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Abstract — Compressed sensing (CS) has exhibited great 

potential for accelerating magnetic resonance imaging (MRI). In 
CS-MRI, we want to reconstruct a high-quality image from very 
few samples in a short time. In this paper, we propose a fast 
algorithm, called projected iterative soft-thresholding algorithm 
(pISTA), and its acceleration pFISTA for CS-MRI image 
reconstruction. The proposed algorithms exploit sparsity of the 
MR images under the redundant representation of tight frames. 
We prove that pISTA and pFISTA converge to a minimizer of a 
convex function with a balanced tight frame sparsity formulation. 
The pFISTA introduces only one adjustable parameter, the step 
size, and we provide an explicit rule to set this parameter. 
Numerical experiment results demonstrate that pFISTA leads to 
faster convergence speeds than the state-of-art counterpart does, 
while achieving comparable reconstruction errors. Moreover, 
reconstruction errors incurred by pFISTA appear insensitive to 
the step size. 
 

Index Terms—Sparse Models, Iterative Thresholding, Tight 
Frames, Compressed Sensing, MRI 

I. INTRODUCTION 

AGNETIC resonance imaging (MRI) plays an 
essential role in clinical diagnosis. Although it provides 

high-quality images with excellent soft tissue contrast, MRI 
suffers from slow imaging speed both physically (e.g. gradient 
amplitude and slew-rate), and physiologically (e.g. nerve 
stimulation) [1]. Recently, compressed sensing (CS) [1-3] was 
introduced to MRI to significantly accelerate the imaging speed. 
The CS technique first acquires very few k-space data (also 
known as Fourier coefficients) to shorten the imaging time, and 
then it reconstructs the resonance imaging (MR) image from 
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the undersampled data. Image sparsity is assumed to make it 
possible that we can recover the underlying image from only a 
few Fourier coefficients. Therefore, we need to find an image 
that is sparse in a transform domain to fit the undersampled 
k-space data. This can be naturally formulated by a l0 norm 
minimization problem, which, however, is non-convex and 
generally NP-hard [3]. To make this task tractable, the  l0  norm 
is usually approximated by its best convex relaxation, the l1 

norm. The resulting l1 norm minimization problem can be 
solved efficiently in a polynomial time by convex optimization 
methods. Most importantly, CS theory indicates that the l1 norm 
minimization can find the desired sparse solution under some 
conditions [2, 3]. 

There are great efforts [1,4,5,6,7] made towards the 
construction of transforms that sparsify MR images. Various 
systems have been designed, ranging from wavelets, framelets, 
curvelets, to adaptive transforms. In the early stage of the 
development of CS, orthogonal systems were widely used 
because orthogonality benefits both algorithm design and 
theoretical analysis. Orthogonal systems also have minimal 
complexity, meaning that the number of atoms in an orthogonal 
system is both complete and necessary for representing all the 
MR images of fixed size.  

In recent years, there is a trend within the MRI community to 
use redundant representation systems, instead of orthogonal 
ones. Some representatives of redundant representations 
systems are undecimated or shift-invariant wavelet frames 
[8-11], patch-based methods [5, 7, 12, 13], over-complete 
dictionaries [6], combined systems [14], etc. Redundancy in a 
redundant system leads to robust image representations and 
also introduces additional benefits. For wavelets, redundancy 
enables shift-invariant property. This property is beneficial in 
suppressing artifacts induced by Gibbs phenomena near image 
discontinuities [9, 15]. For patch-based methods, redundancy 
often comes from the overlapping of image patches which lead 
to better noise removal and artifact suppression [5, 7, 12, 13]. 
Over-complete dictionaries are obviously redundant as they 
contain more atom signals than required to represent images [6]. 
These redundant atom signals can better capture different 
image features, and make the representations relatively sparser 
than orthogonal dictionaries do. Redundancy also makes the 
designing or training of such dictionaries more flexible. Even 
when the trained dictionary is orthogonal for image patches, the 
overall representation system for the whole image will still be 
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redundant [7, 16] due to overlapping of patches. Most of these 
redundant representation systems [4, 5, 7, 9, 12-14, 17] can be 
categorized as tight frame systems [18] (see Section II).  In this 
paper, we focus on tight frame-based MR image reconstruction 
methods. 

Despite the aforementioned advantages of redundant 
representation systems, there is no “free lunch”. From the 
theoretical perspective, there are different formulations for 
sparsity under redundant systems, namely, the analysis and 
synthesis sparsity formulations, and we need more involved 
analysis under these new settings [19,20]. From the 
computational perspective, the redundancy introduces more 
variables than the dimension of the MR image, which makes 
the design of efficient numerical algorithms more challenging. 
For the synthesis sparsity formulation, iterative 
soft-thresholding algorithms (also known as proximal 
forward-backward splitting algorithm [21-25]) are popular. 
However, they search the solution in the redundant transformed 
domain, which may have a significantly larger dimension than 
the MR image. For the analysis sparsity formulation, 
alternating direction methods of multipliers (ADMM) are 
usually employed, but they are essentially primal-dual 
algorithms and need to store both the redundant coefficients 
and MR images in the iterations. All these restrict the 
applicability of redundant systems to practical CS-MRI image 
reconstruction, especially in applications where the redundancy 
is high and the dataset is large such as 3D imaging, dynamic 
and diffusion MRI.  

In this paper, we propose a simple and efficient algorithm for 
tight frame based CS-MRI image reconstruction. Our algorithm, 
called projected iterative soft-thresholding algorithm (pISTA), 
mimics ISTA but approximates a solution of the analysis 
sparsity formulation in the tight frame domain. With a careful 
coding, the pISTA algorithm can avoid the storage of a full set 
of redundant transform coefficients. Therefore, it can deal with 
large scale MR image reconstruction with highly redundant 
systems. Furthermore, since pISTA approximates a solution of 
the analysis sparsity, it achieves comparable image quality as 
the analysis sparsity formulation, which is usually better than 
the synthesis one for MR image reconstruction. The pISTA 
algorithm is accelerated by incorporating the strategy 
developed by Beck and Teboulle in [26], and we call the new 
algorithm pFISTA. We prove that both pISTA and pFISTA 
converge to a minimizer of a convex function that can be 
viewed as a balance between the analysis and synthesis sparsity 
formulations. 

The rest of the paper is organized as follows. In Section II, 
we first introduce some useful concepts of tight frames for 
redundant image representation, then we present mathematical 
model for tight frames based image reconstruction in CS-MRI, 
and finally we review existing algorithms that are closely 
related to our proposed algorithms. In section III, we derive the 
proposed algorithm and prove that this algorithm converges to 
the minimum of a convex function with a balanced tight frame 
sparsity formulation. In Section IV, we demonstrate the 
performance of the proposed algorithm by numerical 
experiments on various MRI datasets, undersampling patterns 

and tight frames. Finally, in Section V we conclude this paper 
by summarizing the proposed algorithm and the experimental 
results. 

II. BACKGROUND 

A. Some Useful Concepts Related to Tight Frames 

Most representation systems mentioned in Section I are 

frames for certain functional space. A set of vectors { }
1,2,...,j j J=

d  

is called a frame of N  if there exist positive real numbers 

,A B  such that 

 
22 2

2 2
, for every N

j
j

A B≤ ≤ ∈x x d x x  ,  (1) 

where , H
j j=x d d x   is the inner product between x  and  jd , 

and H
jd  represents the Hermitian of jd . See [18] for more 

details. In a nutshell, any signal in the Hilbert space N  can be 

represented by a frame of the same space, though the 
representation is not necessarily unique. When  A B= , we call 
the frame a tight frame. For example, both the contourlets [4] 
and the directional wavelets in [5] are tight frames. The 
synthesis and analysis operators associated with a frame 

{ }
1,2,...,j j J=

d  are defined as 

 
*

1 2Synthesis operator: [ , , , ]

Analysis operator:
J=Ψ d d d

Ψ

 .  (2) 

where *Ψ  denotes the adjoint of the operator Ψ . For 

convenience, we will also use the synthesis operator *Ψ  to 

denote a frame.  

Given a frame *Ψ , another frame { }
1,2,...,j j J=

=Φ φ  is called 

a dual frame of *Ψ  if  

 =ΦΨ I .  (3) 
Among all its dual frames, the canonical dual frame is defined 
as 

 ( ) 1* *−
=Φ ΨΨ Ψ , (4) 

which is the pseudo-inverse of Ψ  [27]. 
With the help of the canonical dual frame, the orthogonal 

projection operator on the ( ) { }Range | N= ∈Ψ Ψx x    is 

 P = ΨΦ .  (5) 
As a projection operator, P  satisfies that, for all ( )Range∈α Ψ  

 P = =α ΨΦα α .  (6) 
In this paper, we focus on tight frames with constant 

1A B= =  as this will cover most of the sparse representation 
systems for MR images [4, 5, 7, 9, 12-14, 17] and convergence 
analysis is much easier and clear in this case. Besides, it is easy 
to see that any tight frame can be rescaled to 1A B= =  without 
any loss of its sparse representation capabilities. The dual frame 

of such a tight frame is itself, namely * =Ψ Ψ I  .  

B. Mathematical Modeling of Tight Frames Based CS-MRI 

The undersampling process in CS-MRI can be modeled as 
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 = +y UFx η  , (7) 

where N∈x   represents the MR image rearranged to a 

column vector, N N×∈F   is the discrete Fourier transform, 

( )M N M N×∈ <U   is the undersampling matrix, M∈η   is 

the additive noise, and  M∈y   is the undersampled k-space 

data.  
Equation (7) is underdetermined as M N< . To solve this 

problem, the sparsity of the image x  under the representation 
of some tight frame is assumed which leads to the l1 norm based 
optimization problems. Since the tight frame representation is 
not unique, there are typically two different models for MR 
image reconstruction, namely the analysis and synthesis 
models [20, 27, 28]:  

 
2

1 2

1
Analysis : min

2
λ + −

x
Ψx y UFx  (8) 

                
2

1 2

1
Synthesis : min

2
λ + −

α
α y UFΦα ,  (9) 

where α  contains the coefficients of an image under the 
representation of a tight frame Φ . In both models, λ  is called 
the regularization parameter which introduces a trade-off 
between sparsity and data fidelity. When Ψ  is orthonormal 

and * 1−= =Φ Ψ Ψ , the analysis and synthesis models yield the 

same solutions [27]. However, for redundant systems, e.g. tight 
frames, there is a gap between these two models in both theory 
and practice [27], and better reconstructions of analysis models 
are observed than that of synthesis models in both general 
signal restorations [29, 30] and CS-MRI [10, 31]. In principle, 
CS theory [20] reveals that analysis models work under a wider 
range of dictionaries than the synthesis models, and it was 
proved in [32] that analysis models converge to some partial 
differential equation models. Besides, direct comparison of  the 
analysis and synthesis models reveals that analysis models, 
which operate on images, are potentially more efficient than 
algorithms for synthesis models, which operate on coefficients, 
due to the fact that the dimension of an image is much smaller 
than that of its coefficient under a redundant system. Based on 
these results and observations, we model the image 
reconstruction problems in tight frames based CS-MRI as 
analysis models and solve them by the proposed simple and 
efficient algorithm. 

C. Related Work 

1) Alternating direction methods 
Alternating direction methods (ADM) solve the problem 

model (8) by first introducing an auxiliary variable =α Ψx  
and turning an analysis model with decision variable x  into a 
constrained model as 

 
2

1 2,

1
min , . .

2
s tλ + − =

x α
α y UFx α Ψx .  (10) 

Then, ADM either directly solves (10) with Lagrange’s method 
resulting in the alternating direction method of multipliers 
(ADMM) [33, 34] (a.k.a. split Bregman algorithms [35]), or 
indirectly solves a relaxed unconstrained model 

 
2 2

1 2 2,

1
min

2 2

βλ + − + −
x α

α y UFx α Ψx ,  (11) 

where β  is a penalty parameter, by iteratively alternating 

between solving sub-problems of α  for fixed x  and vice versa 
[5, 36]. In the latter method, setting β  is challenging since a 

larger β  leads to a closer solution of (11) to that of (10) but a 

slower convergence speed [5, 36]. A continuation strategy is 
introduced to tackle this problem by gradually increasing β  in 

an outer loop of iterations resulting in the ADM with 
continuation (ADMC) [5, 36]. Within ADMC, although β  no 

longer needs to be manually set, it raises new issues, e.g. 
selecting a stopping criterion for an inner loop of iterations for a 
fixed β  and makes the algorithm relatively complicated. In 

ADMM, instead of using the penalty parameter, a Lagrangian 
multiplier is introduced to the constraint in (10) exactly 
satisfied. Therefore, ADMM gives a more accurate and sparser 
solution than ADMC. However, some more parameters are 
introduced and the convergence speed is sensitive to these 
parameters as observed by many authors and shown in 
numerical experiments in this paper. To the best of our 
knowledge, it is still unknown how to tune the optimal 
parameters of ADMM in CS-MRI [33, 34, 37]. Besides, 
ADMM introduces a dual variable of the same size as α  which 
increases the memory consumption of the algorithm. 
2) Smoothing-based fast iterative soft-thresholding algorithm 

As another widely used algorithm for the l1 norm based 
sparse image reconstruction problems, the iterative 
soft-thresholding algorithm (ISTA) has been actively studied in 
the literature [21-26] due to its simplicity and efficiency. To 
accelerate ISTA, Beck and Teboulle [26] introduced an 
acceleration strategy that was first proposed by Nestrov for 
convex optimization problems with smooth objective functions 
[38]. The resulting algorithm, called fast ISTA (FISTA), can 
significantly improve convergence speed both theoretically and 
practically [26]. The efficiency of FISTA depends on the 
simplicity of computing the proximal map, which is defined as 
[23, 39] 

 ( ) ( ) 2

2

1
prox arg min

2f f= + −
z

x z z x  (12) 

of a usually l1 norm based function f  in the objective of 

optimization problems. For a synthesis model in (9), 

( ) 1
f λ=α α , the proximal map is 

 ( ) ( )2

1 2

1
prox arg min

2f Tλλ= + − =
z

α z z α α ,  (13) 

where ( )Tλ ⋅  is a point wise soft-thresholding function as 

 ( ) { }max ,0 i
i i

i

Tλ
αα α λ
α

= − ⋅ .  (14) 

The simplicity of the proximal map (13) makes FISTA very 
efficient for solving synthesis models. However, for analysis 
models, there is no such simple closed form solution for the 

proximal map of ( ) 1
f λ=x Ψx , complicating the direct 

application of FISTA.  
To address this problem, Tan, et al. [40] proposed to first 
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approximate the non-smooth term ( ) 1
f λ=x Ψx  by its 

Moreau envelop, defined as [40] 

 ( ) 2

1 2

1
min

2
fμ λ

μ
= + −

z
x Ψz z x ,  (15) 

which is smooth. Then they apply FISTA to solve this 
smoothed optimization problem, resulting in the 
smoothing-based FISTA (SFISTA) [40]. As it was shown in 
[40] and our numerical experiments, both the convergence 
speed and reconstruction errors using SFISTA are sensitive to 
the smooth approximation parameter μ  whose value decides a 

trade-off between approximation accuracy and convergence 
speed [40]. By introducing the continuation strategy to 
gradually decrease the value of μ , SFISTA avoids the 

challenging selection of μ [40]. However, as mentioned before 

in the case of ADMC, this continuation strategy raises new 
issues, e.g. choosing a stopping criterion for an inner loop of 
iterations for a fixed μ  and makes the algorithm relatively 

complicated for CS-MRI.  

III.  PROPOSED METHOD 

A. Projected Iterative Soft-Thresholding Algorithm 

In this section, we derive the proposed algorithm by first 
rewriting the analysis model into an equivalent synthesis-like 
one, and then calculating the proximal map of the non-smooth 
terms in the objective function approximately in order to keep 
the simplicity and efficiency of the algorithm. Afterward, we 
incorporate the acceleration strategy, developed by Beck and 
Teboulle in [26], into the proposed algorithm and prove that 
both the proposed algorithm and its accelerated version 
converge to the same minimum of a function with a balanced 
tight frame sparsity under some explicit conditions. 

The analysis model in (8) is equivalent to the following form 

 
( )

2

1 2Range

1
min

2
λ

∈
+ −

α Ψ
α y UFΦα ,  (16) 

which means that the solutions of (8) and (16) are the same. The 
proof of this equivalence is in the Appendix. 

To handle the constraint in the synthesis-like analysis model 
in (16), we introduce an indicator function 

 ( ) ( )
( )

0 , Range

, Range
d

∈= 
∞ ∉

α Ψ
α

α Ψ
  (17) 

to obtain an equivalent unconstrained model of (16) as 

 ( )2

1 2

1
min

2
dλ + − +

α
α y UFΦα α .  (18) 

We further denote that 

 
( ) ( )

( )
1

2

2

1
,

2

g d

f

λ= +

= −

α α α

α y UFΦα
  (19) 

where g  is a non-smooth convex function, and f  is a smooth 

function with a fL -Lipschitz continuous gradient f∇ , i.e.  

 ( ) ( )1 2 1 2 22
ff f L∇ − ∇ ≤ −α α α α ,  (20) 

where 0fL >  [39].  Then, we apply ISTA to solve the problem 

in (18) by incorporating the proximal mapping 

( )( )1 proxk g k kfγ γ+ = − ∇α α α  (21) 

( )( ) ( )
2

1 2

1
arg min

2 k kf dλγ γ= + − − ∇ +
α

α α α α α  

( )
( )( ) 2

1Range 2

1
arg min ,

2 k kfλγ γ
∈

= + − − ∇
α Ψ

α α α α  

where γ  is the step size.  

So far, we have converted the original analysis model based 
CS-MRI problem into a much simpler form in (21) where the 
objective function is separable. However, the constraint 

( )Range∈α Ψ  makes it difficult to find an analytical solution 

of (21). Observing that without this constraint, (21) degenerates 
to the proximal mapping in (13) whose closed form solution is 

 ( )( )1k k kT fγλ γ+ = − ∇α α α , (22) 

we propose to replace (21) by 

 
( )( )

( ) ( )
1

1 1Range ,

k k k

k k

T f

P

γλ γ+

+ +

= − ∇

= Ψ

α α α

α α




 (23) 

where ( )RangeP Ψ
 is the orthogonal projection operator onto  

( )Range∈α Ψ . More specifically, for our problem in (16), this 

replacement leads to  

 
( ) ( )( )1* *

1

1 1.

T
k k k

k k

Tγλ γ
−

+

+ +

= + −

=

α α Ψ Ψ Ψ F U y UFΦα

α ΨΦα




  (24) 

where TU   is the transpose of U . The two steps in (24) can be 

recast as 

 ( ) ( )( )( )1* *
1

T
k k kTγλ γ

−

+ = + −α Ψ Φα Ψ Ψ F U y UFΦα     (25) 

since =ΨΦ I . Furthermore, by substituting the coefficients 

kα  and 1k +α with images k k=x Φα  and 1 1k k+ +=x Φα , we get 

that 

( ) ( )( )( )1* *
1

T
k k kTγλ γ

−

+ = + −x Φ Ψ x Ψ Ψ F U y UFx .    (26) 

For a tight frame, we have *=Φ Ψ  and * =Ψ Ψ I , then (26) 

becomes 

 ( )( )( )* *
1

T
k k kTγλ γ+ = + −x Ψ Ψ x F U y UFx .  (27) 

All the above derivations lead to the proposed projected 
iterative soft-thresholding algorithm (pISTA) for tight frames 
based CS-MRI problems. Furthermore, the same accelerating 
strategy as FISTA [26] is introduced resulting in the projected 
FISTA (pFISTA). The algorithms of pISTA and pFISTA for 
tight frames-based MR image reconstruction are summarized in 
Algorithm 1 and Algorithm 2, respectively. 

For comparison purposes, we list the core iterations of 
FISTA [26], SFISTA [40] and the proposed pFISTA as 
follows: 

( )( )* *
1FISTA: T

k k kTγλ γ+ = + −α α ΨF U y UFΨ α  

( ) ( ) ( )
( )

*
1

*

SFISTA: 1 / /k k k

T
k

Tλμγ μ γ μ

γ
+ = − −

+ −

x x Ψ Ψx

F U y UFx
 (28) 
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( )( )( )* *
1pFISTA: T

k k kTγλ γ+ = + −x Ψ Ψ x F U y UFx . 

 
Algorithm 1: pISTA for tight frames in CS-MRI 
Parameters: ,λ γ  

Initialization: 0x  

While not converge, do 

( )( )( )* *
1

T
k k kTγλ γ+ = + −x Ψ Ψ x F U y UFx  

Output:  x  
 

Algorithm 2: pFISTA for tight frames in CS-MRI 
Parameters: ,λ γ  

Initialization: 0 0 0ˆ1, ,t = x x  

While not converge, do 

( )( )( )

( )

* *
1

2

1

1 1 1
1

ˆ ˆ

1 1 4

2
1

ˆ

T
k k k

k
k

k
k k k k

k

T

t
t

t

t

γλ γ+

+

+ + +
+

= + −

+ +
=

−
= + −

x Ψ Ψ x F U y UFx

x x x x

 

Output:  x  
 
Since pFISTA converges much faster than pISTA both 
theoretically and numerically, we mainly discuss pFISTA in the 
rest of this paper. 

The pFISTA algorithm offers the following advantages: 
1) Low memory consumption  

With careful coding, pFISTA can be implemented without 
storing the full tight frame coefficients. This can significantly 
reduce the memory consumption since coefficients need more 
memory than images under a redundant tight frame system. For 
example, in our numerical experiments, the size of the 

coefficient of an image under the typical tight frame is 13  
times as large as the size of an image. Thus, pFISTA is memory 
saving for large scale data and highly redundant systems.  
2) Simplicity 

The simplicity means that besides the regularization 
parameter, pFISTA introduces only one adjustable parameter, 
the step size γ . We will show that if 0 1γ< ≤ , then the 

convergence of pFISTA is ensured while a larger γ  leading to 

a faster convergence. Furthermore, it will be shown in 
numerical experiments that this parameter will not affect the 
empirical reconstruction errors. We thus recommend users 
setting 1γ =  for low reconstruction error and fast convergence 

speed in tight frames-based MR image reconstruction. 
3) Fast computation and superior image quality 

Fast computation means that pFISTA inherits the fast 
convergence of FISTA as it will be shown in convergence 
analysis and numerical experiments. Moreover, since pFISTA 
is an approximate solver for analysis models, it reconstructs 
images with better qualities than FISTA for synthesis models. 

B. Convergence Analysis 

In this section, we provide convergence results of both 

pISTA and pFISTA for tight frames in CS-MRI in the form of 
two theorems. 

Theorem 1: Let { }kx  be generated by pISTA. Provided that 

the step size 0 1γ< ≤  and Ψ  is a tight frame, the sequence 

{ } { }k k=α Ψx  converges to a solution of 

 ( ) 22* *

1 2 2

1 1
min

2 2
λ

γ
+ − + −

α
α y UFΨ α I ΨΨ α  (29) 

with the speed 

 ( ) ( ) 2

0 2

1

2kF F
kγ

− ≤ −α α α α ,  (30) 

where α  is a solution of (29) and ( )F ⋅  is the objective 

function in (29). 

Theorem 2: Let { }kx  be generated by pFISTA. Provided that 

the step size 0 1γ< ≤  and Ψ  is a tight frame, the sequence 

{ } { }k k=α Ψx  converges to a solution of (29) with the speed 

 ( ) ( )
( )

2

02 2

2

1
kF F

kγ
− ≤ −

+
α α α α ,  (31) 

where α  is a solution of (29) and ( )F ⋅  is the objective 

function in (29).  

Proof of Theorem 1 and Theorem 2: 
 Let us denote   

 

( )

( ) ( )
1

22* *

2 2

1 1

2 2

h

u

λ

γ

=

= − + −

α α

α y UFΨ α I ΨΨ α
.  (32) 

Then applying proximal algorithm [23, 26, 39] to (29) with step 
size γ  results in the following iterations  

 
( )( )

( )( )( )
1

* * *

prox

.

k h k k

T
k k

u

T

γ

γλ

γ

γ

+ = − ∇

= + −

α α α

Ψ Ψ α F U y UFΨ α
  (33) 

Multiplying both sides by *Ψ  and letting *
k k=x Ψ α ,  we get 

 ( )( )( )* *
1

T
k k kTγλ γ+ = + −x Ψ Ψ x F U y UFx .  (34) 

Note that this is exactly the same iteration (27) as in both 
pISTA and pFISTA.  

The next question is that can we ensure the convergence? 
This question is directly related to the Lipschitz constant of the 
gradient u∇  which, according to the definition, is 

 ( ) ( ) ( )* * *

2

1TL L uγ
γ

= ∇ = + −ΨF U UFΨ I ΨΨ .  (35) 

Based on the results in [26], if the step size satisfies 

 ( )1/ Lγ γ≤ ,  (36) 

or equivalently 
 ( ) 1/L γ γ≤ ,  (37) 

then both pISTA and pFISTA will converge with speed 
described in Theorem 1 and Theorem 2, respectively.  

We will prove that  
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( )

1/ , 0 1

1 , 1

L

L

γ γ γ
γ γ

= < ≤


≤ >
.  (38) 

Proof of (38): 
For simplicity, we denote that 

* * * * *1 1T T

γ γ
 = − = − 
 

B ΨF U UFΨ ΨΨ ΨF U U I FΨ ,  (39) 

then we have  

 ( ) ( )
2

1 1
max i

i
L cγ

γ γ
 

= + = + 
 

B I B  (40) 

where ( )ic B  means the ith eigenvalue of B , because 

1/ γ+B I  is a Hermitian matrix. Therefore, we need to analyze

( )ic B . By using the tight frame property, we have 

 

* *

* *

1

1

T

T

λ
γ

λ
γ

 − = 
 

 
 − = 

 

ΨF U U I FΨ α α

U U I FΨ α FΨ α

,  (41) 

which indicates that all non-zero eigenvalues of B  satisfy  

 ( ) 1 1 1
,1T

ic c
γ γ γ

    ∈ − = − −    
    

B U U I  .  (42) 

Due to the redundancy, there exists ≠α 0  such that * =Ψ α 0 . 

Thus there are zero eigenvalues of B . Together, we have 

 

( )

( )

0 for at least one choice of

1 1
& ,1 for other choices of

i

i

c i

c i
γ γ

=

 ∈ − − 
 

B

B
.  (43) 

Equation (43) indicates that 

 

( ) ( )

( ) ( )

1 1
max , 0 1

1
max 1 , 1

i
i

i
i

L c

L c

γ γ
γ γ

γ γ
γ

 
= + = < ≤ 

 
 

= + ≤ > 
 

B

B

 (44) 

This concludes the proof of (38). 
The relation (38) means that, when 0 1γ< ≤ , one  has 

( ) 1/L γ γ= . This together with [26] implies that pISTA and 

pFISTA will converge with speed described in (30) and (31). 
This concludes the proof of Theorem 1 and Theorem 2. 

C. Connections with Balanced Sparse Models 

As shown in last section, both pISTA and pFISTA converge 
to an approximate model (29) instead of the exact analysis 
model (8). The model (29) is not new in general image 
restoration: It has been called the balanced sparse model that 
balances solutions between analysis and synthesis sparse 
models [16, 30, 43]. The performance of balanced sparse 
models in CS-MRI was studied in [20], showing that the 
reconstruction errors and images of balanced sparse models are 
comparable to those of analysis models for all tested tight 
frames [20]. Shen et al. [43] proposed an accelerated proximal 
gradient algorithm (APG) to solve balanced sparse models in 
common image restoration tasks, including deblurring, 

denoising and component decomposition, but not CS-MRI 
problems. Although from different perspectives, it turns out 
that pFISTA coincides with APG when the linear operator is 
chosen as undersampling Fourier operator. However, pFISTA 
is not a trivial extension for following reasons:  

1) Although tight frames are shown to improve the image 
quality significantly in CS-MRI, solving tight frames-based 
MRI image reconstruction fast and with minimal free 
parameters is still an open problem. The proposed pFISTA only 
introduces one parameter, the step size, and numerical 
experiments show that reconstruction errors are insensitive to 
this parameter (See Section IV).  

2) The APG algorithm is formulated and implemented in 
frame coefficients domain, and it needs to store copies of all 
redundant tight frame coefficients. Our pFISTA works on 
image domain, and there is no need to store extra tight frame 
coefficients. Therefore, the pFISTA can significantly reduce 
memory consumption for highly redundant systems. 

These two properties allow users in MRI to easily set 
algorithm parameters and utilize different tight frames for high 
quality image reconstruction from undersampled k-space data.  

IV. NUMERICAL EXPERIMENTS 

In this section, we conduct numerical experiments with 
different MRI datasets, undersampling patterns and tight 
frames to demonstrate the superior image qualities, fast 
convergence and insensitivity to specific parameter settings of 
pFISTA by comparing to FISTA for synthesis models [26], the 
state-of-the-art SFISTA for approximate analysis models [40] 
and ADMM for exact analysis models [33, 34]. Four MRI 
datasets used in numerical experiments are shown in Fig. 1. The 
phantom dataset (Fig. 1(a)) was acquired from a 3T Siemens 
MRI scanner with 32 coils using a turbo spin echo sequence 
(TR/TE = 2000/9.7 ms, field of view = 230×187 mm2, slice 
thickness = 5.0 mm). The T1-weighted brain image (Fig. 1(b)) 
was acquired from a healthy volunteer at a 1.5T Philips MRI 
scanner with 8 coils using sequence parameters (TR/TE = 
700/390 ms, FOV = 230×230 mm2, slice thickness = 5 mm). 
The T2-weighted brain images (Figs. 1(c) and (d)) were 
acquired from a healthy volunteer at a 3T Siemens Trio Tim 
MRI scanner with 32 coils using the T2-weighted turbo spin 
echo sequence (TR/TE = 6100/99 ms, FOV = 220×220 mm2, 

slice thickness = 3mm).  
Ground truth images with real and imaginary parts for 

numerical experiments are composed from these multi-channel 
data using the SENSE reconstruction with reduction factor one 
[12, 44]. Undersampling processes are retrospectively 
performed according to the masks shown in Fig. 1(e) and (f) 
with white and black pixels indicating sampled and unsampled 
k-space data point positions, respectively [1, 4-6, 45]. Fig. 1(e) 
emulates the 2D phase encodings in 3D imaging. Fig. 1(f) 
simulates the pseudo-radial sampling in 2D imaging since it 
consists of points on the Cartesian grid closest to the true radial 
trajectory, which is non-Cartesian. 

All numerical experiments are conducted on a Dell PC 
running Windows 7 operating system with Intel Core i7 2600 
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CPU. For quantitative comparison, we adopt the relative l2 
norm error (RLNE) defined as 

 
2 2

ˆRLNE : /= −x x x ,  (45) 

where x  is the ground truth image and x̂  is the reconstructed 
image. This criterion was previously used in MR image 
reconstructions when ground truth images are given [5, 12]. 

Several parameters need to be set first for the algorithms, 

namely the step size Fγ  for FISTA, step size Sγ  and smooth 

approximate parameter μ for SFISTA, and step size pγ  for 

pFISTA. We set 1Fγ =  and ( )1/ 1 1/Sγ μ= +  for fast 

convergence [26, 40] and μ is adjusted according to [40]. For 

pFISTA, 1pγ =  is set for both promising reconstruction 

performance and fast speed. In addition, the regularization 

parameters, Fλ  of FISTA, Aλ  of ADMM Sλ  of SFISTA and 

pλ  of pFISTA, in all experiments are manually tuned to make 

reconstruction errors as low as possible. 
 

 
Fig. 1.  Experimental datasets. (a) is a phantom, (b) is a T1-weighted brain 
image, (c) and (d) are T2-weighted brain images with slices #10 and #7, (e) and 
(f) are 30% sampled 2D Gaussian, and pseudo-radial masks. 

 

A. Main Results 

The shift-invariant discrete wavelet transform (SIDWT), 
which is also known as undecimated, translation-invariant, or 
stationary wavelets, [9, 15, 46, 47] is adopted as a typical tight 
frame in main numerical experiments. The shift-invariant 
property of wavelets is demonstrated to be beneficial in 
suppressing artifacts possibly induced by Gibbs phenomena in 
the neighborhood of discontinuities in images [9, 15]. Within 
the field of MRI, SIDWT has been utilized to reconstruct MR 
images and found to be superior than its orthogonal counterpart 
in noise suppression and artifact reduction [9-11, 47]. In all the 
experiments involving SIDWT, Daubechies wavelets with 4 
decomposition levels are utilized. 

As shown in Figs. 2-4, reconstructed images of FISTA 
exhibit obvious artifacts which are well suppressed in those of 
SFISTA and pFISTA. Accordingly, the reconstruction errors of 
FISTA appear higher than those of SFISTA and pFISTA. Note 
that FISTA solves synthesis sparse models, which usually 
produce sub-optimal results compared with analysis models 
solved by SFISTA and pFISTA in practice [10, 27, 29-31]. 

Similar results are obtained on the two brain images with 
complex structures, where better reconstruction results (Figs. 
3(e) and 4(e)) were achieved by using an advanced tight frame, 
patch based directional wavelets (PBDW) which explores the 
geometric information of MRI images [5].  

The left plot on Fig. 5 shows the empirical convergence of 
pFISTA and the compared algorithms. For fair comparison, we 
show the convergence rates of SFISTA against several settings 
of μ . One can observe that both pFISTA  and SFISTA achieve 

lower reconstruction errors than FISTA, implying analysis 
sparse model perform better than synthesis model. Besides, this 
plot indicates that pFISTA converges slightly faster than 
SFISTA with 1μ =  while achieving comparable errors. We 

also note that both the convergence speed and reconstruction 
error of SFISTA are sensitive to μ , making it difficult to tune 

in practice. 

B. Discussion 

1) Sensitivity of pFISTA to the step size 
We have proved in Section III(B) that pFISTA converges to 

a balanced sparse model between the analysis and synthesis 

models with pγ  is both the step size and balancing parameter. 

In this section, we numerically investigate how pγ  affects the 

convergence and reconstruction.  

The right plot in Fig. 5 shows that, with a larger pγ , pFISTA 

converges faster as Theorem 2 predicts, while the final RLNEs 
are almost unchanged. For this reason, we recommend setting 

1pγ =  in tight frames based CS-MRI for both promising 

reconstruction performance and fast speed. 
2) Experiments on other tight frames 

Tight frame sparse representation systems are crucial for 
CS-MRI. To better evaluate the proposed algorithm, we 
conduct experiments on three alternative tight frames: 
contourlets [4, 48], patch based directional wavelets (PBDW) 
[5] and framelets [17, 49, 50]. Both contourlets and PBDW 
explore the geometric information to further sparsify MR 
images thus are good at preserving image edges [4, 5, 48]. 
Results in Fig. 6 show that within each tight frame: a) RLNE of 
SFISTA and pFISTA are smaller than FISTA; b) The pFISTA 
converges faster than SFISTA when they achieve comparable 
RLNE; c) Reconstruction errors of pFISTA are insensitive to 
the step size. Thus, advantages of pFISTA over SFISTA and 
FISTA do not depend on the chosen tight frames. 
3) Experiments with different sampling ratios 

This section compares image reconstruction errors at 
different sampling ratios. Results in Fig. 7 imply that for a fixed 
sampling ratio, the SFISTA and pFISTA achieve nearly the 
same reconstruction errors. Besides, these two algorithms, 
solving approximate analysis sparse models, always produces 
much smaller reconstruction errors than those of the typical 
FISTA, solving synthesis sparse model. 
4) Comparison with ADMM for the exact analysis model 

Since pFISTA converges to a balanced sparse model, one 
may wonder how close the solution of pFISTA is to that of the 
exact analysis model. In this section, we conduct numerical 
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experiments to compare pFISTA to ADMM which is a popular 
solver for the analysis model [33, 34].  

As shown in Fig. 8 and Table I, the reconstructed errors of 
both SFISTA and pFISTA are almost the same as that of 
ADMM. Since, to the best of our knowledge, it is still unknown 
how to tune an optimal penalty parameter ρ  of ADMM in 

CS-MRI [33, 34, 37], we plot multiple convergence curves of 
ADMM with different values ρ  in Fig. 8 for fair comparisons. 

From Fig. 8, ADMM converges fastest with 0.01ρ = , but 

either a larger or smaller ρ  leads to a slower convergence. 

5) Numerical experiments with additive noise 
In this section, the algorithm performance is evaluated 

against noise. In this case, i.i.d. Gaussian noise with standard 
deviation 0 .0 1σ =  is added to both the real and imaginary parts 
of k-space of the imaging data in Fig. 1(c) and (d) (where the 
noise is very low due to the composition from fully sampled 
multi-channel data). Gaussian noise is a widely used noise 
model in MRI [51, 52]. We conduct Monte-Carlo type 
experiments with additions of multiple instances of noise from 
the same distribution. As shown in Fig. 9, both SFISTA and 
pFISTA achieve much lower average reconstruction errors than 
FISTA does. Reconstruction errors for all three algorithms vary 
slightly (≈1%) among multiple noise instances. Furthermore, 
Fig. 10 indicate that the pFISTA converges faster than SFISTA 
when they achieve comparable reconstruction errors and the 
reconstruction error of the pFISTA is insensitive to γ .  Thus, 

adding noise does not change the advantages of pFISTA over 
SFISTA and FISTA. Note that the regularization parameters 
here are also manually tuned to minimize reconstruction errors. 

 

 
Fig. 2.  Reconstructed phantom images using SIDWT. (a) is the ground truth 
image. (b)-(d) are reconstructed images of FISTA, SFISTA and pFISTA, 
respectively. (e)-(g) are difference images of (b)-(d) to (a). Note: 30% data are 
sampled according to the mask in Fig. 1(e). The reconstruction errors, RLNEs, 
of (b)-(d) are 0.048, 0.026 and 0.027, respectively. The regularization 

parameters are 310F S pλ λ λ −= = = . 
 

Fig. 3.  Reconstructed T1-weighted brain images. (a)-(c) are reconstructed 
images using SIDWT with FISTA, SFISTA and pFISTA, respectively. (d) and 
(e) are reconstructed image using PBDW with SFISTA and pFISTA, 
respectively. (f)-(j) are difference images of (a)-(e) to the ground truth image. 
Note: 30% data are sampled according to the mask in Fig. 1(e). The 
reconstruction errors, RLNEs, of (a)-(e) are 0.086, 0.069, 0.068, 0.056, and 

0.055, respectively. The regularization parameters are 310F S pλ λ λ −= = =  for 

SIDWT and 410S pλ λ −= =  for PBDW. 
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Fig. 4.  Reconstructed T2-weighted brain images. (a)-(c) are reconstructed 
images using SIDWT with FISTA, SFISTA and pFISTA, respectively. (d) and 
(e) are reconstructed image using PBDW with SFISTA and pFISTA, 
respectively. (f)-(j) are difference images of (a)-(e) to the ground truth image. 
Note: 30% data are sampled according to the mask in Fig. 1(f). The 
reconstruction errors, RLNEs, of (a)-(e) are 0.125, 0.091, 0.091, 0.076 and 

0.074 respectively. The regularization parameters are 310F S pλ λ λ −= = =  for 

SIDWT and 410S pλ λ −= =  for PBDW. 

 

 
Fig. 5.  Empirical convergence results. Left is the comparison of empirical 
convergence of FISTA, SFISTA and pFISTA. Right is the convergence of 
pFISTA with different step sizes γ. Note: The same settings as in the 
experiment of Fig. 4 are adopted here.  

  

 
Fig. 6.  Empirical convergence using other tight frames: Contourlet, PBDW and 
framelet. (a) RLNEs of FISTA, SFISTA and pFISTA using contourlet, (b) 
RLNEs of pFISTA with different γ using contourlet, (c) RLNEs of SFISTA and 
pFISTA using PBDW, (d) RLNEs of FISTA using PBDW, (e) RLNEs of 
pFISTA with different γ using PBDW, (f) is RLNEs of SFISTA and pFISTA 
using framelet, (g) RLNEs of FISTA using framelet, (h) RLNEs of pFISTA 
with different γ using framelet. Note: The T2-weighted image in Fig. 1 (c) and 
undersampling pattern in Fig. 1(f) are adopted in the experiment. 
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Fig. 7.  Reconstruction errors versus sampling ratios. (a) and (b) are the RLNEs 
of two MR images shown in Fig. 1(b) and (c), respectively. Note: The 
undersampling pattern in Fig. 1(e) and the PBDW are adopted in experiments. 

 
TABLE I 

RECONSTRUCTION ERRORS, RLNES, USING ADMM/SFISTA/PFISTA. 
 Fig. 1(a)  Fig. 1(b) Fig. 1(c) 

SIDWT 0.026/0.027/0.027 0.067/0.069/0.068 0.091/0.091/0.091 

Contourlet 0.061/0.061/0.061 0.087/0.087/0.087 0.128/0.128/0.128 

Framelet 0.026/0.030/0.026 0.067/0.070/0.068 0.083/0.090/0.084 

PBDW 0.034/0.038/0.033 0.055/0.062/0.055 0.071/0.085/0.071 

Note: Fig. 1(e) is adopted as the mask and the typical setting 310 / Sμ λ−=  is 

adopted for SFISTA. 

 

 
Fig. 8. Reconstruction errors of ADMM, SFISTA and pFISTA. Note: The 
T2-weighted image in Fig. 1(c) and mask in Fig. 1(f) are adopted in the 

experiment. The regularization parameters are 310A S pλ λ λ −= = = .  

V. CONCLUSION 

We propose a projected iterative soft-threshoding algorithm 
(pISTA) as well as a method to accelerate this algorithm with 
the same strategy as FISTA, resulting in projected FISTA 
(pFISTA), to solve sparse image reconstruction problems in 
compressed sensing magnetic resonance imaging. We further 
theoretically prove that the proposed pISTA and pFISTA 
converge to a balanced sparse model. Numerical results show 
that pFISTA achieves better reconstructions than FISTA does 
for synthesis sparse models and converges faster or comparable 
to the state-of-the-art SFISTA for approximate analysis sparse 
models. One main advantage of pFISTA is that reconstruction 
errors are insensitive to the additional algorithm parameter, 
thus allowing wide usage for different tight frames in MRI 
image reconstructions. In the future, the convergence of 
pFISTA for general frames [12] / dictionaries [6,53] may be 
analyzed and this algorithm should be tested for other sparse 
representation systems in as many CS-MRI applications as 
possible. 

 
Fig. 9 Reconstruction errors of FISTA, SFISTA and pFISTA with multiple 
instances of i.i.d. Gaussian noise. Note: The error bars are the standard 
deviations of reconstruction error over 10 instances of noise. The SIDWT is 
chosen as the tight frame. The regularization parameters are 

0.01, 0.006, 0.006F S pλ λ λ= = =  and 0.01, 0.006, 0.004F S pλ λ λ= = =  for 

experiments in (a) and (b), respectively.  
 

 
Fig. 10 Empirical convergence with noise. (a) is the convergences of FISTA, 
SFISTA and pFISTA, (b) is convergence of pFISTA with different γ. Note: The 
same numerical experiment settings as in Fig. 7(b) are adopted.  
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Appendix 
Proof of equivalence between (16) and (8) in the manuscript. 

Denoting that ( ) 2

1 2
1 / 2G λ= + −x Ψx y UFx , then one 

has  
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with ( ){ }| RangeΩ = ∈Φα α Ψ  where (a) from the property (6)

for ( )Range∈α Ψ , (b) and (c) are straightforward based on the 

definition of ( )G ⋅  and Ω . Next, we show that NΩ =  . On 
one hand, we have  
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(A2) and (A3) together leads to NΩ =  . This together with 
(A1) leads to 
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If *α  is a solution of (16) and *x  is a solution of  (8),  one has 

 ( ) ( ) ( )
(d) (e)

* * *G G G= =Φα x ΦΨx   (A5) 

where (d) from the second equation in (A1) and (A4), (e) from 
(3). Therefore, *Φα  is also a solution of the analysis model (8) 

and *Ψx  is also a solution of the synthesis-like model (16). 
This concludes the proof. 
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