RGrad algorithm can be accelerated by conjugate gradient (CG) algorithms

on the Riemannian manifold. Instead of the gradient direction, the Riemannian

CG algorithm uses a linear combination of the gradient and the previous updating

direction, projected onto the tangent space, to update the current iteration. We omit

the details here and interested readers may consult [27, 29, 30].

To apply Riemannian optimization algorithms to get practical data recovery algo-

rithms on manifold, there are still several issues unsolved and we need to tune the

algorithms. The problem (4.1) is a non-convex optimization. The convergence of a

non-convex numerical solver to a global minimum is generally not guaranteed. How

to find a good initialization for RGrad to achieve a global minimum? How many

linear measurements are sufficient to find the correct solution X on the manifold?

In the rest of this section, we will apply Riemannian optimization algorithms to

some example problems of data recovery on manifold. We will discuss how to tune

them to get efficient algorithms, and we will also address how many linear measure-

ments are sufficient for the successful recovery of X.

Example 1: Matrix Recovery. The unknown data X ∈ Fp×q lies on Mp×q,r, the

manifold of all matrices with rank not larger than r. The linear measurements L is

defined by

Lj(X) = tr(ATj X), j = 1, . . . , N,
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where Aj ∈ Fp×q are measurement matrices. However, the manifold Mp×q,r is not

smooth at matrices whose rank is strictly smaller than r. To apply the Riemannian

optimization algorithms, instead of the manifold Mp×q,r, we find X on the manifold

of matrices with rank exactly r, i.e.,

ME
p×q,r :=

{
Q ∈ Fq×p : rank(Q) = r

}
.

Note that the dimension of Mp×q,r \ME
p×q,r is strictly smaller than that of Mp×q,r.

Therefore, Mp×q,r \ME
p×q,r is measure 0 on Mp×q,r and therefore neglectable.

The rank-r manifold ME
p×q,r is smooth and has a very nice structure embedded in

Fp×q. Its tangent space at Z ∈ME
p×q,r is given by

TZ = {UA∗ +BV ∗ : A ∈ Fq×r, B ∈ Fp×r},

where U ∈ Fp×r and V ∈ Fq×r are left and right singular vector matrices respectively

in the compact singular value decomposition (SVD) Z = UΣV . It is easy to check

that the orthogonal projection onto the tangent space is given by,,

PTZY = UU∗Y + Y V V ∗ − UU∗Y V V ∗, ∀ Y ∈ Fp×q.

We need to find a retraction operator RM, whose role is to retract a matrix back

to the rank-r manifold. There are several choices of such an operator. We choose

Hr, the projection ontoME
p×q,r or the r-truncated SVD, as the retraction RM. More

precisely, for any W ∈ Fp×q,

Hr(W ) =
r∑
i=1

σiuiv
∗
i , where Y =

min{p,q}∑
i=1

σiuiv
∗
i is the SVD.

For the initial guess, we use the standard spectral method. In particular, we assume

the measurement matrices Aj, j = 1, . . . , N , have i.i.d. random entries with mean 0

and variance 1/N , and a straightforward calculation implies

(4.4) Exp(L∗(b)) = Exp

(
N∑
j=1

tr(ATj X)Aj

)
= X,

where Exp(·) denotes the expectation. Therefore, it is reasonable to choose

(4.5) Z0 = Hr(L
∗(b)).
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The purpose of Hr is to set rank(X0) = r while not escaping too far away from

L∗(b), so that Z0 will be close to the under truth solution X if L∗(b) has a good

concentration around its expectation.

The full RGrad algorithm for low-rank matrix recovery is shown in Algorithm 1.

To the efficient implementation of Algorithm 1, the structure of the tangent space TZl

can be further exploited. In particular, by using the fact that the matrices in TZl
have

rank at most 2r, the SVD of size p× q in the evaluation of Hr can be reduced to two

QR decompositions of size p× r and q × r respectively and one SVD of size 2r × 2r,

which significantly save the computational cost per step. We omit the details, and

interested readers are referred to [29, 30].

Algorithm 1 Riemannian Gradient Descent (RGrad) for Low-Rank Matrix Recovery

1: Initialize Z0 = Hr(L
∗(b)).

2: for l = 0, 1, . . . . do
3: Gl = PTZl

L∗(L(Zl)− b).
4: Choose αl.
5: Zl+1 = Hr(Zl − αlGl).
6: end for

The following theorem is an immediate corollary of [29, Theorem 2.1], and it shows

that Algorithm 1 converges linearly to the true solution X with dominant probability,

if N ≥ O((p+q)r log(κ
√
r)), where κ is the condition number of X. Compared to the

bound in Theorem 3.4, the minimum measurement for RGrad to work is the same

order as the least measurement for M-recovery up to a logarithmic factor.

Theorem 4.1 (A corollary of [29, Theorem 2.1]). Consider the real case. Assume

the entries of Aj, j = 1, . . . , N , are i.i.d. Gaussian with mean 0 and variance 1/N .

For any ρ ∈ (0, 1), there exist positive universal constants c0, c1, c2, such that: for

any X ∈ Rp×q with rank r and condition number κ, the sequence Zl generated by

Algorithm 1 with αl as in (4.3) satisfies

‖Zl −X‖F ≤ ρl‖Z0 −X‖F

with probability at least 1− c1e
−c2N , provided

N ≥ c0(p+ q)r log(κ
√
r).
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Figure 1. Convergence of the RGrad algorithm.

A numerical experiment is performed. We choose N to be 2, 3, and 4 times of

the dimension of the manifold respectively. The convergence curves of Algorithm 1

with stepsize (4.3) is shown in Figure 1(a). We see that, the more measurements, the

faster convergence of the algorithm.

Example 2: Phase Retrieval. By introducing X = xx∗, the recovery of x ∈ Fp

from phaseless measurements |〈x, fj〉|2 = bj for j = 1, . . . , N as in (1.1) can be refor-

mulated as a problem of finding a real symmetric or a Hermitian rank-1 solution of

L(X) = b with Lj(X) = tr(fjf
∗
jX) for j = 1, . . . , N . By a simple calculation, if we

start with a symmetric/Hermitian initial guess, the Riemannian gradient descent on

the symmetric/Hermitian rank-1 manifold is exactly the same as the one on the stan-

dard rank-1 manifold. Therefore, the RGrad algorithm for low-rank matrix recovery

can be applied equally to the phase retrieval problem, where p = q and r = 1.

However, all the measurement matrices in L are of rank 1, and the direct application

of RGrad algorithm may need a large number of measurements theoretically. To over-

come this, we shall slightly modify the RGrad algorithm. For simplicity, we discuss

only the complex case. We assume that fj, j = 1, . . . , N , follow a complex Gaussian

model, i.e., the real and complex parts of fj are all real random Gaussian vectors with

expectation 0 and variance I/2. With this random model, the measurement matrices

fjf
∗
j , j = 1, . . . , N , are outer products of Gaussian random vectors, which have a
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heavier tail distribution. This makes the phase retrieval problem more difficult to

solve than the standard low-rank matrix recovery problems. To eliminate the effects

caused by the heavy tail, our idea is to drop out those ill-posed measurements in the

initialization and each iteration.

For the initlialization, we cannot choose the initial guess (4.5), because (4.4) does

not hold true due to the rank-1 measurement matrices. We use the initialization pre-

sented in [31]. The expectation of bj = |〈x, fj〉|2 is ‖x‖2
2, which can be approximated

well by ‖b‖1/N . Therefore, we use only those measurements in the set

(4.6) Ω0 =
{
j :
√
bj ≤ β0

√
‖b‖1/N

}
for a predefined constant β0 > 0. In other words, we use only those measurements

that do not deviate too much from their expectations. Define Y =
∑

j∈Ω bjfjf
∗
j , and

let u be its leading unit eigenvector. Following [31], the leading eigenvector of the

expectation of Y is parallel to x. This, together with ‖x‖2
2 ≈ ‖b‖1/N , gives us the

initialization

Z0 = z0z
∗
0, where z0 =

√
‖b‖1/N · u and u is the unit leading eigenvector of Y .

By induction, the positive defniteness of Zl is preserved. At each iteration l, given

Zl = zlz
∗
l , we use again only those well-posed measurements adapted to zl and x. We

set

(4.7) Ωl = Ωl1 ∩ Ωl2 ∩ Ω0,

where

Ωl1 = {j : |〈zl, fj〉| ≤ β1‖zl‖}

and

Ωl2 =

{
j :
∣∣bj − |〈zl, fj〉|2∣∣ ≤ β2

N
‖b− L(Zl)‖1

|〈zl, fj〉|+
√
bj

‖zl‖

}
.

The set Ωl1 is to enforce |〈zl, fj〉|2 not too far away from its expectation, and Ωl2 is

to remove the tail of |〈zl − x, fj〉|2. The new iterate is produced by using only those

measurements on Ωl. The complete algorithm is shown in Algorithm 2.

The following theorem is the main theorem in the forthcoming paper [32]. It shows

that Algorithm 2 converges linearly to the true solution as long as N is larger than
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Algorithm 2 Riemannian Gradient Descent (RGrad) for Phase Retrieval

1: Define Ω0 by (4.6)

2: Initialize z0 =
√
‖b‖1/N ·u and Z0 = z0z

∗
0, where u is the leading unit eigenvector

of Y =
∑

j∈Ω0
bjfjf

∗
j .

3: for l = 0, 1, . . . . do
4: Zl is given in the form of Zl = zlz

∗
l .

5: Define Ωl by (4.7).

6: Gl = PTZl

(∑
j∈Ωj

(|〈zl, fj〉|2 − bj)fjf∗j
)

.

7: Choose αl.
8: Zl+1 = H1(Zl − αlGl).
9: end for

O(p). This bound is the same order as the the minimum number of measurements

required in Theorem 3.5 with r = 1 for M-recovery, hence it is in the optimal order.

Theorem 4.2 ([32]). Assume the entries of fj, j = 1, . . . , N , are i.i.d. complex

Gaussian with mean 0 and variance 1. For any x ∈ Cp, there exist positive constants

β0, β1, β2, c0, c1, and c2 such that: if N ≥ c0p, then Zl generated by the Algorithm 2

step size αl = 1
2N

satisfies

‖Zl − xx∗‖F ≤
(

1

2

)l
‖Z0 − xx∗‖F

with probability at least 1− c1e
−c2N .

In Figure 1(b), we demonstrate the convergence of Algorithm 2. We choose N =

4.5p, N = 6p, and N = 7.5p respectively. Again we see that increasing the number

of measurements accelerate the convergence of the algorithm.
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