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Abstract

In this paper, we import interval method to the iteration for computing Moore-Penrose inverse of
the full row (or column) rank matrix. Through modifying the classical Newton iteration by interval
method, we can get better numerical results. The convergence of the interval iteration is proven. We
also give some numerical examples to compare interval iteration with classical Newton iteration.
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1 Introduction and preliminaries

The concept of interval analysis [3] is to compute with interval of real numbers in place of real numbers.
While floating point arithmetic is affected by rounding errors, and can produce inaccuracy results, in-
terval arithmetic has the advantage of giving rigorous bounds for the exact solution. One application is
that some parameters are not known exactly but only known to lie within a certain interval; algorithms
may be implemented using interval arithmetic with uncertain parameters as intervals to produce an in-
terval which bounds all possible results. If the lower and upper bounds of the interval can be rounded
up and down respectively, then the finite precision calculations can be performed intervals to give an
enclosure of the exact solution. As for the interval iterative method for computing the Moore-Penrose
inverse of a matrix A, if we can ensure that A† contained by the interval solution at every iteration
step, and the width of the intervals can be reduced, then we can get the enclosure with A†. The recent
results on computing Moore-Penrose inverse and linear least squares problem can be found in [5-8, 13-22].

This paper gives some modified interval iterations which are the expansion of some work about in-
terval computation completed by Alefeld and Herzberger ([1, 2]). Before the central discussion, some
necessary knowledge about interval algorithm will be introduced.

A real interval x is a nonempty set of real numbers

x = [x, x] = {x ∈ R : x ≤ x ≤ x}
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where x is called the infimum, and x is called the supremum.

The set of all interval over R is denoted by IR

IR = {[x, x] : x, x ∈ R, x ≤ x}.

The midpoint of x is given by

mid(x) =
1
2
(x + x)

and the radius of x
rad(x) =

1
2
(x− x)

may also be used to define an interval x. If an interval has zero radius it is called a point interval or thin
interval, and contains a single point represented by

[x, x] ≡ x.

A thick interval has a radius greater than zero. If x is an interval

d(x) = (x− x).

The absolute value of an interval x is defined as

| x |= max{| x |, x ∈ x}.

An interval x is a subset of an interval y, is denoted by x ⊆ y, if and only if y ≤ x and y ≥ x.

An interval matrix is a matrix, whose elements are intervals. An interval matrix A is a subset of an
interval matrix B, is denoted by A ∈ B, if and only if Aij ∈ Bij , for any i, j ∈ R, where Aij is the
elements of A, and Bij is the elements of B. The midpoint matrix of an interval matrix A is

mid(A)ij = mid(Aij)

where Aij are the interval elements of A.

Given x = [x, x] and y = [y, y], the four elementary operations are defined by

x + y = [x + y, x + y]

x− y = [x− y, x− y]

x× y = [min{xy, xy, xy, xy}, max{xy, xy, xy, xy}]
1/x = [1/x, 1/x], if x > 0 or x < 0

x÷ y = x× 1/y.

If x = [x, x] and y = [y, y] with y ≤ 0 ≤ y and y < y, then the operation rules for division are as follows

x/y =





[x/y,∞] if x ≤ 0 and y = 0,
[−∞, x/y] ∪ [x/y,∞] if x ≤ 0 and y < 0 < y,
[−∞, x/y] if x ≤ 0 and y = 0,
[−∞,∞] if x < 0 < x,
[−∞, x/y] if x ≥ 0 and y = 0,
[−∞, x/y] ∪ [x/y,∞] if x ≥ 0 and y < 0 < y,
[x/y,∞] if x ≥ 0 and y = 0.
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The addition and subtraction of infinite or semi-infinite intervals are then defined by the follows:

[x, x] + [−∞, y] = [−∞, x + y],
[x, x] + [y,∞] = [x + y,∞],

[x, x] + [−∞,∞] = [−∞,∞],
[x, x]− [−∞,∞] = [−∞,∞],
[x, x]− [−∞, y] = [x− y,∞],

[x, x]− [y,∞] = [−∞, x− y].

For addition and multiplication the associative and commutative laws hold. However

x(y + z) 6= xy + xz

except for special cases, therefore the distributive law does not hold. Instead the sub-distributive law is

x(y + z) ⊆ xy + xz.

Another example of one operation rule valid in real arithmetic that does not hold for interval computation.
For example,

x− x 6= 0.

Let x = [2, 3], which gives x − x = [−1, 1] 6= 0. The reason is that an interval containing the difference
between all possible results of two independent numbers lying within x is calculated, rather than the
difference between two identical numbers.

An important result of interval analysis ia as follows:

Lemma 1.1. ([11]) If the function f(z1, z2, · · · , zn) is an expression with a finite number z1, · · · , zn ∈ IR
and interval operations (+,−,×,÷), and if

x1 ⊆ z1, · · · , xn ⊆ zn

then
f(x1, · · · , xn) ⊆ f(z1, · · · , zn).

Definition 1.1. ([4, 12]) Let X ∈ Rn×m. If it satisfies the following conditions:

AXA = A, XAX = X, (AX)T = AX, (XA)T = XA

where BT is the transpose of B, then X is called the Moore-Penrose inverse of A and denoted by A†. We
denote the orthogonal projector PR(A) = AA†.

2 Classical iteration methods for computing A†

An iterative method for computing A† is a set of instructions for generating a sequence {Xk : k = 1, 2, · · · }
converges to A†. The instructions specify how to select the initial approximation X0 and proceed from
Xk to Xk+1 for each k, and when to stop after having obtained a reasonable approximation of A†. The
rate of convergence of such an iterative method is determined by the corresponding sequence of residuals

Rk = PR(A) −AXk, k = 1, 2, · · · (2.1)

which converges to 0 as Xk → A†. An iteration method is said to be a pth − order method, for some
p > 1, if there is a positive constant c such that

‖ Rk+1 ‖ ≤ c ‖ Rk ‖, k = 0, 1, · · · (2.2)

for any multiplicative matrix norm.
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In analogy with the nonsingular case, we consider iterative method of the type

Xk+1 = Xk + CkRk, k = 0, 1, · · · (2.3)

where {Ck : k = 0, 1, · · · } is a suitable sequence, and X0 is the initial approximation.

One objection to (2.3) as an iterative method for computing A† is that (2.3) requires at each iteration
the residual Rk, for which one needs the projection PR(A), whose computation is a task comparable to
computing A†. This difficulty will be overcome here by choosing the sequence {Ck} in (2.3) to satisfy

Ck = CkPR(A), k = 0, 1, · · · (2.4)

For such a choice we have

CkRk = Ck(PR(A) −AXk)
= Ck(I −AXk) (2.5)

and (2.3) can therefore be rewritten as

Xk+1 = Xk + CkTk, k = 0, 1, · · · (2.6)

where

Tk = I −AXk, k = 0, 1, · · · (2.7)

Lemma 2.1. ([4]) Let 0 6= A ∈ Rm×n and let the initial approximation X0 and its residual R0 satisfy

X0 ∈ R(AT , AT ) = {X | X = AT BAT , B ∈ Rm×n} (2.8)

and the spectral radius

ρ(R0) < 1 (2.9)

then for any integer p ≥ 2, the sequence

Xk+1 = Xk(I + Tk + T 2
K + · · ·+ T p−1

k )
= Xk

[
I + (I −AXk) + (I −AXk)2 + · · ·+ (I −AXk)p−1

]
(2.10)

converge to A† as k →∞, and the corresponding sequence of residual satisfies

‖ Rk+1 ‖ ≤ ‖ Rk ‖p
, k = 0, 1, · · · (2.11)

3 Interval iterative methods for computing A†

In this section, we will present the interval iterative methods for computing A†.

Theorem 3.1. Let 0 6= A ∈ Rm×n (m ≤ n) and the rank of A is m. Let the initial approximation X0

and its residual R0 = I −Am(X(0)) satisfy

m(X(0)) ∈ R(AT , AT ) = {X | X = AT BAT , B ∈ Rm×n} (3.1)

and

ρ[I −Am(X(0))] < 1 (3.2)

where m(X(0)) denotes the midpoint matrix of X(0). The sequence

X(k+1) = m(X(k))
r−2∑
v=0

[I −Am(X(k))]v + X(k)[I −Am(X(k))]r−1, k ≥ 0 (3.3)

converge to A† as k →∞. I is the identity matrix and X(k) ∈ IRn×m, (k = 0, 1, · · · ). r > 1 is a natural
constant. It follows from Theorem 3.1 that

‖d(X(k+1))‖ ≤ γ‖d(X(k))‖r, γ ≥ 0 (3.4)

where ‖.‖ denotes the matrix norm, d(.) denotes the distance matrix.

4



Proof: The midpoint matrix satisfies

m(X + Y ) = m(X) + m(Y ) (3.5)

m(X − Y ) = m(X)−m(Y ) (3.6)

where X, Y ∈ IRm×n

m(BX) = Bm(X), m(XC) = m(X)C (3.7)

where B ∈ Rm×n, X ∈ IRn×p and C ∈ Rp×q.

If B ∈ Rm×n, it satisfies

m(B) = B. (3.8)

From (3.3),(3.5),(3.6),(3.7) and (3.8), it is obvious that the sequence {X(k)} satisfies

m(X(k+1)) = m(X(k))
r−1∑
v=0

[I −Am(X(k))]v (3.9)

where m(X(k)) ∈ Rn×m, from (3.9) and Theorem 2.1, we can get

m(X(∞)) = A†. (3.10)

Finally we will show that

X(k) → A† ⇐⇒ m(X(k)) → A†. (3.11)

It is obvious that the interval matrix sequence {X(k)} satisfies

d(X(k+1)) ≤ d(X(k)) | [I −Am(X(k))]r−1 | (3.12)

where (d(X(k)))ij = d(X(k)
ij )

| (I −Am(X(k)))r−1 |ij =| (I −Am(X(k)))r−1
ij |. (3.13)

If k →∞, we can get

lim
k→∞

d(X(k)) = 0. (3.14)

Then from (3.10) and (3.14), it is obvious that

lim
k→∞

m(X(k)) = A† ⇐⇒ lim
k→∞

X(k) = A†. (3.15)

Since

d(X(k+1)) ≤ d(X(k))|[I −Am(X(k))]r−1|
= d(X(k))|[AA† −Am(X(k))]r−1|
≤ d(X(k))[|A||A† −m(X(k))|]r−1

≤ d(X(k))2−(r−1)[|A|d(X(k))]r−1 (3.16)

we can get a matrix norm ‖.‖′, and it satisfies

‖d(X(k+1))‖′ ≤ 2−(r−1)‖A‖′r−1‖d(X(k))‖′r (3.17)

all the matrix norms satisfy

γ1‖B‖ ≤ ‖B‖′ ≤ γ2‖B‖, γ1 > 0, γ2 > 0 (3.18)

from (3.19),(3.20) and (3.21), we can get

‖d(X(k+1))‖γ1 ≤ 2−(r−1)γr−1
2 ‖A‖r−1γr

2‖d(X(k))‖r (3.19)

so (3.4) is given. 2

Similarly, we have another conclusion.

5



Theorem 3.2. Let 0 6= A ∈ Rm×n (m ≥ n) and the rank is n. The initial approximation X(0) and its
residual R0 = I −m(X(k))A satisfy

m(X(0)) ∈ R(AT , AT )

and

ρ[I −m(X(0))A] < 1.

The sequence {X(k)}

X(k+1) =

[
r−2∑
v=0

[I −m(X(k))A]v
]

m(X(k)) + [I −m(X(k))A]r−1X(k)

converges to A† as k →∞.

The proof of Theorem 3.2 is similar to that of Theorem 3.1.

As a matter of fact, from Theorem 3.1, we can know that

A† ∈ X(k) (3.20)

if

A† ∈ X(0) (3.21)

because

A† = m(X(k−1))
r−2∑
v=0

[I −Am(X(k−1))]v + A†[I −Am(X(k−1))]r−1

∈ m(X(k−1))
r−2∑
v=0

[I −Am(X(k−1))]v + X(k−1)[I −Am(X(k−1))]r−1 (3.22)

from induction we can prove it.

All the proof is based on Theorem 3.1, Theorem 3.2 has similar conclusions.

From the proof we can see that the convergence statement is also valid even if X(0) is an arbitrary
interval matrix not necessarily containing A†. In this case however, the iterates do not necessarily con-
taining A†. We note that criterion (3.2) depending only on the midpoint matrix m(X(0)) of the given
inclusion matrix X(0). The width d(X(0)) may on the other hand be arbitrary. This means that if one
has a suitable approximation m(X(0)) for A† that satisfies ρ[I −Am(X(0))] < 1, then using certain norm
estimates one is always able to produce an interval matrix X(0) such that A† ∈ X(0). The sequence of
iterates generated according to (3.3), then converges to A† by Theorem 3.1.

Since the sequence of iterates from (3.3) always contains A† according to (3.16), it seems natural to
form the intersection of the new iterate with the previous iterate and then to continue the iteration with
this new potentially improved iteration.





Y (k+1) = m(X(k))
∑r−2

v=0[I −Am(X(k))]v + X(k)[I −Am(X(k))]r−1, k ≥ 0,

X(k+1) = Y (k+1) ∩X(k).

(3.23)

Using this iteration procedure one obtains a monotonic sequence

X(0) ⊇ X(1) ⊇ X(2) · · ·
of inclusion for A†. The following numerical example does show, however, that the convergence criterion
(3.2) is not sufficient for convergence in general.
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Theorem 3.3. Let 0 6= A ∈ Rm×n (m ≤ n) and the rank of A is m. Let the initial approximation X0

be an n×m interval matrix for which A† ∈ X0 and its residual R0 = I −Am(X(0)) satisfy

m(X(0)) ∈ R(AT , AT ) = {X | X = AT BAT , B ∈ Rm×n} (3.24)

and

ρ(|I −AX|) < 1 for all X ∈ X(0) (3.25)

where m(X(0)) denotes the midpoint matrix of X(0). The sequence (3.23) converges to A† as k → ∞.
I is the identity matrix and X(k) ∈ IRn×m (k = 0, 1, · · · ). r > 1 is a natural constant. The sequence
{d(X(k))} may be bounded as follows, by using a matrix norm:

‖d(X(k+1))‖ ≤ γ′‖d(X(k))‖r. (3.26)

Proof: The sequence
X(0) ⊇ X(1) ⊇ X(2) · · ·

of iterates always converges to an interval matrix X ([9]). We now show that under the assumptions of
the theorem we must necessarily have d(X) = 0. We therefore define

Y = m(X)
r−2∑
v=0

[I −Am(X)]v + X[I −Am(X)]r−1 (3.27)

and obtain X ⊆ Y . Then we obtain d(X) ≤ d(Y ). For d(X) we get from (3.23) that

d(X)|I −Am(X)|r−1 ≥ d(X)|[I −Am(X)]r−1| = d(Y ) ≥ d(X) (3.28)

which implies that

d(X)(I − |I −Am(X)|r−1) ≤ 0. (3.29)

The assumption ρ(|I −Am(X)|) < 1 implies the existence of [(I − |I − Am(X)|r−1)]−1. This inverse is
also nonnegative. From (3.29), it follows that d(X) ≤ 0.

As for the proof of (3.4) one first shows that the inequality ‖d(Y (k+1))‖′ ≤ γ‖d(Xk)‖′r holds for a
monotonic and consistent matrix norm ‖.‖′. From this it follows that the inequality

‖d(X(k+1))‖′ ≤ ‖d(Y (k+1))‖′ ≤ γ‖d(Xk)‖′r

is valid since X(k+1) ⊆ Y (k+1) and the monotonic norm ‖.‖′. Analogous to the proof of (3.18), we can
use the equivalence theorem to prove the final statement.

In fact from the proof of (3.16), it follows that each iterate X(k) from (3.23) contains A† if X(0)

contains A†. The convergence criterion (3.25) depends on the width of the inclusion matrix X(0) for A†

as opposed to the criterion (3.2). Formulas may easily be given for this dependence. If, for example,
an interval matrix X(0) satisfies the inequality ‖I − Am(X(0))‖ < 1, for a monotonic and multiplicative
norm ‖.‖, then we have that

‖d(X(0))‖ < 2(1− ‖I −Am(X(0))‖)/‖A‖ (3.30)

is a sufficient criterion for the statement that ‖I−AX‖ < 1 for all X ∈ X(0)([2]). If (3.30) is now satisfied
after a certain iteration step, then the iteration may be continued as the procedure (3.23). 2

The computation of Moore-Penrose inverse of full column rank matrix also has the similar conclusions.
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4 Numerical examples

From Theorem 3.1 we choose parameter r = 2. The classical iteration is the Newton method. We
compute these examples by Intlab which is a toolbox of Matlab ([10]).

Example 4.1. We generate a random 50× 60 matrix. We use classical Newton iteration and improve
interval iteration to compute A† to compare two algorithms. The initial approximation X(0) = α ∗ AT ,
and α is a constant interval. From (3.2) we know it will satisfy the convergence conditions if we specify
a good α. In practice, we can use matrix norm to estimate α.

0 10 20 30 40 50 60
−14

−12

−10

−8

−6

−4

−2

0

iteration

lo
g(

||I
−

A
X

||)

classical newton

Figure 1: Classical Newton iteration

From these figures we can see the convergence of the upper and lower boundary of the interval itera-
tion directly.

Figure 4 describes the difference of the accuracy between two methods, blue line represents the classi-
cal method result, red and green lines represent the upper boundary and lower boundary of the interval
method. From the figure we can see that the lines of interval method is much smoother than that of
classical method and the result of interval method has higher accuracy.

Example 4.2. We generate a random 500 × 600 matrix. We will compute its Moore-Penrose inverse
by two methods to compare them. Other conditions are the same as Example 4.1.

Blue line represents the classical method result, red and green lines represent the upper boundary
and lower boundary of the interval method.
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Figure 2: The upper boundary result of interval it-
eration
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Figure 3: The lower boundary result of interval iter-
ation

5 Concluding Remarks

In this paper we present the interval method for computing Moore-Penrose inverse of full row (or column)
rank matrix. Compared with the classical iteration, the interval method can give higher accuracy results,
but the computation time is longer. How to overcome these problems will be the future research topic.
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