
Computing Moore-Penrose Inverses of Toeplitz Matrices by

Newton’s Iteration ∗

Yimin Wei† Jianfeng Cai‡ Michael K. Ng§

Abstract

We modify the algorithm of [1], based on Newton’s iteration and on the concept of

ε-displacement rank, to the computation of the Moore-Penrose inverse of a rank-deficient

Toeplitz matrix. Numerical results are presented to illustrate the effectiveness of the method.

Keywords: Newton’s iteration, Moore-Penrose inverse, Toeplitz matrix

AMS subject classification: 15A09, 65F20

1 Introduction

Let A be an m × n Toeplitz matrix, i.e., ai,j = ai−j for i = 1, · · · ,m and j = 1, · · · , n. In [1],

Bini, Codevico and Van Barel have used Newton’s iteration and the concept of ε-displacement

rank to the computation of the generalized inverse A† of A. In their papers, they assume that

Toeplitz matrices A have full rank. The main contribution of this paper is to modify their

algorithm based on Newton’s iteration and on the concept of ε-displacement rank, to compute

the Moore-Penrose inverse of a rank-deficient Toeplitz matrix.

The outline of this paper is as follows. In Section 2, we review displacement rank and ε-

displacement rank. In Section 3, we introduce our modified Newton’s iteration and present a

simple residual error bound. We remark that the residual error bound contains the errors due

to Newton’s iterations and the errors in the approximation of the displacement representation
∗Project supported by the National Natural Science Foundation of China and Hong Kong Research Grants

Council Grant No. HKU 7130/02P.

†Department of Mathematics, Fudan University, Shanghai, 200433, P. R. China. E-mail: ymwei@fudan.edu.cn.

‡Institute of Mathematics, Fudan University, Shanghai, 200433, P. R. China.
§Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong. E-mail:

mng@maths.hku.hk.

1

of the Moore-Penrose inverse of a Toeplitz matrix. Finally, numerical results are reported to

illustrate the convergence of our method.

2 Displacement rank and ε-displacement rank

Let us denote

Zn ≡




0

1 0
.

1 0



∈ Rn×n,

and set L(x) and U(y) to be the lower triangular and the upper triangular Toeplitz matrices

defined by the first column x and the first row yT respectively. The matrix L(x) is of dimension

m×n if m ≥ n or m×m if m < n. Analogously, the matrix U(x) is of dimension n×n if m ≥ n

or m× n if m < n. We introduce the displacement operator

∆(A) = ZmA−AZn

for A ∈ Rm×n. We call the rank of ∆(A) the displacement rank of A [2] and denote it with

drk(A). It is easy to show that drk(A) is at most 2 for a Toeplitz matrix A ∈ Rm×n.

Theorem 1 ([3]) Let A ∈ Rm×n has displacement rank k and gi ∈ Rm, hi ∈ Rn for i = 1, · · · , k
such that ∆(A) =

∑k
i=1 gih

T
i . Then A = L(Ae1) +

∑k
i=1 L(gi)U(Znhi), where Ae1 denotes the

first column of A.

The above theorem implies that one can compute the the product Ax by means of 2k + 2

FFTs, 2k + 1 convolutions of length 2m and 2k + 1 FFTs, k convolutions of length 2n, where

k is the displacement rank of A. In order to reduce the computational cost per step of the

modified Newton’s iteration presented in the next section, we use the concept ε-displacement

rank introduced in [4].

Definition 1 For a given ε > 0 define the ε-displacement rank of a matrix A as

drkε(A) = min
‖E‖≤ε

rank(∆(A) + E).

With the help of the singular value decomposition (SVD) of ∆(A), one can easily get drkε(A).

Theorem 2 Let ∆(A) = UΣV T =
∑k

i=1 σiuiv
T
i (σ1 ≥ σ2 ≥ · · · ≥ σk > 0) be the SVD of ∆(A).

Let ε be such that ε < σ1. Then drkε = r if and only if σr > ε ≥ σr+1.

2

The orthogonal displacement representation (odr) [4] of A is defined as follows:

A = L(Ae1) +
k∑

i=1

σiL(ui)U(Znvi)

and the corresponding orthogonal displacement generator (odg) is given by the quadruple

(Ae1, U, σ, V) where σ = (σ1, · · · , σk). Given 0 < ε < σ1, if drkε = r, we can get an approximate

Aε to A:

Aε = L(Ae1) +
r∑

i=1

σiL(ui)U(Znvi). (1)

We call the above expression the approximate orthogonal displacement representation (aodr) of

A and the associated generator is called approximate orthogonal displacement generator (aodg)

denoted by (Ae1, Û , σ̂, V̂).

Finally, let us introduce the operator truncε(·) defined on the sets of orthogonal displacement

generators as follows:

truncε((a, U, σ, V)) = (a, Û , σ̂, V̂), (2)

where

σ̂ = (σ1, · · · , σk̂
), Û = [u1, · · · , uk̂

], V̂ = [v1, · · · , vk̂
]

and

σ
k̂

> ε ≥ σ
k̂+1

.

Theorem 3 ([4]) Let A ∈ Rm×n, r = drkε(A) ≤ drk(A) = k, σ1, · · · , σk be the singular values

of ∆(A) and Aε be defined by (1). Then

‖A−Aε‖ ≤
√

nm
k∑

i=r+1

σi ≤
√

nm(k − r)ε.

We remark that there are many other displacement operators for Toeplitz matrices [4, 3, 11,

6]. For example,if A is a square matrix, we can define

∆+(A) = C+A−AC−, ∆−(A) = C−A−AC+,

where C+ = Zn + e1e
T
n and C− = Zn − e1e

T
n . It is easy to check rank(∆+(A)) ≤ 2 and

rank(∆−(A)) ≤ 2. Similarly, there exist theorems for such displacement operators corresponding

to Theorem 3, see [4].

3 Modified Newton’s Iteration

In this section, we give the algorithm to compute the Moore-Penrose inverse of A.

3

Definition 2 Let A ∈ Rm×n, the unique solution X ∈ Rn×m for the following four equations:

AXA = A XAX = X (AX)T = AX and (XA)T = XA

is called the Moore-Penrose inverse of A, and we denote it A†.

There are many algorithms, such as recurrent neural networks, successive matrix squaring

algorithm and singular value decomposition to compute A† [5, 7, 8, 9], including Newton’s

iteration [1, 5, 6]. The classical Newton’s iteration is

Xi+1 = 2Xi −XiAXi, i = 0, 1, 2,

Newton’s iteration for matrix inversion was proposed by Schultz in 1933 and was well studied

[5]. Newton iteration is simple to describe and to analyze and is numerically stable. Since it is

rich in matrix-matrix multiplication, it can be efficiently implemented on parallel computers.

For a rank-deficient matrix, if we set X0 = αAT , where α is a proper scalar, then Xi will

converge to the Moore-Penrose inverse A† of A [10]. If A is a Toeplitz matrix, the displacement

rank A† is at most 4 [11], but the displacement rank of Xi grows exponentially with i until

the value of n is reached. The computational cost at each Newton’s iteration step increases

significantly while i grows. In order to make the Newton’s iteration a useful tool for computing

the Moore-Penrose inverse of a Toeplitz matrix, we use the ε-displacement rank to control the

growth of the displacement of Xi. We will present two modified Newton’s iterations to compute

A†.

3.1 Modified Newton’s Iteration I

In our first modified Newton’s iteration, we set X0 = αAT AAT . It easy to check that it

satisfies ‖AA† − αAAT AAT ‖ < 1 and then naturally satisfies ‖A†A − αAT AAT A‖ < 1 too.

The parameter α is easy to choose. In fact, we set α = 1/ρ, where ρ is the spectrum radius

ρ(AAT AAT) = ρ(AT AAT A), which can be computed by a few steps of power iteration [12] in a

very low computational cost.

We note that each Xi has a factor AT on the left and the right sides, i.e., Xi = AT YiA
T .

Therefore, we rewrite Newton’s iteration as follows:

Y0 = αA, Xi = AT YiA
T and Yi+1 = 2Yi − YiA

T AAT Yi, i = 0, 1, 2,

Our modified Newton’s iteration I is based on the above formula and defined by the following

recurrence:

Wi = 2Yi − YiA
T AAT Yi, Yi+1 = truncεi(Wi), and Xi+1 = AT Yi+1A

T (3)

4

where truncε(·) is defined (2).

We compute and store the odg of Yi instead of Yi itself through out the iteration. If the odg

of Yi is (y, UYi , σYi , VYi), then ∆(Yi) = UYiΣYiV
T
Yi

, where ΣYi=diag(σYi). Observe that

∆(Wi) = 2∆(Yi)−∆(Yi)AT AAT Yi − Yi∆(AT AAT)Yi − YiA
T AAT ∆(Yi), (4)

we have drk(Wi) ≤ k + 2drk(Yi) where k = drk(AT AAT) ≤ 6.

The odg of AT AAT is (a, UA, σA, VA),that is ∆(AT AAT) = UAΣAV T
A , where ΣA = diag(σA).

Rewriting (4) into matrix form, we obtain

∆(Wi) = [UYi YiA
T AAT UYi YiUA]




2ΣYi 0 −ΣYi

−ΣYi 0 0

0 −ΣA 0







V T
Yi

V T
A Yi

V T
Yi

AT AAT Yi


 . (5)

We denote the above right three matrices UWi ,ΣWi , V
T
Wi

respectively. Thus,the odg of Yi+1 =

truncεi(Wi) can be computed by the following algorithm:

Algorithm 1 Compute the odg of Yi+1 (the aodg of Wi = 2Yi − YiA
T AAT Yi)

Input: The odg of Yi (yi, UYi , σYi , VYi) and the truncation value εi.

Output: The odg of Yi+1 (yi+1, UYi+1 , σYi+1 , VYi+1).

Computation:

(i) Compute yi+1 = 2yi − YiA
T AAT yi.

(ii) Set ΣYi= diag(σYi) and compute the matrices UWi , VWi , ΣWi.

(iii) Compute the QR decompositions UWi = Q1R1 and VWi = Q2R2.

(iv) Compute the SVD of R1ΣWiR
T
2 = UΣV ,where Σ = diag(σ1, · · · , σk) and determine

r such that σr+1 ≤ εi < σr.

(v) Set σYi+1 = (σ1, · · · , σr), UYi+1 = Q1U(:, 1 : r) and VYi+1 = Q2V (:, 1 : r).

It is easy to see that the computational cost of the above algorithm is about O(hk) FFTs,

O((2h + k)2(n + m)) and O((2h + k)3) extra flops, where h = drk(Yi) and k = drk(AT AAT).

The following theorem analyzes the convergence of our modified Newton iteration for a

certain choice of εi.

Theorem 4 Let X0 = αAT AAT be such that ‖AA† − AX0‖ ≤ 1 − θ. Let Ri = AA† − AXi

and Ri = A†A − XiA be the residual sequences. If εi = min(‖Ri‖2, ‖Ri‖2)θ/(2
√

nm(2hi +

k)‖A‖3),where hi = drk(Yi). Then it holds ‖Ri‖2 ≤ (1− θ/2)2
i
and ‖Ri‖2 ≤ (1− θ/2)2

i
.

Proof: We denote Ei = Wi − Yi+1, thus,

‖Ei‖ ≤
√

nm(2hi + k)εi = min(‖Ri‖2, ‖Ri‖2)θ/(2‖A‖3).

5

We can prove

Ri+1 = AA† −AXi+1 = AA† −AAT Yi+1A
T

= AA† −AAT WiA
T + AAT EiA

T

= AA† −AAT (2Yi − YiA
T AAT Yi)AT + AAT EiA

T

= AA† −AAT YiA
T −AAT YiA

T + AAT YiA
T AAT YiA

T + AAT EiA
T

= AA† −AA†AAT YiA
T −AAT YiA

T AA† + AAT YiA
T AAT YiA

T + AAT EiA
T

= (AA† −AAT YiA
T)2 + AAT EiA

T

= R2
i + AAT EiA

T .

Therefore,

‖Ri+1‖ ≤ ‖Ri‖2 + ‖A‖3‖Ei‖ ≤ ‖Ri‖2(1 + θ/2).

It follows that

‖Ri‖ ≤ ((1− θ)(1 + θ/2))2
i ≤ (1− θ/2)2

i
.

The case for the residual sequence {Ri} can be proved analogously.

The above theorem reveals the quadratic convergence of our modified Newton’s iteration for

the certain εi. However, in practice the bound is too pessimistic and may lead to an unnecessary

large growth of the displacement rank. A more realistic strategy is to choose a larger εi which

may make the sequence {Xi} converges to A† slower.

On the other hand, it is expensive to compute the residual sequence since A† is not known

in advance. A cheap method is to compute the resI(Xi) defined by Definition 2

resI(Xi) = max{‖(A−AXiA)e1‖, ‖(Xi−XiAXi)e1‖, ‖(AXi−(AXi)T)e1‖, ‖(XiA−(XiA)T)e1‖},
(6)

where e1 is the first column of the identity matrix. We note that each of the above term can be

computed efficiently by using a few FFTs. We use this strategy in our numerical experiments.

Here we summarize the modified Newton’s iteration I.

Algorithm 2 Modified Newton’s iteration I.

Input: Integers n,m, a residual error bound ε, the first row and column vectors

of the Toeplitz matrix A.

Output: An approximation X of A† given in terms of AT Y AT which Y is given by

its odg (y, UY , σY , VY).

Computation:

(i) Compute the odg of AT AAT

6

(ii) Choose α such that ‖AA† − αAAT AAT ‖ < 1 , compute the odg of Y0 = αA

and set i = 0

(iii) Determine a εi and compute the odg of Yi+1 by means Algorithm 1

(iv) Set i = i + 1. Let Xi = AT YiA
T. If the residual resI(Xi) > ε in (6),

then goto (iii), otherwise output the result.

3.2 Modified Newton’s Iteration II

Our second modified Newton’s iteration is based on the following theorem [10]:

Theorem 5 Let A(1,3) be a generalized inverse which satisfies the 1st and the 3rd equations in

Definition 2 and A(1,4) be a generalized inverse which satisfies the 1st and the 4th equations in

Definition 2 for A ∈ Rm×n, then

A† = A(1,4)AA(1,3). (7)

In our modified Newton’s iteration II, we compute A(1,3) and A(1,4) respectively by means

of Newton’s iteration and then obtain A† by (7).

We set X0 = αAT where α is a scalar which satisfies ‖AA†−αAAT ‖ < 1. Similar to Method

I, we choose α = 1/ρ where ρ is the spectrum radius of AAT . Therefore, each term Xi has the

form YiA
T . Then the classical Newton’s iteration can be rewritten as follows:

Y0 = αI, Xi = YiA
T , and Yi+1 = 2Yi − YiA

T AYi.

We truncate Yi at each step

Wi = 2Yi − YiA
T AYi, Yi+1 = truncεi(Wi), and Xi+1 = Yi+1A

T . (8)

The following theorem states that the iteration (8) with certain chosen εi converges quadratically

to A(1,3).

Theorem 6 Let X0 = αAT be such that ‖AA† − AX0‖ ≤ 1 − θ.Let Ri = AA† − AXi be the

residual sequence. If εi = ‖Ri‖2θ/(2
√

nm(2hi + k)‖A‖2), where hi = drk(Yi). Then it holds

‖Ri‖2 ≤ (1− θ/2)2
i
.

Proof: We denote Ei = Wi − Yi+1, thus we have

‖Ei‖ ≤
√

nm(2hi + k)εi = ‖Ri‖2θ/(2‖A‖2).

7

We can show that

Ri+1 = AA† −AXi+1 = AA† −AYi+1A
T

= AA† −AWiA
T + AEiA

T

= AA† −A(2Yi − YiA
T AYi)AT + AEiA

T

= AA† −AYiA
T −AYiA

T + AYiA
T AYiA

T + AEiA
T

= AA† −AA†AYiA
T −AYiA

T AA† + AYiA
T AYiA

T + AEiA
T

= (AA† −AYiA
T)2 + AEiA

T

= R2
i + AEiA

T .

Therefore,

‖Ri+1‖ ≤ ‖Ri‖2 + ‖A‖2‖Ei‖ ≤ ‖Ri‖2(1 + θ/2).

It follows that

‖Ri‖ ≤ ((1− θ)(1 + θ/2))2
i ≤ (1− θ/2)2

i
.

In order to obtain A(1,4), we set X0 = αAT , which is the same as the initial value in the

iteration to obtain A(1,3). We extract a factor AT on the left side of the iteration sequence Xi.

Hence, we iterate as follows:

Wi = 2Yi − YiAAT Yi, Yi+1 = truncεi(Wi), and Xi+1 = AT Yi+1. (9)

Similarly, we have the following convergent theorem.

Theorem 7 Let X0 = αAT be such that ‖A†A −X0A‖ ≤ 1 − θ. Let Ri = A†A −XiA be the

residual sequence. If εi = ‖Ri‖2θ/(2
√

nm(2hi + k)‖A‖2), where hi = drk(Yi). Then it holds

‖Ri‖2 ≤ (1− θ/2)2
i
.

Here we summarize the modified Newton’s iteration II.

Algorithm 3 Modified Newton’s iteration II.

Input: Integers n,m, a residual error bound ε, the first row and column vectors

of the Toeplitz matrix A.

Output: An approximation X of A† given in terms of AT Y ′AY AT which Y and Y ′ are

given by their odgs.

Computation:

(i) Approximate an element Y AT in A(1,3) analogously to Algorithm 2 such that

‖(A−AY AT A)e1‖ < ε and ‖(AY AT − (AY AT)T)e1‖ < ε.

8

(ii) Approximate an element AT Y ′ in A(1,4) analogously to Algorithm 2 such that

‖(A−AAT Y ′A)e1‖ < ε and ‖(AT Y ′A− (AT Y ′A)T)e1‖ < ε.

(iii) Output the result X by (7) and compute the residual error resI(X) in (6).

We remark that for the displacement operator ∆+(A) and ∆−(A), Algorithms 1, 2 and 3

can be simplified because we do not require to compute the first column of Yi at each step.

4 Numerical experiments

In this section, we perform numerical experiments on the following singular square Toeplitz

matrices: the first column of the matrix is (1, 1/2, · · · , 1/(n− 1), 1)T and the first row is chosen

such that the last column is same as the first column. The Moore-Penrose inverses can be

expressed by the formula :

A† =

[
I

eT
1

]
(I + e1e

T
1)−1C−1(I + e1e

T
1)−1 [I e1] ,

where C is a circulant matrix whose first column is given by (1, 1/2, · · · , 1/(n − 1))T , I is the

(n− 1)-by-(n− 1) identity matrix, and e1 is the first column of I.

For our modified Newton’s iteration I, the truncation value εi is set to be resI(Xi)/‖A‖4. In

Table 1, we report the number of iterations Nstep required for convergence. The maximum drk

Mdrk of Yi and the sum Sdrk of the drk of Yi are also reported. According to Table 1, we see

that the quantities Nstep, Mdrk and Sdrk grow slowly when n increases.

For our modified Newton’s iteration II, we need two algorithms to compute the Moore-

Penrose inverse of A. In the two algorithms, we set the truncation value resII(Yi)/‖A‖3, where

resII(Yi) = max{‖(A−AY AT A)e1‖, ‖(AY AT − (AY AT)T)e1‖}. In Table 2, we report the total

number Nstep of iterations required by two algorithms, the maximum drk Mdrk and the sum

Sdrk of drk in the two algorithms. Again we find that when n increases, the quantities Nstep,

Mdrk and Sdrk grow slowly.

In Tables 1 and 2, we also list the error ‖A† − X‖ between the Moore-Penrose inverse A†

and the computed solution X. We see from the tables that res(X) and ‖A†−X‖ are about the

same. These results demonstrate that our proposed method can compute quite good estimate

of the Moore-Penrose inverse. We also note that the Mdrk (the maximum drk of Yi) and

Sdrk in the modified Newton’s Method II are smaller than those in the modified Newton’s

Method I. Also the Nstep of Method II is slightly larger than that of Method I. According to

the tests, the computational times required by Method II are about half less times than the

times required by Method I. We remark that the computational times required by the original

9

Newton’s iteration listed in Table 3 are significantly greater than those required by the proposed

algorithms especially when n is large. The memory requirement of the original Newton’s iteration

is also very large, for instance, there is not enough memory for the calculation when n = 4096.

To illustrate the convergence of the method, we give in Figures 1, 2 and 3 the convergence

of the Newton iterations I and II for different n. For the Newton iterations II, we require to

determine two generalized inverses A(1,3) and A(1,4). We see in the figures that the proposed

method converges very quickly (cf. Theorems 4 and 6), especially when the iterates are close to

the solutions. To further illustrate the convergence of the method, we show ‖A†−Xi‖ in Figure

4. It is clear that such errors decrease very quickly as iterations increase.

As a conclusion, the main contribution of this paper is to modify the algorithm of [1], based

on Newton’s iteration and on the concept of ε-displacement rank, to the computation of the

Moore-Penrose inverse of a rank-deficient Toeplitz matrix. Numerical results are presented to

demonstrate the effectiveness of the proposed method.

0 5 10 15 20 25
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Step

R
es

n=4096

n=8192

n=16384

n=32768

Figure 1: Convergence of the modified Newton’s iterations I.

References

[1] D. Bini, G. Codevico and M. Van Barel, Solving Toeplitz least squares problems by means

of Newton’s iteration, Numer. Algo., to appear.

[2] T. Kailath an A. Sayed, Displacement structure:Theory and applications, SIAM Review,

37 (1995) 297-386.

10

0 2 4 6 8 10 12 14
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Step

R
es

n=4096

n=8192

n=16384

n=32768

Figure 2: Convergence of the modified Newton’s iteration II for A(1,3).

0 2 4 6 8 10 12 14
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Step

R
es

n=4096

n=8192

n=16384

n=32768

Figure 3: Convergence of the modified Newton’s iteration II for A(1,4).

11

n Nstep Mdrk Sdrk res(X) ‖A† −X‖ time (seconds)

32 16 11 103 1.2e-013 6.9e-014 1.4e00

64 17 11 112 5.6e-014 3.7e-014 2.6e00

128 17 12 112 1.5e-013 5.7e-014 3.1e00

256 18 12 122 1.9e-013 6.4e-014 5.9e00

512 18 12 123 2.5e-012 2.1e-012 9.8e00

1024 19 13 130 2.7e-013 1.4e-013 2.6e01

2048 19 13 133 9.0e-012 7.1e-012 5.4e01

4096 20 13 141 5.7e-013 2.8e-013 2.7e02

8192 20 14 149 1.9e-012 3.3e-012 5.8e02

16384 21 15 154 3.7e-013 2.2e-013 1.4e03

32768 21 15 158 3.4e-012 3.0e-012 3.8e03

Table 1: Results for the modified Newton’s iteration I.

n Nstep Mdrk Sdrk res(X) ‖A† −X‖ time (seconds)

32 20 7 99 2.5e-012 4.2e-012 1.4e00

64 20 7 102 3.1e-010 2.1e-009 2.2e00

128 22 7 114 1.2e-011 3.0e-012 3.0e00

256 22 7 110 8.5e-012 1.1e-011 4.0e00

512 22 8 111 6.5e-010 2.3e-009 4.8e00

1024 24 8 122 2.0e-011 7.2e-012 1.5e01

2048 24 9 126 7.1e-012 3.3e-012 2.9e01

4096 24 9 128 2.7e-011 3.4e-011 1.5e02

8192 24 8 126 3.2e-010 1.1e-009 2.8e02

16384 26 9 140 1.9e-010 9.7e-011 7.1e02

32768 26 9 142 1.6e-010 8.4e-011 1.8e03

Table 2: Results for the modified Newton’s iteration II.

12

0 5 10 15 20 25
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Step

||A
+
−

X
||

n=4096

n=8192

n=16384

n=32768

Figure 4: ‖A† −Xi‖ of the modified Newton’s iterations I.

[3] D. Bini and V. Pan, Matrix and Polynomial Computations, Vol 1: Fundamental Algorithms,

Birkauser, Boston, 1994.

[4] D. Bini and B. Meini, Approximate displacement rank and applications, in Structured

Matrices in Mathematics,Computer Science and Engineering II, V. Olshevsky Editor, Con-

temporary Mathematics 281, pp. 215-232, American Mathematical Society, Rhode Island,

2001.

[5] V. Pan and R. Schreiber, An improved Newton iteration for generalized inverse of a matrix

with applications, SIAM J. Sci. Stat. Comput., 12 (1991) 1109-1131.

[6] V. Pan, Y. Rami and X. Wang, Structured matrices and Newton’s iteration: Unified ap-

proach, Linear Algebra Appl., 343-344(2002) 233-265.

[7] Y. Wei, Recurrent neural networks for computing weighted Moore-Penrose inverse, Appl.

Math. Comput., 116 (2000) 279-287.

[8] Y. Wei, H. Wu and J. Wei, Successive matrix squaring algorithm for parallel computing

the weighted generalized inverse A+
MN , Appl. Math. Comput., 116 (2000) 289-296.

[9] Y. Wei and M. Ng, Weighted Tikhonov filter matrices for ill-posed problem, Applied Math-

ematics and Computation, to appear.

[10] A. Ben-Israel and T. Greville, Generalized Inverses: Theory and Applications, John Wiley,

New York, 1974; 2nd Edition, Springer-Verlag, New York, 2003.

13

n time (seconds)

32 1.0e-02

64 5.0e-02

128 2.7e-01

256 2.7e00

512 1.9e01

1024 1.5e02

2048 1.3e03

4096 >2.0e04

8192 out of memory

Table 3: Computational times required by the original Newton’s iteration

[11] G. Heinig and K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators,

Akademie-Verlag, Berlin, 1984.

[12] G. Golub and C. Van Loan, Matrix Computations, The John Hopkins University Press,

Third Edition, 1996.

14

