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STATISTICAL INFERENCE FOR PRINCIPAL

COMPONENTS OF SPIKED COVARIANCE MATRICES
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In this paper, we study the asymptotic behavior of the extreme
eigenvalues and eigenvectors of the high dimensional spiked sample
covariance matrices, in the supercritical case when a reliable detec-
tion of spikes is possible. Especially, we derive the joint distribution
of the extreme eigenvalues and the generalized components of the
associated eigenvectors, i.e., the projections of the eigenvectors onto
arbitrary given direction, assuming that the dimension and sample
size are comparably large. In general, the joint distribution is given
in terms of linear combinations of finitely many Gaussian and Chi-
square variables, with parameters depending on the projection direc-
tion and the spikes. Our assumption on the spikes is fully general.
First, the strengths of spikes are only required to be slightly above the
critical threshold and no upper bound on the strengths is needed. Sec-
ond, multiple spikes, i.e., spikes with the same strength, are allowed.
Third, no structural assumption is imposed on the spikes. Thanks
to the general setting, we can then apply the results to various high
dimensional statistical hypothesis testing problems involving both
the eigenvalues and eigenvectors. Specifically, we propose accurate
and powerful statistics to conduct hypothesis testing on the princi-
pal components. These statistics are data-dependent and adaptive to
the underlying true spikes. Numerical simulations also confirm the
accuracy and powerfulness of our proposed statistics and illustrate
significantly better performance compared to the existing methods
in the literature. Especially, our methods are accurate and powerful
even when either the spikes are small or the dimension is large.

1. Introduction. Covariance matrices play important role in multi-
variate analysis and high dimensional statistics, and find applications in
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many scientific fields. Moreover, many statistical methodologies and tech-
niques rely on the knowledge of the structure of the covariance matrix, to
name but a few, Principal Component Analysis, Discriminant Analysis and
Cluster Analysis. For detailed discussions of the applications and method-
ologies, we refer the readers to the monographs [1, 39, 43, 74] for a review.
It is well-known in the high dimensional setting when the dimension is com-
parable with or much larger than the sample size, a direct application of
the sample covariance matrix for hypothesis testing may result in untrustful
conclusions [82]. Consequently, a thorough understanding of the distribu-
tions of the eigenvalues and eigenvectors of sample covariance matrices is in
demand for high dimensional statistical inference.

In the literature of high dimensional statistics, a popular and sophisticated
model is the spiked covariance matrix model proposed by Johnstone in [40],
where a finite number of spikes (i.e., eigenvalues detached from the bulk of
the spectrum) are added to the spectrum of the population covariance ma-
trix; see (1.2) and (1.4) below. Throughout the paper, with certain abuse of
terminology, we use the word “spike” to represent either a detached eigen-
value 1+ di (c.f. (1.2), (1.4)) or the whole rank one matrix corresponding to
a detached eigenvalue (1 + di)viv

∗
i (c.f. (1.2), (1.4)). These spikes can have

various practical meanings in different fields. For instance, they correspond
to the first few important factors in factor models arising from financial eco-
nomics [33, 64], the number of patterns in genetic variation across the globe
[28], the number of clusters in gene expression data [44] and the number of
signals in single detection [62, 65]. In this paper, we investigate the distri-
butions of the principal components of the spiked sample covariance matrix,
i.e, the sample counterparts of the extreme eigenvalues and eigenvectors (es-
pecially those spikes) of the population covariance matrices. The principal
components of spiked sample covariance matrices play important roles in
Principal Component Analysis for high dimensional data. A lot of work has
been devoted to estimating the principal components in various settings. For
instance, sparse principal component analysis [15, 41] is proposed to esti-
mate the spiked eigenvalues and eigenvectors assuming some sparsity struc-
ture in the population eigenvectors; factor-model based estimators [2, 3, 66]
for the eigenvectors are constructed if the population covariance matrix is
of approximate factor-model type; and some regularization-based methods
[56, 75, 83] have been proposed under various structural assumptions.

Despite the wide applications of the principal components in high dimen-
sional statistics, most of the literature focus on the estimation part. Much
less is known about their distributions, especially for the leading eigenvec-
tors. As a consequence, a thorough study of the statistical inference for the
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population covariance matrix in the high dimensional setting is still missing,
especially for hypothesis testing problems involving both eigenvalues and
eigenvectors. For instance, eigenvectors and eigenspaces play an important
role in statistical learning. However, the existing literature has only been able
to test whether the eigenvectors or eigenspaces of the population covariance
matrix are equal to some given ones under the assumption that the dimen-
sion is much smaller than the sample size [35, 49, 63, 76, 77]. For another
example, in Principal Component Analysis, the loadings are transformations
of the original variables to the eigenvectors. They describe how much each
variable contributes to a particular eigenvector and researchers are inter-
ested in hypothesis testing and constructing confidence intervals for them
[50, 67, 81]. The loadings are scaled eigenvectors using their corresponding
eigenvalues and therefore, the joint distribution of the extreme eigenvalues
and eigenvectors of the sample covariance matrices will be needed to conduct
the hypothesis testing on them.

Driven by these challenges, we study the joint distributions of the extreme
eigenvalues and the generalized components of their associated eigenvectors
for the spiked sample covariance matrices, in the high dimensional setting.
Based on these results, we will be able to perform hypothesis testings with
statistics constructed from both eigenvalues and eigenvectors.

Specifically, in this paper, we consider the sample covariance matrices of
the form

Q = TXX∗T ∗, (1.1)

where T is aM ×M deterministic matrix and X is aM×N random matrix
with independent entries and EXX∗ = IM . Further, we assume that the
population covariance matrix Σ := TT ∗ admits the following form

Σ = IM + S, (1.2)

where S is a fixed-rank deterministic positive semi-definite matrix. We first
impose the following assumptions.

Assumption 1.1. Throughout the paper, we suppose the following as-
sumptions hold.
(i)(On dimensionality ): We assume that M ≡M(N) and N are comparable
and there exist constants τ2 > τ1 > 0 such that

y ≡ yN =M/N ∈ (τ1, τ2). (1.3)
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(ii)(On S): We assume that S admits the following spectral decomposition

S =
r∑

i=1

diviv
∗
i , (1.4)

where r ≥ 1 is a fixed integer. Here d1 ≥ · · · ≥ dr > 0 are the ordered eigen-
values of S, and vi = (vi1, . . . , viM )∗’s are the associated unit eigenvectors.
All di ≡ di(N) may be N -dependent.
(iii)(On X): For the matrix X = (xij), we assume that the entries xij ≡
xij(N) are real random variables satisfying

Exij = 0, Ex2ij = 1/N.

Moreover, we assume the existence of large moments, i.e., for any integer
p ≥ 3, there exists a constant Cp > 0, such that

E|
√
Nxij|p ≤ Cp <∞.

We further assume that all
√
Nxij ’s possess the same 3rd and 4th cumulants,

which are denoted by κ3 and κ4 respectively.

Throughout the paper, for simplicity, we will mainly work with the setting

T = Σ
1
2 . (1.5)

We remark that our results hold for much more general T satisfying Σ =
TT ∗. We refer to Remark 2.8 for more discussions on the extension along
this direction.

1.1. Summary of previous related theoretical results. In this section, we
summarize the results related to the spiked sample covariance matrix from
the Random Matrix Theory literature.

We denote by µ1 ≥ · · · ≥ µM∧N ,M ∧ N := min{M,N}, the nontrivial
eigenvalues of Q and ξi the unit eigenvector associated with µi. The primary
interest of the sample covariance matrix Q lies in the asymptotic behavior
of a few largest µi’s and the associated ξi’s when N is large, under various
assumptions of di’s and vi’s. Significant progress has been made on this topic
in the last few years. It has been well-known since the seminal work of Baik,
Ben Arous and Péché [7] that the largest eigenvalues µi’s undergo a phase
transition (BBP transition) w.r.t. the size of di’s. On the level of the first
order limit, when di >

√
y, the eigenvalue µi jumps out of the support of the

Marchenko-Pastur law (MP law) and converges to a limit determined by di,
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while in the case of di ≤
√
y, it sticks to the right end of the Marchenko-

Pastur (MP) law (1 +
√
y)2. In the former case, we call µi an outlier or

outlying eigenvalue, while in the latter case we call µi a sticking eigenvalue.
On the level of the second order fluctuation, it was revealed in [7] that a

phase transition for µi takes place in the regime di−
√
y ∼ N− 1

3 . Specifically,

if di −
√
y ≪ N− 1

3 (subcritical regime), the eigenvalue µi still admits the

Tracy-Widom type distribution; if di −
√
y ≫ N− 1

3 (supercritical regime),

the eigenvalue µi is asymptotically Gaussian; while if di−
√
y ∼ N− 1

3 (critical
regime), the limiting distribution of the eigenvalue µi is some interpolation
between Tracy-Widom and Gaussian. The works [40] and [7] are on real
and complex spiked Gaussian covariance matrices respectively. On extreme
eigenvalues, further study for more generally distributed covariance matrices
can be found in [8, 22, 12, 69, 5, 6, 16, 27, 52]. The limiting behavior of the
extreme eigenvalues has also been studied for various related models, such as
the finite-rank deformation of Wigner matrices [22, 12, 24, 25, 34, 46, 47, 70,
73], the signal-plus-noise model [13, 53, 26], the general spiked β ensemble
[17, 18], and also the finite-rank deformation of general unitary/orthogonal
invariant matrices [14, 10, 11].

In contrast, the study on the limiting behavior of the eigenvectors asso-
ciated with the extreme eigenvalues is much less. On the level of the first
order limit, it is known that the ξi’s are delocalized and purely noisy in the
subcritical regime, but has a bias on the direction of vi in the supercritical
regime. We refer to [14, 13, 21, 26, 69, 16, 27] for more details of such a
phenomenon. It was recently noticed in [16] that a di close to the critical
point can cause a bias even for the non-outlier eigenvectors. On the level of
the second order fluctuation, it was proved in [16] that the eigenvectors are
asymptotically Gaussian in the subcritical regime, for the spiked covariance
matrices. In the supercritical regime, a non-universality phenomenon was
shown in [23] and [9] for the eigenvector distribution for the finite-rank de-
formation of Wigner matrices and the signal-plus-noise model, respectively.
The non-universality phenomenon in the supercritical regime has been pre-
viously observed in [24, 46, 47] for the extreme eigenvalues of the finite-rank
deformation of Wigner matrices. Here we also refer to [58, 42, 32] for related
study on the extreme eigenstructures of various finite-rank deformed models
from more statistical perspective.

1.2. An overview of our results. In the theoretical part of this paper, we
will primarily focus on the distribution of the eigenvectors ξi’s associated
with the outlying eigenvalues µi’s. That means, we will focus on the super-
critical regime, in contrast to the work [16] where the eigenvector distribu-
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tion in the subcritical regime was obtained. The results in the supercritical
regime are particularly important for the statistical applications, since it is
well-known that a reliable detection of spikes based on eigenvalues is only
possible in this regime in general; see [59, 60, 61, 71] for instance. Our as-
sumption on the spikes is fully general (c.f. Assumption 2.3). Especially, we
do allow di’s to be divergent and multiple (i.e. some di’s are identical). In
case that the spikes are simple (i.e. di’s are all distinct), we also establish the
joint distribution of the outlying eigenvalues and the associated eigenvectors
for the spiked covariance matrices. This is the primary goal of the Princi-
pal Component Analysis from statistics point of view. More specifically, in
this paper, we are interested in the distribution of the largest µi’s and the
generalized component of the top eigenvectors, i.e., the projections of those
eigenvectors onto a general direction. More specifically, let w ∈ SM−1

R
be any

deterministic unit vector. We will study the limiting distribution of |〈w, ξi〉|2
in the supercritical regime under general assumption of the spikes, and also
state the joint distribution of |〈w, ξi〉|2 and µi’s in case that the spikes are
simple. We emphasize here that in case that a spike is multiple, one can
also describe the joint distribution of eigenvalues and eigenvectors using the
approach in this paper. But the result does not have a succinct form so we
omit it from the statements of our main theorems; see Remark 2.10 for more
details. Nevertheless, we will describe (in certain equivalent form) and prove
an extension of the joint eigenvalue-eigenvector distribution to the multi-
ple case in the application part, Section 3, and present applications of this
result.

In the application part of this paper, we construct statistics to infer the
principal components. We mainly focus on two hypothesis testing problems
regarding the eigenspaces, (3.2) and (3.3). To our best knowledge, it is the
first time that these problems are tackled for spiked covariance matrices in
the high dimensional regime (1.3) without imposing any structural assump-
tions on the spikes. Our proposed statistics make use of some plug-in esti-
mators and are adaptive to the information of unknown spikes, for instance,
their values and multiplicity. Thanks to the joint distribution of the eigen-
values and eigenvectors, we can easily establish the asymptotic distributions
of our testing statistics; see Section 3.1 for more details. Our methodology is
simple, computationally cheap and easy to be implemented. Extensive nu-
merical simulations lend strong support to our testing statistics. Especially,
our proposed statistics are accurate and powerful regardless of the value of
y and magnitude of the spikes. Moreover, for testing (3.2), our statistics
show better performance compared to the existing methods in the literature
both in terms of accuracy and power. We point out that our methodology
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can be used to study other hypothesis testing problems regarding Principal
Component Analysis and this will be discussed in Section 3.

Finally, we remark that our theory and applications are highly compat-
ible. The theoretical results are not only interesting and natural on their
own, they are also highly motivated by the applications, which are all fun-
damental problems in the statistics literature. Especially, the generality of
our assumptions in the theoretical part is not pursued only for technical
interest; it is indeed indispensable in the application part. We leave more
details about our contribution and novelties to Section 2.2, since they can be
better illustrated only after necessary notations and main results are stated.

Notation: Throughout the paper, the sample size N will be the fun-
damental parameter which goes to ∞. The symbol oN (·) stands for any
quantity going to 0 as N goes to ∞. We use c and C to denote positive fi-
nite constants that do not depend on the N . Their values may change from
line to line. For two positive quantities AN , BN depending on N we use the
notation AN ≍ BN to denote C−1AN ≤ BN ≤ CAN for some constant
C > 1. Further, we write AN

.
= BN if AN = BN (1 + oN (1)).

For vectors v,w ∈ C
N , we write v∗w = 〈v,w〉 for their scalar product.

We emphasize here, unless otherwise specified, the vectors in this paper are
real vectors and thus v∗w = v⊤w. Further, for a matrix A, we denote by
‖A‖op its operator norm, while we use ‖v‖ to represent the ℓ2 norm for a
vector v.

We use double brackets to denote index sets, i.e. for n1, n2 ∈ R, Jn1, n2K :=
[n1, n2]∩Z. In addition, we use 1n = 1√

n
(1, . . . , 1)∗ to denote the n-dimensional

normalized all-1 vector. Further, we denote by 1(E) or 1E the indicator
function of an event E.

Organization: The paper is organized as the following: In Section 2, we
state our main results and proof strategy. In Section 3, we discuss several
applications of our results and present the simulation results. In Section 4,
we introduce some basic notions and preliminary results for later discussion.
Section 5 is devoted to the Green function representations of our eigenvalue
and eigenvector statistics. Then in Section 6, we prove our main result,
Theorem 2.5, based on a key technical recursive moment estimate for some
Green function statistics; see Proposition 6.2. The proof of Theorem 2.9
is also stated in Section 6. The proof of Proposition 6.2 is postponed to
Appendix B. In addition, in Appendix A, we collect some basic formulas
concerning the derivatives of Green function, for the convenience of the
reader. In Appendix C, we provide the technical proofs for the statistics
used in Section 3. Finally, Appendix D collects some additional simulation
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results regarding non-Gaussian data.

2. Main results, proof strategy and novelties. In this section, we
state our main results and explain our proof strategy and novelties. We will
need the following notions of a high-probability bound and convergence in
distribution. The notion of stochastic domination was introduced in [31],
which provides a precise statement of the form “XN is bounded by YN up
to a small power of N with high probability”.

Definition 2.1. (Stochastic domination) Let

X =
(
XN (u) : N ∈ N, u ∈ UN

)
, Y =

(
YN (u) : N ∈ N, u ∈ UN

)

be two families of random variables, where Y is nonnegative, and UN is
a possibly N -dependent parameter set. We say that X is bounded by Y ,
uniformly in u, if for all small ̺ > 0 and large φ > 0, we have

sup
u∈UN

P
(
|XN (u)| > N̺YN (u)

)
≤ N−φ

for large N ≥ N0(̺, φ). Throughout the paper, we use the notation X =
O≺(Y ) or X ≺ Y when X is stochastically bounded by Y uniformly in u.
Note that in the special case when X and Y are deterministic, X ≺ Y means
for any given ̺ > 0, |XN (u)| ≤ N̺YN (u) uniformly in u, for all sufficiently
large N ≥ N0(̺).

In addition, we also say that an N -dependent event E ≡ E(N) holds with
high probability if, for any large ϕ > 0,

P(E) ≥ 1−N−ϕ,

for sufficiently large N ≥ N0(ϕ).

Definition 2.2. Two sequences of random vectors, XN ∈ R
k and YN ∈

R
k, N ≥ 1, are asymptotically equal in distribution, denoted as XN ≃ YN ,

if they are tight and satisfy

lim
N→∞

(
Ef(XN)− Ef(YN)

)
= 0

for any bounded continuous function f : Rk → R.
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2.1. Main results. Since we will focus on the supercritical regime, we fur-
ther make the following assumption. First, we recall the notation J1,mK :=
{1, · · · ,m}.

Assumption 2.3. Let ǫ > 0 be any small but fixed constant. Let di ≡
di(N), i ∈ J1, rK be the eigenvalues of S in (1.4). There exists a maximum
integer r0 ≡ r0(ǫ) ∈ J1, rK, such that for any i ∈ J1, r0K,

di − y1/2 > N− 1
3
+ǫ (2.1)

for all sufficiently large N ≥ N0(ǫ). Moreover, for a fixed i ∈ J1, r0K, there
exists a (unique) index set I ≡ I(i) ⊂ J1, r0K such that i ∈ I and for any t ∈ I,

dt = di, δi := min
j∈Ic

|di − dj | > d
3/2
i (di − y1/2)−

1
2N− 1

2
+ǫ, (2.2)

where we denote I
c := J1, rK \ I. By definition, δt (or I(t)) is the same for all

t ∈ I(i).

Remark 2.4. It is known that the BBP phase transition takes place
on the regime di − y1/2 ∼ N− 1

3 ; see for instance [7, 46, 16]. Hence, (2.1)
ensures that we are in the supercritical regime. Further, note that we do not
assume the spikes di ≡ di(N) to be bounded in N . That means, we do allow
di ∼ N c for any c > 0, say. In (2.2), the first identity means that we allow di
to be multiple. And the second inequality is the so-called non-overlapping
condition which guarantees that the distinct (possibly multiple) di’s are well-
separated such that the eigenvalues µi’s corresponding to distinct di’s do not
have essential overlap on the scale of fluctuation; see detailed explanation

in [16] for instance. Note that the prefactor d
3/2
i is not included in the

non-overlapping condition in [16]. But this factor is needed to cover the
case when the N -dependent di is large. More precisely, when di is large,
as stated in Theorem 2.3 of [16], the fluctuation of µi around its limiting
location is of order O≺(diN−1/2), and thus the lower bound on the RHS of
the second inequality in (2.2) which separates the limiting locations of µi’s
corresponding to distinct di’s is slightly larger than the fluctuation of µi’s.
We emphasize here that in reality, it can certainly happen that two distinct
di’s are close enough to violate the non-overlapping condition. However,
in this case, since the fluctuation of their sample counterparts, µi’s, have
essential overlap, effective inference of di’s based on µi’s is believed to be
impossible in general. Also, since eigenvectors are sensitive to the eigenvalue
gap, in this case, inference of vi’s based on ξi’s will also be unreliable.
Therefore, the non-overlapping condition together with (2.1) can be regarded
as a nearly minimal condition for a reliable detection of spikes.
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We will state our main results under Assumptions 1.1 and 2.3, after
necessary notations are introduced. Rewrite the spectral decomposition of
Σ as Σ =

∑M
i=1 σiviv

∗
i = IM +

∑M
i=1 diviv

∗
i , where by Assumption 1.1,

dr+1 = · · · = dM = 0. Further, we emphasize here that the specific choice
of the orthonormal vi’s for i = r + 1, . . . ,M is irrelevant to our discussion
since only

∑M
j=r+1 viv

∗
i will be involved. In the sequel, we fix an i and con-

sider a (possibly) multiple di. Let I ≡ I(i) be the index set of this multiple
di in Assumption 2.3. In order to study the generalized components of the
eigenvectors of the |I|-fold multiple di, we introduce

ZI :=
∑

t∈I
vtv

∗
t , (2.3)

the orthogonal projection onto Span{vt}t∈I and the corresponding random
projection

PI :=
∑

t∈I
ξtξ

∗
t , (2.4)

which is the sample counterpart of ZI. Note that in case |I| > 1, it is meaning-
less to do statistical inference for an individual diviv

∗
i , since in the multiple

case, there is an arbitrariness in the choice of {vt}t∈I as a basis for certain
subspace. Hence, it is more natural to study ZI and its sample counterpart.
For any unit w ∈ R

M , denote its projection onto Span{vt}t∈I by

wI := ZIw, (2.5)

and its weighted projection onto Span{vj}j∈J1,MK\I by

ςI :=
∑

j∈J1,MK\I

di
√
dj + 1

di − dj
〈w,vj〉vj (2.6)

with its normalized version

ς0I :=

{
ςI/‖ςI‖, if ςI 6= 0;

0, otherwise.
(2.7)

For any vectors al = (al(i)) ∈ R
M , l ∈ Z

+, we set the notations

sk1,··· ,kt(a1, · · · ,at) =
M∑

j=1

a1(j)
k1 · · · at(j)kt . (2.8)



STATISTICAL INFERENCE FOR PRINCIPAL COMPONENTS 11

For instance, s1,3(a1,a2) =
∑M

j=1 a1(j)a2(j)
3.

For brevity, we introduce the following auxiliary functions for d > 0

f(d) :=
y(1 + d)

d(d+ y)

(
1 +

d(1 + d)

d+ y

)
, g(d) :=

2
√

(d+ 1)(d +
√
y)

d+ y
, (2.9)

h(d) :=
d+ 1

d+ y
, l(d) :=

1 + d√
d(d+ y)

. (2.10)

With the above notations, we further define two symmetric matrices Aw
I
and

Bw
I

of size (r+2)×(r+2), indexed by the vectors wI, ςI, {vt}t∈I and {vj}j∈Ic .
Here we recall the definition I

c = J1, rK \ I from Assumption 2.3. The only
non-zero entries of Aw

I
are given by the ones below and those followed by

symmetry

Aw
I (wI,wI) = 2yh(di)

2(1 + yh(di)
2)‖wI‖4, Aw

I (ςI, ςI) = g(di)
2‖wI‖2,

Aw
I (vt,vt) = h(di), Aw

I (vj ,vj) = l(di)
2‖wI‖2,

Aw
I (ςI,vt) = g(di)

√
h(di)〈wI,vt〉, Aw

I (ςI,vj) = g(di)l(di)〈ς0I ,vj〉‖wI‖2,
Aw

I (vt,vj) =
√
h(di)l(di)〈wI,vt〉〈ς0I ,vj〉, for t ∈ I, j ∈ I

c. (2.11)

The only non-zero entries of Bw
I

are given by the ones below and those
followed by symmetry

Bw
I (wI,wI) = f(di)

2s4(wI), Bw
I (ςI, ςI) = g(di)

2s2,2(ς
0
I ,wI),

Bw
I
(vt1 ,vt2) = h(di)s1,1,2(vt1 ,vt2 , ς

0
I
), Bw

I
(vj1 ,vj2) = l(di)

2s1,1,2(vj1 ,vj2 ,wI),

Bw
I (wI, ςI) = f(di)g(di)s1,3(ς

0
I ,wI), Bw

I (wI,vt) = f(di)
√
h(di)s1,1,2(vt, ς

0
I ,wI),

Bw
I (wI,vj) = f(di)l(di)s1,3(vj ,wI), Bw

I (ςI,vt) = g(di)
√
h(di)s1,1,2(vt,wI, ς

0
I ),

Bw
I (ςI,vj) = g(di)l(di)s1,1,2(vj , ς

0
I ,wI),

Bw
I
(vt,vj) =

√
h(di)l(di)s1,1,1,1(vt,vj ,wI, ς

0
I
), for t, t1, t2 ∈ I, j, j1, j2 ∈ I

c.
(2.12)

To avoid the ambiguity on the realizations of the matrices Aw
I
and Bw

I
due

to the possible permutations of the vector-indices wI, ςI, {vt}t∈I, {vj}j∈Ic, we
fix the ordering of these indices as follows:wI, ςI, followed by vt’s in ascending
order of t ∈ I, and then followed by vj’s in ascending order of j ∈ I

c. Then,
Aw

I
(wI, ςI) will be the (1, 2)-entry of Aw

I
, for instance. Correspondingly, in

the sequel, we use the shorthand notation such as (α, β, {γt}t∈I, {δj}j∈Ic) to
represent the vector with components α, β, γt, δj ∈ R, t ∈ I, j ∈ I

c. Further,
the ordering of the components in (α, β, {γt}t∈I, {δj}j∈Ic) is analogous to the
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ordering of the vector-indices of the matrices Aw
I

and Bw
I
. Similar notations

are used throughout the paper without further explanation.
With the above notations, we now state the first main theorem regarding

the general components.

Theorem 2.5. Suppose that Assumptions 1.1, 2.3 and the setting (1.5)
hold. Fix an i ∈ J1, r0K and let w ∈ SM−1

R
be any deterministic unit vec-

tor. In case di ≡ di(N) → ∞ as N → ∞, we additionally assume that
|y − 1| ≥ τ0 for some small but fixed τ0 > 0. Then there exist random vari-
ables Θw

wI
,Λw

ςI
, {∆w

vt
}t∈I, {Πw

vj
}j∈Ic such that 〈w,PIw〉 admits the following

expansion

〈w,PIw〉 = d2i − y

di(di + y)
〈w,ZIw〉+ 1√

N(d2i − y)
Θw

wI
+

‖ςI‖
√
di − y1/2√
Ndi

Λw
ςI

+
‖ςI‖2
Ndi

∑

t∈I
(∆w

vt
)2 − 1

N

∑

j∈Ic

didj
(di − dj)2

(Πw
vj
)2

+O≺

(
1

N
1
2
+ε

( ‖wI‖2√
d2i − y

+ ‖wI‖‖ςI‖
√
di − y1/2

di

))

+O≺

(
1

N1+ε

(‖ςI‖2
di

+ ‖wI‖2
∑

j∈Ic

didj
(di − dj)2

))
(2.13)

for some small constant ε > 0, and

(
Θw

wI
,Λw

ςI
, {∆w

vt
}t∈I, {Πw

vj
}j∈Ic

)
≃ N

(
0, Aw

I + κ4
d2i − y

d2i
Bw

I

)
. (2.14)

Here N (0, Aw
I
+ κ4

d2i−y

d2i
Bw

I
) represents a Gaussian vector with mean 0 and

covariance matrix Aw
I
+ κ4

d2i−y

d2i
Bw

I
with Aw

I
and Bw

I
defined in (2.11) and

(2.12) respectively.

Remark 2.6. Here we further explain how to read off the information
of the limiting behaviour of 〈w,PIw〉 from the expansion in (2.13). The
first term in the RHS of (2.13) is the first order deterministic estimator of
〈w,PIw〉 which can be biased in the high-dimensional case, especially when
di is a fixed constant independent of N . The second and the third terms
in the RHS of (2.13) are asymptotically normal, and the fourth and fifth
terms are (asymptotically) linear combinations of χ2, according to (2.14).
These four terms together describe the limiting distribution of 〈w,PIw〉 −
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d2i−y
di(di+y)〈w,ZIw〉, after appropriate scaling. We further emphasize here that
the sizes of the first five terms may not be comparable and it is not uniformly
determined which one is the leading term in all cases. Under different choices
of di’s and w, say, the leading term may change. However, in any case, the
two error terms in (2.13) are always smaller than the sum of the second to
the fifth terms with high probability. This can be checked easily from the

sizes of the entries in the covariance matrix Aw
I
+ κ4

d2i−y

d2i
Bw

I
. Hence, from

the expansion (2.13), one can get the limiting distribution of 〈w,PIw〉 −
d2i−y

di(di+y)〈w,ZIw〉 in all cases. In the next remark, we show how to get the
limiting distribution for some specific examples.

Remark 2.7. If w ∈ Span{vt}t∈I, then wI = w and ςI = 0 (c.f. (2.5),
(2.6)). Hence, Λw

ςI
= 0 and ∆w

vt
= 0 for all t ∈ I. The conclusion of Theorem

2.5 is reduced to

〈w,PIw〉 = d2i − y

di(di + y)
+

1√
N(d2i − y)

Θw
w − 1

N

∑

j∈Ic

didj
(di − dj)2

(Πw
vj
)2

+O≺
( N−ε

√
N(d2i − y)

+
N−ε

N

∑

j∈Ic

didj
(di − dj)2

)
, (2.15)

for some small ε > 0, and (Θw
w, {Πw

vj
}j∈Ic) is asymptotically Gaussian with

mean 0 and covariance matrix with entries given by the RHS of the following
equations

var(Θw
w)

.
= 2yh(di)

2(1 + yh(di)
2) + κ4

d2i − y

d2i
f(di)

2s4(w),

var(Πw
vj
)
.
= l(di)

2 + κ4
d2i − y

d2i
l(di)

2s2,2(vj,w),

cov(Θw
w,Π

w
vj
)
.
= κ4

d2i − y

d2i
f(di)l(di)s1,3(vj ,w),

cov(Πw
vj
,Πw

vj̄
)
.
= κ4

d2i − y

d2i
l(di)

2s1,1,2(vj ,vj̄,w),

for j, j̄ ∈ I
c. In particular, if κ4 = 0, the limiting distribution of 〈w,PIw〉

does not depend on the specific choice of w ∈ Span{vt}t∈I. Here we recall
the notation AN

.
= BN for AN = BN (1 + oN (1)).

If w ∈ Span{vj}j∈J1,MK\I, then w = 0 and thus (2.13) becomes

〈w,PIw〉 = ‖ςI‖2
Ndi

∑

t∈I
(∆w

vt
)2 +O≺

( ‖ςI‖2
N1+εdi

)
. (2.16)
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Hence, the eigenvectors ξi’s are unbiased to any direction orthogonal to the
spike directions vi’s.

Remark 2.8. In this remark, we discuss several extensions. In (1.5), we

assumed T = Σ
1
2 . But our result holds under much more general assump-

tion on T . We can indeed extend our result to the matrix Q = TXX∗T ∗

with (M + k) ×N random matrix X and M × (M + k) matrix T . As long
as k ∈ N is fixed and TT ∗ = Σ satisfying (1.2), our result remains true.
Such an extension has been discussed in Section 8 of [16] for the joint
eigenvalue-eigenvector distribution in the subcritical regime and large de-
viation for eigenvector in the supercritical regime. It is easy to verify the
validity of the same extension for the joint eigenvalue-eigenvector distribu-
tion in the supercritical regime. The discussion in [16] relies on the rewriting

Q = TXX∗T ∗ = Σ
1
2Y Y ∗Σ

1
2 , where Y = (IM 0)OX. Here 0 is the M × k

zero matrix and O is some (M + k)× (M + k) orthogonal matrix. It will be
clear that all our arguments in the proof of Theorem 2.5 are valid, as long as
the isotropic local law of the matrix XX∗ (c.f. Theorem 4.2) holds. So here
it would be sufficient to have the isotropic local law for the matrix Y Y ∗,
which has been demonstrated in Theorem 8.1 of [16]. Further, we excluded
the point 1 from the possible values of y ≡ yN in case di ≡ di(N) diverges.
This is essentially due to the same restriction in one technical result we need,
Theorem 4.10, which is established in [80]. We emphasize here that Theo-
rem 4.10 is only used in the case when di = di(N) grows with N , but not
needed in the case when di is fixed. Therefore, when di is fixed, the result of
Theorem 2.5 and also Theorem 2.9 below also apply to all y ≡ yN ∈ (τ1, τ2).
Also, our result shall hold without the restriction |y − 1| ≥ τ0 even if di
diverges. But this extension will be left as future work.

Our second result is the joint eigenvalue-eigenvector distribution, i.e., joint
distribution of the outlying eigenvalues and the generalized components of
the associated eigenvectors. We state it for the case when di is simple, i.e.
I = {i}. For simplicity, we abbreviate the notation A{i} to Ai for A = w,P,Φ,
etc. Further, we use {i}c to represent J1, rK \ {i}.

Theorem 2.9. Under the same assumptions as Theorem 2.5, with I =
{i} and wi = 〈w,vi〉vi, the conclusion of Theorem 2.5 for the generalized
component 〈w,Piw〉 = |〈w,vi〉|2 holds. Additionally, there exists a random
variable Φi such that the outlying eigenvalue admits the expansion

µi = 1 + di + y +
y

di
+

√
d2i − y
√
N

Φi +O≺
(
√
d2i − y

N
1
2
+ε

)
, (2.17)
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for some small constant ε > 0, and
(
Φi,Θ

w
wi
,Λw

ςi
,∆w

vi
, {Πw

vj
}j∈{i}c

)
≃ N (0, Cw

i ) .

Here N (0, Cw
i ) represents a Gaussian vector with mean 0 and covariance

matrix Cw
i of size r + 3. The lower right (r + 2) × (r + 2) corner of Cw

i is

given by Aw
i + κ4

d2i−y

d2i
Bw

i as in (2.11) and (2.12). The entries of the first

row of Cw
i is given by the RHS of the following equations

var(Φi)
.
= (1 + d−1

i )2
(
2 + κ4

d2i − y

d2i
s4(vi)

)
,

cov(Φi,Θ
w
wi
)
.
= 2yh(di)

2(1 + d−1
i )〈w,vi〉2 + κ4

d2i − y

d2i
(1 + d−1

i )f(di)s2,2(wi,vi),

cov(Φi,Λ
w
ςi
)
.
= κ4

d2i − y

d2i
g(di)(1 + d−1

i )s1,1,2(ς
0
i ,wi,vi),

cov(Φi,∆
w
vi
)
.
= κ4

d2i − y

d2i

√
h(di)(1 + d−1

i )s1,3(ς
0
i ,vi),

cov(Φi,Π
w
vj
)
.
= κ4

d2i − y

d2i
l(di)(1 + d−1

i )s1,1,2(vj ,wi,vi), for j ∈ {i}c.

Here we recall the notation AN
.
= BN for AN = BN (1 + oN (1)).

Remark 2.10. Here we remark that in the supercritical regime, a gen-
eralized CLT for the eigenvalues has been established in [5] previously, for
fixed di’s which are away from y1/2 by a constant order distance. When there
is a multiple di in the supercritical regime with multiplicity |I|, it is known
from [5] that the corresponding eigenvalues {µt}t∈I will converge jointly to
the eigenvalues of a |I| × |I| Gaussian matrix GOE. Since it is not conve-
nient to express the distribution of the eigenvalues of this fixed-dimensional
GOE and their dependence with the the generalized components of ξi’s, we
are not going to state the joint eigenvalue-eigenvector distribution in the
multiple case here. Nevertheless, we will state the joint distribution of the
generalized components of ξi and all the matrix entries of this limiting GOE
in Appendix C which equivalently describes the joint eigenvalue-eigenvector
distribution; see Proposition C.4.

2.2. Proof strategy and novelties. Finally, here we remark that a related
problem has been previously studied in [9] for the so-called matrix denoising
model, where the distribution of the leading singular vectors of this model
was studied. Due to the additive structure of this model, the distribution of
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the singular vector may depend on the structure of the deformation and the
entire distribution of entries of the noise matrix (rather than their first 4
moments only), and may not be Gaussian or Chi-square or linear combina-
tions of them. Such a phenomenon is called non-universality, which exists in
the additive models [9, 23]. However, such a phenomenon does not show up
for the spiked covariance matrix, as one can see from Theorem 2.5, where
the distribution has a Gaussian nature in the sense that it is a polynomial of
Gaussian variables. This is essentially due to the multiplicative structure of
the spiked covariance matrix where the structure of the spikes are smoothed
out by the random matrix X. In addition, we emphasize here that in [9]
the assumption of the strengths of the deformation, counterpart of di’s, is
much more limited than the assumption here. In [9], the strengths are as-
sumed to be bounded and thus cannot grow with N , and also the strengths
are away from the critical threshold by a constant order distance. Further,
the strengths in [9] are assumed to be simple, and thus no multiplicity is
allowed, and also distinct strengths are away from each other by a constant
order. In addition, only the projection of the random singular vector onto
the directions of the deformations are discussed therein. Finally, no joint dis-
tribution of eigenvalue and eigenvectors is obtained in [9]. The generality of
the settings and the results bring various technical problems but meanwhile
they are highly motivated by the applications. In the sequel, we highlight
several novelties from both theoretical and application point of views.

Similarly to [9], we start with Green function representations of the eigen-
vector and eigenvalue statistics. It turns out that both the eigenvector and
eigenvalue statistics can be expressed (approximately) in terms of some
quadratic forms of the Green function of the matrix XX∗. Then a recursive
moment estimate for the linear combinations of these quadratic forms leads
to the joint distribution of the eigenvector and eigenvalues statistics. A key
technical input is the isotropic local laws derived in [19, 48]. Equipped with
this general strategy, we face several new technical obstacles, in contrast to
the discussions in [9]. First, since the di’s could be either very close to the
critical threshold or diverging, and meanwhile could be equal or close to
each other, the control of the sizes of the terms (especially the error terms)
becomes much more delicate. One needs to keep tracking the dependence
of the size of terms on di −

√
y, di − dj and di carefully to conduct a uni-

fied analysis in all cases of di’s. Especially, in case that di is diverging, one
needs to exploit a hidden cancellation between two quadratic forms of the
Green function, which is absent in case that di is fixed. In order to see such
a cancellation, one needs to adopt the recently established nearly optimal
convergence rate of the so-called eigenvector empirical spectral distribution
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(VESD) in [80]. Second, in contrast to [9], where only the projection to the
direction of the deformation is considered, here we consider the projection
to arbitrary direction. Especially, when one considers the projection to the
orthogonal complement of the direction of the deformation, the size of the
whole projection will degenerate to a smaller order. In order to study the
fluctuation of the eigenvector projection onto arbitrary directions, including
the direction orthogonal to the one of the spike, one needs to express the
eigenvector projection in terms of the Green function up to a higher order
term, and involve the higher order term in the recursive moment estimate,
since it could be significant. Third, the joint distribution of the eigenvalue
and eigenvector statistics is obtained for the first time in the supercriti-
cal regime for the whole range of di. Such a complete result was even not
available for the eigenvalue statistics only.

All the theoretical novelties are well motivated by our applications. First,
in most of mathematical work on spiked models, di is assumed to be bounded.
However, in many popular statistical models such as the factor model [2, 3, 4,
64], di ≡ di(N) could be diverging. We provide a unified result in the whole
supercritical regime, no matter di is close to the threshold or diverging. Prac-
tically, that means our results can be applied no matter the spike is weak or
strong. Second, in the application part, we consider two hypothesis testing
problems. The first is to test whether an eigenspace formed by any part of the
spikes is equal to some given subspace, while the second is to test whether it
is orthogonal to certain given subspace. Both questions are significant in the
statistics literature. We raised two testing statistics for these two problems
respectively, and the limiting distribution of the first statistic relies on our
joint eigenvalue-eigenvector distribution in case w ∈ Span{vt}t∈I, while the
limiting distribution of the second statistic relies on the joint eigenvalue-
eigenvector distribution in case w ∈ Span{vj}j∈J1,MK\I. This explains the
necessity for us to derive the distribution of the projection onto general di-
rections. Third, in two applications, if we construct the testing statistics,
using the result in Theorem 2.5 solely, the limiting distribution of the statis-
tics will contain the parameter di, which is normally unknown in real appli-
cation. Hence, in order to construct adaptive statistics which do not depend
on the unknown parameter di, we use a plug-in estimator of di which is given
in terms of µi. Then, in order to derive the distribution of these adaptive
statistics, we have to establish the joint eigenvalue-eigenvector distribution,
as what we have in Theorem 2.9, and its multiple extension in Proposition
C.4.
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3. Statistical inference for principal components. In this section,
we apply our results and some of their variants to the statistical applica-
tions regarding the inference of principal components. We focus our dis-
cussion on the hypothesis testing regarding the eigenspaces of covariance
matrices. Eigenspaces of covariance matrices are important in many sta-
tistical methodologies and computational algorithms. A lot of efforts have
been made to infer the eigenspace of the covariance matrices in the setting
M ≪ N , for instance, see [35, 49, 63, 76, 77].

In this section, we consider a generic index set I ⊂ J1, r0K, which may
contain indices for both simple and multiple dt’s. Further, we set

ZI =
∑

t∈I
vtv

∗
t . (3.1)

We remark here that ZI shall be regarded as an extension of ZI(i) defined
in (2.3), in the sense that the former may be constituted of vt’s associated
with distinct dt’s.

Specifically, in the literature, researchers are particularly interested in
testing the following hypothesis: for I ⊂ J1, r0K,

H
(1)
0 : ZI = Z0 vs H(1)

a : ZI 6= Z0 (3.2)

for a given projection Z0. For the general alternativesH
(1)
a , we are particular

interested in testing whether Z0 is in the complement of ZI . Specifically, the
hypothesis testing problem can be formulated as

H
(2)
0 : ZI ⊥ Z0 vs H(2)

a : ZI 6⊥ Z0. (3.3)

Note that (3.3) is the complement of the test considered in [78, 79] and
hence it can be used to study the alternative in [78, 79].

In Section 3.1, we propose accurate and powerful statistics for the afore-
mentioned two hypothesis testing problems (3.2) and (3.3) in the high di-
mensional regime (1.3). We construct test statistics using some plug-in esti-
mators and then derive their distributions utilizing the joint distribution of
the eigenvalues and eigenvectors established in Section 2 and its extensions
in Appendix C. For (3.2) and (3.3), the plug-in estimators are nonlinear
shrinkers of the sample eigenvalues. Consequently, the proposed statistics
are adaptive to di’s. We mention that this methodology can be potentially
applied to perform statistical inference and build up confidence intervals for
other important statistics related to the principal components. For instance,
the loadings of principal components [43], the shrinkage of eigenvalues [30],
the number of spikes [29, 68], the estimation of eigenvectors [57] and the in-
variant estimator for covariance matrices [20, Section 6]. These applications
will be studied in the future.
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3.1. Test statistics and their asymptotic distributions. In this section, we
propose statistics to test (3.2) and (3.3). We start with (3.2). In what follows,
we construct a data-dependent statistic to address the high dimensional
issue. Denote Z0 =

∑
i∈I uiu

∗
i . We first study

T :=
∑

i∈I

(
〈ui,PIui〉 − ϑ(d̂i)

)
, (3.4)

where

PI =
∑

i∈I
ξiξ

∗
i , ϑ(d) =

d2 − y

d(d+ y)
(3.5)

and d̂i = γ(µi) is a nonlinear shrinkage of the sample eigenvalues denoted
as

d̂i = γ(µi), γ(x) =
1

2
(−y + x− 1) +

1

2

√
(−y + x− 1)2 − 4y. (3.6)

We remark here that PI shall be regarded as an extension of PI(i) defined in
(2.4), in the sense that the former may be constituted of ξt’s associated with
distinct dt’s. Further, we remark here, according to the definition in (3.4),
the statistic T does not depend on the specific choice of the basis {ui} of
Z0. Hence, we have a freedom to choose any basis {ui} of Z0 in the sequel.

Since we are studying general I in this section, the indices in I may
not belong to the same multiple dt’s. To facilitate our discussion in the
sequel, we do a decomposition of I into subsets with each consisting of the
indices for one multiple (or simple) dt. For I = {i1, · · · , ir∗} ⊂ J1, r0K, we
assume that I =

⋃ℓ
k=1 Ik for some fixed integer ℓ such that Ik ∩ Ij = ∅

for k 6= j ∈ J1, ℓK. We assume that (2.2) holds for all the di, i ∈ I. For each
i ∈ I, there is a ki ∈ J1, ℓK, such that i ∈ Iki . Moreover, we suppose that for
1 ≤ k ≤ ℓ, dt, t ∈ Ik are all the same, and di 6= dj for i ∈ Iki , j /∈ Iki . Note
that by definition Iki ≡ I(i) (c.f. Assumption 2.3). Further note that ℓ = r∗
corresponds to the case that all the spikes in I are simple , ℓ = 1 corresponds
to the case that all the spikes are equal and 1 < ℓ < r∗ corresponds to a
mixture case.

For the brevity of the discussion in the first test problem (3.2), we further
restrict ourselves to the case satisfying the following assumption.

Assumption 3.1. Let the index set I ⊂ J1, r0K be defined above. We
assume that for any i ∈ I, the following inequality holds

1

N

∑

j∈(I(i))c

didj
(di − dj)2

≤ N−ε 1√
N(d2i − y)

. (3.7)
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for some small but fixed ε > 0. Here i ∈ Iki ≡ I(i) for some ki ∈ J1, ℓK.

Remark 3.2. We remark here that the inequality (3.7) insures that the
χ2 terms in (2.15) are suppressed by the Gaussian term. We impose such a
condition in order to simplify the discussion in the application part, thanks
to the simplicity of the Gaussianity. But our result can be applied without
this additional assumption. In the general case, we need to work with a
linear combination of Gaussian and χ2 variables. For brevity, we omit such
a general discussion and leave it to the future work.

We record the results regarding the asymptotic distribution of (3.4) in
the following theorem and postpone its proof to Appendix C.

Theorem 3.3. Suppose that Assumptions 1.1 , 2.3, and the setting (1.5)
hold. In case di ≡ di(N) → ∞ as N → ∞ for some i ∈ I, we additionally

assume that |y − 1| ≥ τ0 for some small but fixed τ0 > 0. Suppose that H
(1)
0

of (3.2) and Assumption 3.1 hold. For the statistic (3.4), we have that

√
NT√
V1(dI)

≃ N (0, 1), (3.8)

where V1(dI),dI = (di1 , · · · , dir∗ ) is defined as

V1(dI) := α
∗CIα.

Here α = (α1, · · · , α2r∗)
∗ ∈ R

2r∗ is defined as

αk =

{
−y(d2ik + 2dik + y)(dik + y)−2(d2ik − y)−

1
2 , 1 ≤ k ≤ r∗;

(d2ik−r∗
− y)−

1
2 , r∗ + 1 ≤ k ≤ 2r∗,

and CI is a positive definite matrix of dimension 2r∗ and explicitly defined
in Proposition C.1. Particularly, when all the spikes dt, t ∈ I are equal to
de, i.e., I = I(i) for some i, we have that

V1(dI) = 2(d2e − y)−1
(
yh(de)

2|I| − y(d2e + 2de + y)(1 + de)

(de + y)2de

)2

+ 2(d2e − y)−1
(
yh(de)

2|I|+ y2h(de)
4(|I| − |I|2)

)

+ κ4

(
f(de)

de
− y(d2e + 2de + y)(1 + de)

(de + y)2d2e

)2 ∑

k,t∈I
s2,2(vk,vt), (3.9)

where h(·) and f(·) are defined in (2.9) and (2.10).
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By Theorems 3.3 and 2.9, we can construct a pivotal statistic. Denote

T1 =

√
NT√
V1(d̂I)

, d̂I = (γ(µi1), · · · , γ(µir∗ )). (3.10)

We mention that (3.10) is adaptive to the di’s by utilizing their estimators
(3.6). We summarize the distribution of T1 in the corollary below, whose
proof will also be postponed to Appendix C.

Corollary 3.4. Under the assumptions of Theorem 3.3, we have that

T1 ≃ N (0, 1).

Since T1 is asymptotically pivotal, we will use (3.10) as our statistic for
the testing of (3.2). For an illustration, we record the behavior of our statis-
tic for a single spike model (i.e., r0 = r∗ = 1) in Figure 1. The more general
and extensive simulations will be conducted in Section 3.2. We find that
under the null hypothesis of (3.2), our proposed statistic is close to N (0, 1)
for different values of d and hence it is suitable for the hypothesis testing
problem (3.2). We mention that even though we have not justified the case
di diverges under the assumption y = 1 theoretically, our statistic is still ac-
curate and powerful according to empirical illustrations for this case. Hence,
in the sequel, we also present the simulation results for the case y = 1 for
more extensive simulation study.

In what follows, we provide a few examples with explicit formulas of V1(·).
These will be used for the simulations in Section 3.2.

Example 3.5. We consider that I = {1, 2}, both d1 and d2 are simple
and vi = ei, i = 1, 2. In this case, we have that

V1(d1, d2) =
2∑

i=1

α∗
[
A11(di) A12(di)
A21(di) A22(di)

]
α,

where

α =
(
− y(d2i + 2di + y)

(di + y)2(d2i − y)
1
2

, (d2i − y)−
1
2

)∗

A11(di) = 2(1 + d−1
i )2 + κ4(1− yd−2

i )(1 + d−1
i )2,

A12(di) = 2yh(di)
2(1 + d−1

i ) + κ4(1− yd−2
i )f(di)(1 + d−1

i ),

A22(di) = 2yh(di)
2(1 + yh(di)

2) + κ4(1− yd−2
i )f(di)

2,

and the functions h(·) and f(·) are defined in (2.9) and (2.10).
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Fig 1: Simulated empirical cumulative distribution function (ECDF) for the proposed
statistic (3.10) under null of (3.2) with r0 = r∗ = 1. Here, the spiked covariance ma-
trix is denoted as Σ = diag(d + 1, 1, · · · , 1) and we use the statistic

√
N(|〈ξ1,e1〉|2 −

ϑ(d̂))/

√
V1(d̂ ), where V1(d) =

1
2
V1(d, d); see Example 3.5 for the definition of V1(·, ·). Here

N = 500 and we report our results based on 8,000 simulations with Gaussian random
variables.

Example 3.6. We consider the case that I = {1, 2} with d1 = d2 = d
and vi = ei, i = 1, 2. In this case, we have that

V1(d, d) =2(d2 − y)−1
(
2yh(d)2 − y(d2 + 2d+ y)(1 + d)

(d+ y)2d

)2

+ 2(d2 − y)−1
(
2yh(d)2 − 2y2h(d)4

)

+ κ4

(
f(d)

d
− y(d2 + 2d+ y)(1 + d)

(d+ y)2d2

)2 ∑

k,t∈I
s2,2(vk,vt).

Next, we consider the hypothesis testing (3.3). In this case, we further
assume that the true model or the population matrix Σ only contains su-
percritical spikes, i.e.,

r0 = r. (3.11)

It will be seen that if there exist subcritical spikes, one will need to pro-
vide a plug-in estimator of the subcritical di’s in order to raise a testing
statistic which is adaptive to all the spiked eigenvalues. However, it is well-
known now that an effective detection of subcritical di’s based on µi’s is
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impossible in general, unless one knows additional information such as the
structure of vi’s. And also, indeed, in many applications, di’s are very large
and even divergent, and thus are certainly supercritical. Hence, in the se-
quel, we will focus on the case when (3.11) is satisfied. Suppose that in this
case Z0 =

∑
j∈J uju

∗
j for some fixed index set J and {uj}j∈J is a family

of orthonormal vectors.
We employ that

T2 =
∑

i∈I,j∈J
〈ξi,uj〉2. (3.12)

The asymptotic distribution of T2 is recorded in the following theorem. It
turns out that its asymptotic distribution coincides with linear combinations
of χ2 variables. For convenience, we first define d := (d1, . . . , dr) and

q(d) := max
i∈I,j∈J

∑

k∈J1,MK\I
h(di)

di(dk + 1)

(di − dk)2
〈uj ,vk〉2

which depends on the subspace Z0 and all the di’s for i ∈ J1, rK. Here
dr+1 = · · · dM = 0. We emphasize that all di’s for i ∈ J1, rK satisfy (2.1) and
(2.2) in this part.

Theorem 3.7. Suppose that Assumptions 1.1 , 2.3, and the settings
(1.5) and (3.11) hold. In case di ≡ di(N) → ∞ as N → ∞ for some i ∈ I,
we additionally assume that |y − 1| ≥ τ0 for some small but fixed τ0 > 0.

Suppose that H
(2)
0 of (3.3) holds true. For the statistic T2 defined in (3.12),

we have

NT2

q(d)
≃ g∗Ug

q(d)
, (3.13)

where g ∈ R
|I||J |, g ∼ N (0, I|I||J |), and U ≡ U(d) is a symmetric matrix

of dimension |I||J | defined explicitly in Proposition C.1.

Remark 3.8. We remark here that in (3.13), we add the factor 1/q(d)
on both sides to scale them to order one random variables. Since we use the
notation “ ≃ ” which is defined in Definition 2.2 , we have to require the
sequence of variables on both sides to be tight.

The results of Theorem 3.7, especially q(d) and U , still contain the val-
ues of di, i ∈ I and also the other nonzero spikes dj , j ∈ Ic which are all
supercritical (c.f. (3.11)) so that we can use (3.6) to estimate them all. To
construct a data-dependent statistic, we can use the plug-in estimator (3.6)
to generate critical values of the hypothesis testing (3.3) using the samples.
Recall d̂ = (d̂1, . . . , d̂r).
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Corollary 3.9. Under the assumptions of Theorem 3.7, we have that

NT2

q(d̂ )
≃ g∗Ûg

q(d̂ )
,

where Û = U(d̂ ).

We can use our statistic (3.12) with the critical values generated from
Corollary 3.9 to study the hypothesis testing problem (3.3). Here we shall
point out that although our statistic NT2/q(d̂ ) is adaptive to the di’s, it
is nevertheless dependent of {vi}i∈J1,rK\I and also a κ4 term which involves
some {vi}i∈I -dependent parameters of the form s1,1,1,1(·, ·, ·, ·); see the def-
inition of U in Proposition C.1. Hence, first of all, we shall only apply our
statistic NT2/q(d̂ ) in case either {vi}i∈J1,rK\I is known a priori, or I = J1, rK
such that the set {vi}i∈J1,rK\I is empty. In practice, this restriction is mild
and fits the following real scenario: if some of the vi’s are already known,
we only need to do inference for those unknown vi’s, while if none of the
vi is known a priori, we consider the inference for all {vi}i∈J1,rK together.
Certainly, it is also natural to consider a part of vi’s even if none of them is
known, as what we did in the test (3.2). Nevertheless, due to the restriction
of the theoretical result, we focus on the aforementioned scenario, which is
more restricted but still very natural. Second, the unknown κ4 term will be
absent in case we consider the Gaussian matrix X which is often the case
in reality. Hence, in Gaussian case, we can apply our statistic directly if we
restrict ourself to the aforementioned scenario of vi’s. Nevertheless, for the
reader’s reference, we also present our simulation study in the Appendix for
the two-point case, as if the additional parameter, the κ4 term, was known a
priori. Here, we remark that the restriction of scenario to apply our theoret-
ical result for the test (3.3), which is not necessary for (3.2), is actually quite
reasonable. Note that, in (3.2), the necessary parameters from {vi}i∈I are
completely fixed by the null hypothesis, and the distribution of our statistic
(under the null hypothesis) can be expressed in terms of these given param-
eters. However, in the test (3.3), our null hypothesis is ZI ⊥ Z0. In case that
the rank of the projection of the given Z0 is small, as a low-rank subspace
living in the complement of Z0, ZI can have many choices and thus there is
a big uncertainty on the unknown parameters of ZI which cannot be fixed
by Z0.

For an illustration, we record the behavior and power of our statistic for a
single spiked model (i.e., r0 = r = 1) in Figure 2. We find that our proposed
statistic is close to Chi-square distribution with one degree of freedom for
various values of d and hence it can be applied for testing (3.3) for this single
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spike model. For more general case, the asymptotic distribution of (3.12) is
a linear combination of Chi-square distributions. We will conduct extensive
simulations in Section 3.2.

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

y=0.1

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

y=1

0.00

0.25

0.50

0.75

1.00

0 5 10 15

y=10

χ1
2 d=5 d=10 d=100

Fig 2: Simulated empirical cumulative distribution function (ECDF) for the proposed
statistic under null of (3.3) with r0 = 1. Here, the spiked covaraince matrix is denoted as

Σ = diag{d+1, 1, · · · , 1} and Z0 = e3 in (3.3). We use the statistic Nd̂(d̂+y)|〈ξ1, e3〉|2/(d̂+
1). Here d̂ = γ(µ1), N = 500 and we report our results based on 8,000 simulations with
Gaussian random variables.

We next consider a few examples to specify the asymptotic distribution
stated in Theorem 3.7 and the results will be used in Section 3.2.

Example 3.10. We consider that r0 = 3, I = {1, 2}, di, i = 1, 2, 3 are
simple and satisfy (2.1), (2.2) and vi = ei, i = 1, 2, 3 and Z0 = e3e

∗
3 + e4e

∗
4.

In this case, since ςe3{1} = d1
√
d3+1

d1−d3
e3, ς

e3
{2} = d2

√
d3+1

d2−d3
e3 and ςe4{1} = ςe4{2} = e4

and s1,1,1,1(ei1 ,ei2 ,ej1 ,ej2) = 0 for i1,2 = 1, 2, j1,2 = 3, 4. Further, q(d) =

q(d1, d2, d3) = max{ (d3+1)d1h(d1)
(d1−d3)2

, h(d1)d1
, (d3+1)d2h(d2)

(d2−d3)2
, h(d2)d2

}. We have that the

statistic NT2/q(d) will be asymptotically distributed as

1

q(d)
g∗ diag

(
(d3 + 1)d1h(d1)

(d1 − d3)2
,
h(d1)

d1
,
(d3 + 1)d2h(d2)

(d2 − d3)2
,
h(d2)

d2

)
g,

where g ∈ R
4 is a Gaussian random vector such that g ∼ N (0, I4).

Example 3.11. We consider that r0 = 3, I = {1, 2}, d1 = d2 = d, d3 is
distinct from d by a distance of order 1, and vi = ei, i = 1, 2, 3. In this case,
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q(d) = max{ (d3+1)dh(d)
(d−d3)2

, h(d)d }. We have that the statistic NT2/q(d) will be

asymptotically distributed as

1

q(d)
g∗ diag

(
(d3 + 1)d h(d)

(d− d3)2
,
h(d)

d
,
(d3 + 1)d h(d)

(d− d3)2
,
h(d)

d

)
g,

where g ∈ R
4 is a Gaussian random vector such that g ∼ N (0, I4).

3.2. Simulation studies. In this section, we perform extensive Monte
Carlo simulations to study the finite-sample accuracy and power of our pro-
posed statistics. For (3.2), we not only report our results but also compare
them with the existing statistics in the literature. We will call our statistics
as Fr-Adaptive.

We start with (3.2). In what follows regarding (3.2), we use Fr-boostrap
to stand for the bootstrapping method using the Frobenius norm proposed
in [63], Fr-Bayes to stand for the frequentist Bayes using the Frobenius
norm proposed in [77], Fr-DataDriven to stand for the sample splitting
method using the Frobenius norm proposed in [49], HPV-LeCam to stand for
the Le Cam optimal test proposed in [35], En-bootstrap and En-Bayes

to stand for the bootstrapping method and the frequentist Bayes method
respectively using the power-enhanced norm introduced in [76] with s1 =
s2 = 1 (see Definition 3.1 of [76]), and Sp-bootstrap and Sp-Bayes the
bootstrapping method and the frequentist Bayes method respectively using
the spectral norm. In the following discussion, we compare the performance
of our Fr-Adaptive with all the aforementioned statistics.

In all the following simulations, we conduct 2,000 Monte-Carlo repetitions
for the bootstrapping and frequentist Bayes procedure. For the accuracy of
the tests, we focus on reporting the results with the type I error rate 0.1
under different values of y = 0.1, 1, 10 and various choices of the spikes.
Moreover, we consider different scenarios to illustrate the usefulness and
generality of our results.

• Scenario I: We consider the case r0 = 3 with d1 = d + 7, d2 = 7 and
d3 = 5, where d takes a variety of values. We consider the hypothesis
testing for the eigenspace of Σ = I +

∑3
i=1 dieie

∗
i with I = {1, 2},

where the null is
Z0 = e1e

∗
1 + e2e

∗
2. (3.14)

In this scenario, the spiked eigenvalues are simple. We will consider the
standard Gaussian distribution and the two-point distribution 1

3δ
√
2+

2
3δ− 1√

2
as the distribution of entries of X.
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• Scenario II: We consider the case r0 = 3 with d1 = d2 = d+5 and d3 =
5, where d takes a variety of values. We consider the hypothesis testing
under the null (3.14). In this scenario, we have multiple/identical di’s.
We consider both the standard Gaussian random variables and the
two-point distribution 1

3δ
√
2 +

2
3δ− 1√

2
as the distribution of entries of

X.

We mention that the asymptotic distribution of our statistic (3.10) under
the null hypothesis of (3.2) has been established in Examples 3.5 and 3.6 for
Scenarios I and II, respectively.

For both of the above two scenarios, we consider the alternative

Za = v1(ϕ)v1(ϕ)
∗ + v2(ϕ)v2(ϕ)

∗, (3.15)

where for ϕ ∈ [0, π2 ]

v1(ϕ) = cosϕe1 + sinϕe4, v2(ϕ) = cosϕe2 + sinϕe5.

Note that ϕ = 0 corresponds to the null case of (3.14). It is easy to see that
κ4 = −1.5 for the two-point distribution and κ4 = 0 for standard Gaussian
random variable.

For Scenario I, from Tables 1–3, we find that our proposed statistic (3.10)
is very accurate even for smaller values of N and d. Moreover, our statistic
reaches accuracy regardless of the values of y. In contrast, for the other
methods in the literature, we find that all of them lose their accuracy when
y increases (i.e. M increases). Moreover, we find that most of the methods
are conservative except for the Le Cam test. Finally, we find that some
of the methods, especially the frequentiest Bayes method with Frobenius
norm, spectral norm or the power-enhanced norm in [76] are also reasonably
accurate for larger values of d when y is small. Since our results allow us
to deal with identical di’s, we report the simulation results in Tables 4–6
for Scenario II. We find that our statistic (3.10) is also very accurate and
outperforms the other methods especially when either the di’s are small
or y is large. In Appendix D, we report the simulation results for random
variables with two-point distribution in Tables 7–9 for Scenario I and Tables
10–12 for Scenario II. We can get analogous conclusions.

In summary, our proposed statistic (3.10) is quite accurate for different
values of d satisfying Assumption 2.3, even for smaller and multiple/identical
ones. This accuracy is robust against different values of y. As summarized
in [76, Section 7.4], all the previous methods in the literature request that
M ≪ N. Therefore, when y increases (i.e., M diverges faster), we find
that our methods perform better than all the other methods. Indeed, all
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our current results can be extended to the regime logM ≍ logN following
the discussion of [16, 19]. We will pursue this direction in the future work.
Moreover, since the computational complexity of the aforementioned meth-
ods depends on the a polynomial order of the dimensionality M (see [76,
Section 7.4]), they can be computationally intensive asM diverges faster. In
contrast, our method works faster since it only depends the sample eigen-
values and eigenvectors.

N = 200 N = 500

Method d = 2 d = 5 d = 10 d = 50 d = 100 d = 2 d = 5 d = 10 d = 50 d = 100

Fr-bootstrap 0.041 0.044 0.044 0.054 0.062 0.047 0.051 0.049 0.063 0.067

Fr-Bayes 0.055 0.049 0.079 0.089 0.095 0.045 0.053 0.082 0.093 0.094

En-bootstrap 0.047 0.053 0.068 0.067 0.077 0.052 0.049 0.063 0.069 0.075

En-Bayes 0.053 0.058 0.077 0.093 0.096 0.051 0.064 0.088 0.098 0.093

Fr-Datadriven 0.046 0.049 0.051 0.063 0.067 0.041 0.043 0.057 0.059 0.065

HPV-LeCam 0.381 0.374 0.383 0.391 0.373 0.376 0.368 0.365 0.342 0.373

Sp-bootstrap 0.047 0.054 0.062 0.073 0.079 0.042 0.053 0.063 0.069 0.076

Sp-Bayes 0.066 0.069 0.072 0.083 0.094 0.072 0.078 0.075 0.088 0.095

Fr-Adaptive 0.091 0.108 0.103 0.107 0.096 0.11 0.107 0.095 0.104 0.102

Table 1

Scenario I: simulated type I error rates under the nominal level 0.1 for y = 0.1. We
report our results based on 2,000 Monte-Carlo simulations with Gaussian random

variables. We highlighted the two most accurate methods for each value of d.

N = 200 N = 500

Method d = 2 d = 5 d = 10 d = 50 d = 100 d = 2 d = 5 d = 10 d = 50 d = 100

Fr-bootstrap 0.053 0.045 0.051 0.049 0.047 0.052 0.049 0.047 0.053 0.061

Fr-Bayes 0.045 0.039 0.047 0.063 0.071 0.039 0.041 0.052 0.061 0.068

En-bootstrap 0.057 0.051 0.042 0.043 0.049 0.041 0.039 0.048 0.052 0.059

En-Bayes 0.057 0.053 0.061 0.067 0.075 0.048 0.059 0.064 0.073 0.078

Fr-Datadriven 0.026 0.023 0.034 0.037 0.039 0.041 0.04 0.048 0.042 0.047

HPV-LeCam 0.87 0.79 0.82 0.81 0.85 0.882 0.835 0.823 0.872 0.823

Sp-bootstrap 0.049 0.057 0.056 0.062 0.059 0.043 0.041 0.045 0.053 0.062

Sp-Bayes 0.057 0.058 0.062 0.074 0.081 0.053 0.057 0.059 0.059 0.069

Fr-Adaptive 0.103 0.092 0.105 0.107 0.099 0.11 0.107 0.104 0.097 0.103

Table 2

Scenario I: simulated type I error rates under the nominal level 0.1 for y = 1. We report
our results based on 2,000 Monte-Carlo simulations with Gaussian random variables. We

highlighted the two most accurate methods for each value of d.

Then we compare the power of the above statistics under the alternative
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N = 200 N = 500

Method d = 2 d = 5 d = 10 d = 50 d = 100 d = 2 d = 5 d = 10 d = 50 d = 100

Fr-bootstrap 0.028 0.034 0.037 0.041 0.043 0.039 0.045 0.052 0.038 0.047

Fr-Bayes 0.038 0.051 0.049 0.062 0.071 0.051 0.049 0.046 0.053 0.069

En-bootstrap 0.032 0.041 0.045 0.046 0.059 0.037 0.041 0.054 0.049 0.054

En-Bayes 0.046 0.048 0.057 0.061 0.068 0.039 0.042 0.049 0.052 0.064

Fr-Datadriven 0.027 0.033 0.038 0.041 0.043 0.038 0.034 0.029 0.045 0.052

HPV-LeCam 0.897 0.939 0.964 0.971 0.972 0.891 0.911 0.943 0.932 0.953

Sp-bootstrap 0.046 0.048 0.045 0.054 0.052 0.039 0.047 0.049 0.053 0.058

Sp-Bayes 0.043 0.049 0.052 0.057 0.068 0.051 0.048 0.059 0.063 0.068

Fr-Adaptive 0.104 0.102 0.095 0.098 0.103 0.091 0.097 0.104 0.097 0.103

Table 3

Scenario I: simulated type I error rates under the nominal level 0.1 for y = 10. We report
our results based on 2,000 Monte-Carlo simulations with Gaussian random variables. We

highlighted the two most accurate methods for each value of d.

N = 200 N = 500

Method d = 2 d = 5 d = 10 d = 50 d = 100 d = 2 d = 5 d = 10 d = 50 d = 100

Fr-bootstrap 0.036 0.041 0.045 0.049 0.062 0.039 0.047 0.039 0.053 0.067

Fr-Bayes 0.042 0.047 0.063 0.087 0.096 0.053 0.062 0.072 0.085 0.096

En-bootstrap 0.045 0.047 0.043 0.046 0.052 0.058 0.049 0.059 0.062 0.066

En-Bayes 0.062 0.069 0.075 0.074 0.094 0.054 0.064 0.063 0.085 0.108

Fr-Datadriven 0.043 0.046 0.043 0.052 0.059 0.052 0.049 0.061 0.058 0.063

HPV-LeCam 0.394 0.379 0.433 0.436 0.398 0.431 0.441 0.423 0.412 0.393

Sp-bootstrap 0.058 0.056 0.047 0.059 0.068 0.051 0.042 0.049 0.047 0.062

Sp-Bayes 0.058 0.068 0.072 0.081 0.095 0.049 0.062 0.069 0.087 0.104

Fr-Adaptive 0.105 0.103 0.097 0.102 0.103 0.104 0.096 0.095 0.093 0.105

Table 4

Scenario II: simulated type I error rates under the nominal level 0.1 for y = 0.1. We
report our results based on 2,000 Monte-Carlo simulations with Gaussian random

variables. We highlighted the two most accurate methods for each value of d.

(3.15) for different values of ϕ regarding Scenarios I and II and d = 5, 50,
respectively, in Figures 3–6. We find that our method is very powerful even
when y becomes larger and d becomes smaller, and it outperforms the other
methods especially when either y is large or d is small. When y is small
and d is large, even though for larger values of ϕ, many methods can obtain
high power, we find that our proposed statistic (3.10) is quite powerful even
under a relatively weak alternative, i.e., smaller values of ϕ. We mention
that the high power of HPV-LeCam is not trustful since we have seen from
the simulated type I error rates that it is not accurate. Similar results can
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N = 200 N = 500

Method d = 2 d = 5 d = 10 d = 50 d = 100 d = 2 d = 5 d = 10 d = 50 d = 100

Fr-bootstrap 0.039 0.043 0.038 0.051 0.058 0.042 0.045 0.049 0.048 0.052

Fr-Bayes 0.052 0.049 0.048 0.067 0.072 0.048 0.042 0.051 0.057 0.068

En-bootstrap 0.054 0.049 0.053 0.047 0.061 0.052 0.047 0.041 0.039 0.051

En-Bayes 0.041 0.046 0.052 0.062 0.078 0.043 0.046 0.059 0.063 0.068

Fr-Datadriven 0.325 0.029 0.038 0.041 0.047 0.039 0.042 0.047 0.046 0.052

HPV-LeCam 0.844 0.829 0.814 0.87 0.88 0.865 0.825 0.853 0.792 0.83

Sp-bootstrap 0.038 0.047 0.042 0.057 0.049 0.037 0.042 0.058 0.052 0.048

Sp-Bayes 0.038 0.046 0.057 0.065 0.069 0.042 0.039 0.054 0.061 0.074

Fr-Adaptive 0.11 0.093 0.097 0.096 0.102 0.091 0.09 0.098 0.096 0.102

Table 5

Scenario II: simulated type I error rates under the nominal level 0.1 for y = 1. We report
our results based on 2,000 Monte-Carlo simulations with Gaussian random variables. We

highlighted the two most accurate methods for each value of d.

N = 200 N = 500

Method d = 2 d = 5 d = 10 d = 50 d = 100 d = 2 d = 5 d = 10 d = 50 d = 100

Fr-bootstrap 0.035 0.041 0.035 0.045 0.058 0.032 0.04 0.043 0.039 0.052

Fr-Bayes 0.039 0.042 0.046 0.059 0.062 0.034 0.052 0.049 0.056 0.065

En-bootstrap 0.039 0.042 0.038 0.041 0.045 0.032 0.029 0.042 0.047 0.048

En-Bayes 0.041 0.047 0.051 0.059 0.066 0.045 0.036 0.047 0.053 0.065

Fr-Datadriven 0.025 0.031 0.029 0.038 0.041 0.031 0.033 0.041 0.039 0.048

HPV-LeCam 0.914 0.979 0.974 0.959 0.963 0.932 0.941 0.893 0.962 0.912

Sp-bootstrap 0.042 0.053 0.052 0.052 0.057 0.039 0.042 0.049 0.052 0.049

Sp-Bayes 0.039 0.045 0.046 0.054 0.062 0.042 0.048 0.051 0.053 0.064

Fr-Adaptive 0.107 0.103 0.103 0.094 0.098 0.102 0.092 0.097 0.104 0.098

Table 6

Scenario II: simulated type I error rates under the nominal level 0.1 for y = 10. We
report our results based on 2,000 Monte-Carlo simulations with Gaussian random

variables. We highlighted the two most accurate methods for each value of d.

be found for two-point random variables in Figures 13-16 of Appendix D.
Next, we investigate the size and power of the orthogonal test (3.3) us-

ing our proposed statistic (3.12) with critical values generated adaptively
according to Corollary 3.9. We conduct numerical simulations using the fol-
lowing two scenarios.

• Scenario A: We consider the case r0 = 3 with d1 = d + 7, d2 = 7 and
d3 = 5, where d takes a variety of values. We consider the hypothesis
testing of the eigenspace of Σ = I+

∑3
i=1 dieie

∗
i with I = {1, 2}, where
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Fig 3: Comparison of power for Scenario I. We choose d = 5 and use Gaussian random

variables. We report our results under the nominal level 0.1 based on 2, 000 simulations.

Here N = 500.
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Fig 4: Comparison of power for Scenario I. We choose d = 50 and use Gaussian random

variables. We report our results under the nominal level 0.1 based on 2, 000 simulations.

Here N = 500.

the null is
Z0 = e3e

∗
3 + e4e

∗
4. (3.16)

In this scenario, the spiked eigenvalues are simple. We will consider the
standard Gaussian random variables and the two-point distribution
1
3δ

√
2 +

2
3δ− 1√

2

.

• Scenario B: We consider the case r0 = 3 with d1 = d2 = d+5 and d3 =
5, where d takes a variety of values. We consider the hypothesis testing
under the null (3.16). In this scenario, we have multiple/identical di.
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Fig 5: Comparison of power for Scenario II. We choose d = 5 and use Gaussian random

variables. We report our results under the nominal level 0.1 based on 2, 000 simulations.

Here N = 500.
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Fig 6: Comparison of power for Scenario II. We choose d = 50 and use Gaussian random

variables. We report our results under the nominal level 0.1 based on 2, 000 simulations.

Here N = 500.

We consider both the standard Gaussian random variables and the
two-point distribution 1

3δ
√
2 +

2
3δ− 1√

2
.

For both scenarios, we consider the alternative

Za = v1(ϕ)v1(ϕ)
∗ + v2(ϕ)v2(ϕ)

∗, (3.17)

where for ϕ ∈ [0, π2 ]

v1(ϕ) = cosϕe3 + sinϕe1, v2(ϕ) = cosϕe4 + sinϕe2.
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Note ϕ = 0 corresponds to the null case (3.16). For Gaussian random vari-
ables, we report the simulated type-I error rates in Figure 7 for Scenario
A and in Figure 8 for Scenario B for a variety of choices of y and d. The
results for the two-point random variables can be found in Figures 11 and
12 of Appendix D. We can see that our proposed statistic (3.12) with crit-
ical values generated adaptively according to Corollary 3.9 are reasonably
accurate even for smaller values of d and N and we have better accuracy
when N increases. Finally, we examine the finite sample power for Gaussian
variables in Figures 9 and 10 and two-point variables in Figures 17 and 18,
we find that our statistic is powerful even for smaller values of ϕ (i.e., weaker
alternative) and d.

0.00

0.05

0.10

0.15

0.20

2 5 10 50 100
value of d

S
im

u
la

te
d

 T
y
p

e
−

I 
e

r
ro

r

y=0.1

0.00

0.05

0.10

0.15

0.20

2 5 10 50 100
value of d

S
im

u
la

te
d

 T
y
p

e
−

I 
e

r
ro

r

y=1

0.00

0.05

0.10

0.15

0.20

2 5 10 50 100
value of d

S
im

u
la

te
d

 T
y
p

e
−

I 
e

r
ro

r

y=10

(a) N = 200.

0.00

0.05

0.10

0.15

0.20

2 5 10 50 100
value of d

S
im

u
la

te
d

 T
y
p

e
−

I 
e

r
ro

r

y=0.1

0.00

0.05

0.10

0.15

0.20

2 5 10 50 100
value of d

S
im

u
la

te
d

 T
y
p

e
−

I 
e

r
ro

r

y=1

0.00

0.05

0.10

0.15

0.20

2 5 10 50 100
value of d

S
im

u
la

te
d

 T
y
p

e
−

I 
e

r
ro

r

y=10
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Fig 7: Scenario A: simulated type I error rates for (3.3) using (3.12). We report our

results based on 2,000 Monte-Carlo simulations with Gaussian random variables. The

critical values are generated using Corollary 3.9.

4. Preliminaries. In this section, we collect some basic notions and
preliminary results which will be used in the proof of our main theorem. A
key technical input is the isotropic local law from [19, 48].

4.1. Basic notions. In the sequel, we denote the Green function of Q by

G(z) := (Q− z)−1, z ∈ C
+.

The matrix Q can be regarded as a finite-rank perturbation of the matrix
H := XX∗. In the sequel, we also need to consider H := X∗X which
shares the same non-zero eigenvalues with H. We further denote the Green
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Fig 8: Scenario B: simulated type I error rates for (3.3) using (3.12). We report our

results based on 2,000 Monte-Carlo simulations with Gaussian random variables. The

critical values are generated from Corollary 3.9.
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Fig 9: Power of Scenario A for Gaussian random variables using (3.12). We report our

results under the nominal level 0.1 based on 2, 000 simulations. Here N = 500 and the

critical values are generated using Corollary 3.9.

functions of H and H respectively by

G1(z) := (XX∗ − z)−1, G2(z) := (X∗X − z)−1, z ∈ C
+, (4.1)
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Fig 10: Power of Scenario B for Gaussian random variables using (3.12). We report our

results under the nominal level 0.1 based on 2, 000 simulations. Here N = 500 and the

critical values are generated using Corollary 3.9.

and their normalized traces by

m1N (z) :=
1

M
TrG1(z) =

∫
(x− z)−1 dF1N (x),

m2N (z) :=
1

N
TrG2(z) =

∫
(x− z)−1 dF2N (x),

where F1N (x), F2N (x) are the empirical spectral distributions of H and H
respectively, i.e.,

F1N (x) :=
1

M

M∑

i=1

1(λi(H) ≤ x), F2N (x) :=
1

N

N∑

i=1

1(λi(H) ≤ x).

Here we used λi(H) and λi(H) to denote the i-th largest eigenvalue of H
and H, respectively.

It is well-known since [55] that F1N (x) and F2N (x) converge weakly (a.s.)
to the Marchenko-Pastur laws νMP,1 and νMP,2 (respectively) given below

νMP,1(dx) :=
1

2πxy

√(
(λ+ − x)(x− λ−)

)
+
dx+ (1− 1

y
)+δ(dx),

νMP,2(dx) :=
1

2πx

√(
(λ+ − x)(x− λ−)

)
+
dx+ (1− y)+δ(dx), (4.2)

where λ± := (1±√
y)2. Note that here the parameter y may beN -dependent.

Hence, the weak convergence (a.s.) shall be understood as
∫
g(x)dFaN (x)−
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∫
g(x)νMP,a(dx)

a.s.−→ 0 for any given bounded continuous function g : R →
R, for a = 1, 2. We further denote by Fα the cumulative distribution func-
tion of νMP,α for α = 1, 2. Note that m1N and m2N can be regarded as
the Stieltjes transforms of F1N and F2N , respectively. We further define
their deterministic counterparts, i.e., Stieltjes transforms of νMP,1, νMP,2, by
m1(z),m2(z), respectively, i.e.,

m1(z) :=

∫
(x− z)−1νMP,1(dx), m2(z) :=

∫
(x− z)−1νMP,2(dx).

From the definition (4.2), it is elementary to compute

m1(z) =
1− y − z + i

√
(λ+ − z)(z − λ−)

2zy
,

m2(z) =
y − 1− z + i

√
(λ+ − z)(z − λ−)

2z
, (4.3)

where the square root is taken with a branch cut on the negative real axis.
Equivalently, we can also characterize m1(z),m2(z) as the unique solutions
from C

+ to C
+ to the equations

zym2
1 + [z − (1− y)]m1 + 1 = 0, zm2

2 + [z + (1− y)]m2 + 1 = 0. (4.4)

Using (4.3) and (4.4), one can easily derive the following identities

m1 = − 1

z(1 +m2)
, 1 + zm1 =

1 + zm2

y
, m1

(
(zm2)

′ + 1
)
=
m′

1

m1
, (4.5)

which will be used in the later discussions.

4.2. Isotropic local law. In this section, we state the isotropic local law
from [19, 48] together with some consequences which will serve as the main
technical inputs in the proofs. But before the statements of these estimates,
we first introduce a basic lemma about the notion “stochastic domination”
introduced in Definition 2.1.

Lemma 4.1. Let

Xi = (XN,i(u) : N ∈ N, u ∈ UN ), Yi = (YN,i(u) : N ∈ N, u ∈ UN ), i = 1, 2

be families of random variables, where Yi, i = 1, 2, are nonnegative, and UN

is a possibly N -dependent parameter set. Let

Φ = (ΦN (u) : N ∈ N, u ∈ UN )
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be a family of deterministic nonnegative quantities. We have the following
results:

(i) If X1 ≺ Y1 and X2 ≺ Y2 then X1 +X2 ≺ Y1 + Y2 and X1X2 ≺ Y1Y2.
(ii) Suppose X1 ≺ Φ, and there exists a constant C > 0 such that

|XN,1(u)| ≤ NC a.s. and ΦN (u) ≥ N−C uniformly in u for all sufficiently
large N . Then EX1 ≺ Φ.

Proof. Part (i) is obvious from Definition 2.1. For any fixed ̺ > 0, we
have

|EX1| ≤ E|X11(|X1| ≤ N̺Φ)|+ E|X11(|X1| ≥ N̺Φ)|
≤ N̺Φ+NC

P(|X1| ≥ N̺Φ) = O(N̺Φ)

for for sufficiently large N ≥ N0(̺). This proves part (ii).

In the sequel, we state the isotropic local law and related estimates. We
first introduce the following domain. For a small (but fixed) τ > 0, we set

D ≡ D(τ) :=
{
z = E + iη ∈ C : E ≥ λ+ +N− 2

3
+τ , 0 < η ≤ τ−1

}
. (4.6)

Conventionally, for a = 1, 2, we denote by Gl
a and G(l)

a the l-th power of Ga

and the l-th derivative of Ga w.r.t. z, respectively. With the above notation,
we have the following theorem.

Theorem 4.2. Let τ > 0 in (4.6) be a small but fixed constant. Let
u,v be complex deterministic unit vectors of proper dimensions. Suppose X
satisfies Assumption 1.1. Then, for any given l ∈ N and α = 1, 2, we have

|〈u,G(l)
α (z)v〉 −m(l)

α (z)〈u,v〉| ≺ min{(κ + η)−2, (κ+ η)−
1
4}

(κ+ η)l
√
N

, (4.7)

|〈u,X∗Gl+1
1 (z)v〉| ≺

√
ℑm1(z)

Nη

1

(κ+ η)l
, |〈u,XGl+1

2 (z)v〉| ≺
√

ℑm2(z)

Nη

1

(κ+ η)l
,

(4.8)

|m(l)
αN (z)−m(l)

α (z)| = O≺
( 1

N(κ+ η)l+1

)
, (4.9)

uniformly in z ∈ D , where κ = E − λ+. Further, when κ > K for some
sufficiently large constant K > 0 and |y − 1| ≥ τ0 for any small but fixed
τ0 > 0, (4.9) can be improved to

|m(l)
αN (z) −m(l)

α (z)| = O≺
( 1

N(κ+ η)l+2

)
. (4.10)
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Remark 4.3. The case of l = 0 of (4.7) and (4.8) is from the isotropic
law for extended spectral domain in Proposition 3.8 of [16] which is derived
from Theorem 3.12 of [19] and the anisotropic laws in Theorem 3.7 of [48].
We emphasize that the extension to all z for (4.8) is not directly included in
Proposition 3.8 of [16]. Nevertheless, the approach used there can be adapted
to prove (4.8) for all z, starting from the result in [48] which is stated for
fixed z only. Specifically, writing 2〈u,X∗G1(z)v〉 = (Xu + v)∗G1(z)(Xu +
v)−(Xu)∗G1(z)(Xu)−v∗G1(z)v, one can use the approach for the extension
in [16] to each symmetric quadratic forms and conclude the extension of the
estimate for 〈u,X∗Gl

1(z)v〉. For other l ≥ 1, we can derive the estimate
easily from the case l = 0 by using Cauchy integral with the radius of the
contour taking value |z − λ+|/2 ≍ κ + η . We also remark here that the
original isotropic local laws in [19, 48] were stated in much larger domains
which also include the bulk and edge regimes of the MP law. But here we
only need the result for the domain far away from the support of the MP
law. The (4.9) can be obtained by the rigidity estimates of eigenvalues in
[72, Theorem 3.3] and the definition of the Stieltjes transform; see e.g. [9,
Remark 4.5] for more details. For (4.10), denoting by Fα the cumulative
distribution function of the measure νMP,α and using integration by parts,
we have

m
(l)
αN (z)−m(l)

α (z) ≍
∫

1

(λ− z)ℓ+1
d(FαN (λ)− Fα(λ))

≍
∫

1

(λ− z)ℓ+2
(FαN (λ)− Fα(λ))dλ

= O≺
( 1

N

∫ λ++N− 2
3+ τ

2

0

1

|λ− z|ℓ+2
dλ

)
,

where the last step follows from the rigidity results in Lemma 4.7 below and
its consequence on the convergence rate, supx |FαN (x)−Fα(x)| ≺ 1

N ; see for
instance [72]. Then (4.10) follows by elementary calculation.

Further, in the following lemma, we collect some basic estimates of m1

and m2 which can be verified by elementary computations.

Lemma 4.4. Recall the definition of m1 and m2 in (4.3). For a = 1, 2,
we have

|zma(z)| ≍ 1, |1 + zma(z)| ≍ min{1, (κ + η)−1}, ℑma(z) ≍
η

|z| 32√κ+ η
,

(4.11)
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and

|z 3
2m(l)

a (z)| ≍ (κ+ η)−l+ 1
2 , |(zma)

(l)| ≍ (κ+ η)−l+ 1
2

|z| 32
, for l ≥ 1 (4.12)

uniformly in z ∈ D for some positive constant C, where κ = E − λ+.

Remark 4.5. By Theorem 4.2, Lemma 4.4 and Lemma 4.12 , we can

easily bound (κ+ η)lzu∗G(l)
1 v, (κ+ η)lzu∗X∗G(l)

1 v and (κ+ η)lu∗X∗G(l)
1 Xv

for any deterministic unit vectors u and v of appropriate dimensions. For

instance, for (κ+ η)lu∗X∗G(l)
1 Xv, we have the following estimates on D ,

u∗X∗G1Xv = (1 + zm2)u
∗v +O≺

(
min{(κ+ η)−2, (κ + η)−

1
4 }N− 1

2
)

= O≺(min{1, (κ + η)−1}),
(κ+ η)lu∗X∗G(l)

1 Xv = (κ+ η)lu∗(Gl
1 + zGl+1

1 )v

= O≺
(
|(κ+ η)l(zm2)

(l)u∗v|
)
= O≺

(
|z|− 3

2
√
κ+ η

)
.

Using the isotropic local law, one can also get the following result, which
gives the location of the outlier and the extremal non-outlier.

Lemma 4.6. (Theorem 2.3 of [16]) Under Assumption 1.1 and (2.1), we
have for i ∈ J1, r0K

|µi − θ(di)| ≺ (di −
√
y)

1
2 d

1
2
i N

− 1
2 , |µr0+1 − λ+| ≺ N−2/3,

where

θ(z) := 1 + z + y + yz−1, for z ∈ C, ℜz > √
y. (4.13)

Further, for the eigenvalues of H, we have the following rigidity estimate.

Lemma 4.7 (Theorem 3.1 of [72]). Suppose that Assumption 1.1 holds.

Denote by γi the i-th largest N -quantile of F1, i.e, 1 − F1(γi) =
i−1/2
N . We

have

|λi(H)− γi| ≺ N− 2
3
(
min{min{N,M}+ 1− i, i}

)− 1
3 , (4.14)

for 1 ≤ i ≤ (1 − τ0)min{N,M} or for all 1 ≤ i ≤ min{N,M} in case
|y − 1| ≥ τ0, for some small but fixed τ0 > 0. Especially, (4.14) implies

|λ1(H)− λ+| ≺ N− 2
3 .

Also, we note that λi(H) = 0 if i ≥ min{N,M}+ 1.
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Remark 4.8. By setting z := θ(di)+iN−K for a sufficiently large integer
K, we have the estimates

|z| ≍ θ(di) ≍ di, κ+ η ≍ κ ≍ Υ. (4.15)

Here we set
Υ ≡ Υ(di) := (di −

√
y)2/di.

Applying the above estimates, we can further simplify the error bounds in
Theorem 4.2 to get

|〈u,ΥlG(l)
α (z)v〉 −Υlm(l)

α (z)〈u,v〉| = O≺
(
∆(di)N

−1/2
)
, (4.16)

max
{
|〈u,Υl−1X∗Gl

1(z)v〉|, |〈u,Υl−1XGl
2(z)v〉|

}

= O≺
(
(di −

√
y)−

1
2 d

− 1
2

i N−1/2
)
, (4.17)

|Υlm
(l)
αN (z)−Υlm(l)

α (z)| = O≺
(
(di −

√
y)−2N−1

)
, (4.18)

for any deterministic unit vectors u,v of appropriate dimensions, where for
convenience, we set

∆(d) := min{(d−√
y)−4d2, (d−√

y)−1/2d1/4}. (4.19)

We remark here that due to the Lipschitz continuity of G(l)
α (z),m

(l)
α (z),Gl

α(z),
the estimates in (4.16)-(4.18) also hold for z = θ(di) with the error bounds
unchanged.

Remark 4.9. According to the definition of ∆(d), by simple calcula-
tions, we see that for i ∈ J1, r0K, i.e. di >

√
y,

∆(di) =





(di −√
y)−1/2d

1/4
i if di <

(
1
2 +

√√
y + 1

4

)2

(di −
√
y)−4d2i if di ≥

(
1
2 +

√√
y + 1

4

)2

≍





(di −
√
y)−1/2 if di <

(
1
2 +

√√
y + 1

4

)2

d−2
i if di ≥

(
1
2 +

√√
y + 1

4

)2
.

(4.20)

Finally, for the large di regime, i.e., di > K for some sufficiently large
K, we will also need a convergence rate of the so-called eigenvector em-
pirical spectral distribution (VESD), which is recently obtained in [80]. For
simplicity, we state the result with necessary modification to adapt to our
assumption. We also refer to [80] for the original statement under more
general assumption.
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Recall the notation λi(H) for the i-th largest eigenvalue of H = XX∗.
We further denote by φi the unit eigenvector of H associated with λi(H).
Then, for a fixed unit vector v, we define the so-called eigenvector empirical
spectral distribution (VESD) with respect to v by

F v
1N (x) =

M∑

i=1

∣∣〈φi,v〉
∣∣21(λi(H) ≤ x). (4.21)

With the definition, we now introduce the following theorem which gives the
convergence rate of VESD.

Theorem 4.10. Under the Assumption 1.1 and the additional restric-
tion |y − 1| ≥ τ0 with any small but fixed τ0 > 0, for a given deterministic
vector v ∈ SM−1

R
, we have

sup
x

|F v
1N (x)− F1(x)| ≺ N− 1

2 , (4.22)

where F1 is the cumulative distribution function of νMP,1 defined in (4.2).

4.3. Auxiliary lemmas. The following cumulant expansion formula plays
a central role in our computation, whose proof can be found in [54, Propo-
sition 3.1] or [45, Section II], for instance.

Lemma 4.11. (Cumulant expansion formula) For a fixed ℓ ∈ N, let f ∈
Cℓ+1(R). Supposed ξ is a centered random variable with finite moments to
order ℓ + 2. Recall the notation κk(ξ) for the k-th cumulant of ξ. Then we
have

E(ξf(ξ)) =

ℓ∑

k=1

κk+1(ξ)

k!
E(f (k)(ξ)) + E(rℓ(ξf(ξ))), (4.23)

where the error term rℓ(ξf(ξ)) satisfies

|E(rℓ(ξf(ξ)))| ≤CℓE(|ξ|ℓ+2)sup|t|≤s|f ℓ+1(t)|
+ CℓE(|ξ|ℓ+2

1(|ξ| > s))supt∈R|f ℓ+1(t)| (4.24)

for any s > 0 and Cℓ satisfied Cℓ ≤ (Cℓ)ℓ/ℓ! for some constant C > 0.

Next we collect some basic identities for the Green functions in (4.1)
without proof.
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Lemma 4.12. For any integer l ≥ 1, we have

Gl
1 =

1

(l − 1)!

∂l−1G1

∂zl−1
=

1

(l − 1)!
G(l−1)
1 , (4.25)

Gl
1XX

∗ = Gl−1
1 + zGl

1, X∗Gl
1X = Gl

2X
∗X = Gl−1

2 + zGl
2. (4.26)

Further, for a ∈ J1,MK and b ∈ J1, NK, we denote by Eab the M × N
matrix with entires (Eab)cd = δacδbd. Let

P
ab
0 = Eab(Eab)

∗, P
ab
1 = EabX

∗, P
ab
2 = X(Eab)

∗. (4.27)

For any integer l ≥ 1, it is also elementary to compute that

∂Gl
1

∂xab
= −

2∑

α=1

∑

l1,l2≥1
l1+l2=l+1

Gl1
1 P

ab
α Gl2

1 . (4.28)

Repeatedly applying the identity (4.28), we can get the formulas for higher
order derivatives of Gl

1 w.r.t. xab. Moreover, by (4.28) and the product rule,
we can easily deduce the derivatives of X∗Gl

1 w.r.t. xab. For the convenience
of the reader, we collect more basic formulas of the derivatives of Green
functions in Appendix A.

5. Green function representation. In this section, we express 〈w,PIw〉
in terms of the Green function G1(z) in (4.1). And for singleton I = {i}, we
also express the eigenvalue µi in terms of the Green function G1(z) in (4.1).
Both representations are obtained via doing expansions of certain function-
als of the Green function. The expansion for the eigenvalue in the multiple
case can be done similarly, and the details will be stated in Appendix C.
This representation will allow us to work with the Green function instead of
the eigenvalue and eigenvector statistics. We also remark here that similar
derivation of the Green function representation has appeared in previous
work such as [46, 16, 47]. But here for eigenvectors, we need to do it up
to a higher order precision, in order to capture all contributing terms for
the fluctuation. For instance, when w ∈ Span{vj}j∈J1,MK\I, the fluctuation
of 〈w,PIw〉 is one order smaller than that of the case w ∈ Span{vt}t∈I. In
order to cover the situation like the former case, we will need to investigate
a higher order term in the expansion.

We start with a few more notations. The vector w is decomposed as

w =

r∑

j=1

〈w,vj〉vj + u, where u ∈ Span{v1 · · · ,vr}⊥. (5.1)
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Hereafter, we take (5.1) as the definition of u.
We define the centered Green function by

Ξ(z) := G1(z)−m1(z)I, (5.2)

and introduce its quadratic forms

χij(z) = v
∗
iΞ(z)vj , χuj(z) = u

∗Ξ(z)vj , i, j ∈ J1, rK. (5.3)

For brevity, we further set

w̃ := Σ− 1
2w =

r∑

j=1

w̃jvj + u with w̃j :=
〈w,vj〉√
1 + dj

. (5.4)

Also, for d > 0, we define the following functions

f(d) :=
1

d
(d+ 1)(d2 − y), g(d) :=

1

d
(d+ 1)(d + y)(d2 − y), (5.5)

which are of order O(d(d − √
y)) and O(d2(d − √

y)) respectively. And for
i ∈ J1, rK, we set for d 6= di,

νi(d) :=
di(d+ 1)

di − d
, (5.6)

and further introduce the following shorthand notations

δij := |di − dj |, δi0 := |di −
√
y| (5.7)

for i, j ∈ J1, rK.
With the above notations and wI, ςI from (2.5) and (2.6), we have the

following lemma.

Lemma 5.1. Suppose that the assumptions of Theorem 2.5 hold. For
i ∈ J1, r0K, we have

〈w,PIw〉 = d2i − y

di(di + y)
‖wI‖2 − 2di(di + 1)w∗

I Ξ(θ(di))wI − 2
f(di)√
1 + di

ς∗I Ξ(θ(di))wI

− f(di)
2

1 + di
w∗

I Ξ
′(θ(di))wI + g(di)

∑

t∈I

(
v∗tΞ(θ(di))ςI

)2

− di(1 + di)g(di)
∑

j∈Ic

dj
(di − dj)2

(
v∗jΞ(θ(di))wI

)2

+O≺
(
N− 1

2
−ε

(
δi0

√
di ‖ςI‖+ di‖wI‖

)
‖wI‖∆(di)

)

+O≺

(
N−1−ε

(
di‖ςI‖2 + d2i ‖wI‖2

(∑

j∈Ic

dj
δij

)(∑

j∈Ic

di
δij

))
δi0 di ∆(di)

2

)

(5.8)
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for some small fixed constant ε > 0.

Remark 5.2. It will be seen that the bounds in (4.17) actually give the
true typical size of the quadratic forms. In light of this, Lemma 5.1 suggests
that the distribution of 〈w,Piw〉 is ultimately governed by the joint distribu-
tion of the quadratic forms w∗

I
ΞwI, ς

∗
I
ΞwI,w

∗
I
Ξ′wI, {v∗tΞςI}t∈I, {v∗jΞwI}j∈Ic ,

since the last two error terms in (5.8) are smaller than the sum of the sec-
ond to the fifth fluctuating terms in any case, with high porbability. Here
we drop the parameter θ(di) from Ξ for simplicity.

Proof of Lemma 5.1. Recall (1.2) together with (1.4). We rewrite S
as

S = V diag(d1, · · · , dr)V ∗,

by setting V = (v1, · · · ,vr). Therefore, we have

Σ−1 = I − V DV ∗.

with

D = diag

(
d1

1 + d1
, · · · , dr

1 + dr

)
.

From Lemma 4.6, we observe that all µi, i ∈ I tend to the identical limit
θ(di) with error bound O≺(N−1/2(di −

√
y)1/2).

Let Γi be the boundary of a disc centered at di with radius ρi,

ρi :=
1

2

(
min
j∈Ic

|di − dj | ∧ (di −
√
y)
)
, (5.9)

such that the disc is away from the critical value
√
y and other distinct dj ’s.

Therefore under the definitions of ρi and θ(z) in (4.13), with Assumption
2.3, the contour θ(Γi), which is the image of Γi under the map θ(·), encloses
exactly |I| eigenvalues of Q, i.e. µi, i ∈ I. This follows from the fact

|θ(di + ρi)− θ(di)| ≍ (di −
√
y)ρi > (di −

√
y)

1
2N− 1

2
+ε, for some ε > 0,

where the last inequality is guaranteed by Assumption 2.3. According to
Lemma 4.6, together with the Cauchy integral, we have the following equal-
ity with high probability

〈w,PIw〉 = − 1

2πi

∮

θ(Γi)
w∗G(z)w dz. (5.10)
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With the notations for V, S,D and Σ−1, using the setting (1.5), we can write

G(z) =
(
Σ

1
2XX∗Σ

1
2 − zI

)−1
= Σ− 1

2

(
G−1
1 (z) + zΣ− 1

2SΣ− 1
2

)−1
Σ− 1

2

= Σ− 1
2
(
G−1
1 (z) + zV DV ∗)−1

Σ− 1
2 .

Then, it follows from the matrix inversion lemma that

G(z) = Σ− 1
2G1(z)Σ

− 1
2 − zΣ− 1

2G1(z)V
(
D−1 + zV ∗G1(z)V

)−1
V ∗G1(z)Σ

− 1
2 .

With the notation introduced in (5.4), we can further write

w∗G(z)w = w̃∗G1(z)w̃ − zw̃∗G1(z)V
(
D−1 + zV ∗G1(z)V

)−1
V ∗G1(z)w̃.

(5.11)

Plugging (5.11) into (5.10), and noticing that the contour integral of w̃∗G1(z)w̃
on θ(Γi) is zero with high probability by Assumption 2.3 and the rigidity of
eigenvalues of H (c.f., (4.14)), one has

〈w,PIw〉 = 1

2πi

∮

θ(Γi)
zw̃∗G1(z)V

(
D−1 + zV ∗G1(z)V

)−1
V ∗G1(z)w̃ dz

(5.12)

with high probability.
For the integrand in (5.12), we first recall the notation in (5.2) and then

we apply resolvent expansion

(
D−1 + zV ∗G1(z)V

)−1
=L(z)− zL(z)V ∗Ξ(z)V L(z)

+
(
zL(z)V ∗Ξ(z)V

)2(
D−1 + zV ∗G1(z)V

)−1
,

(5.13)

where
L(z) :=

(
D−1 + zm1(z)

)−1
.

With (5.13), we can further rewrite (5.12) as

〈w,PIw〉 = 1

2πi

∮

θ(Γi)
z
(
m1(z)w̃

∗V + w̃∗Ξ(z)V
)(
L(z)− zL(z)V ∗Ξ(z)V L(z)

+
(
zL(z)V ∗Ξ(z)V

)2(
D−1 + zV ∗G1(z)V

)−1
)(
m1(z)V

∗w̃ + V ∗Ξ(z)w̃
)
dz.

Hence, we can write

〈w,PIw〉 = S1 + S2 + S3 +R, (5.14)



46 ZHIGANG BAO, XIUCAI DING, JINGMING WANG, KE WANG

by defining

S1 :=
1

2πi

∮

θ(Γi)
zm2

1(z)w̃
∗V L(z)V ∗w̃ dz,

S2 :=
1

2πi

∮

θ(Γi)

(
2zm1(z)w̃

∗V L(z)V ∗Ξ(z)w̃ − z2m2
1(z)w̃

∗V L(z)V ∗Ξ(z)V L(z)V ∗w̃
)
dz,

S3 :=
1

2πi

∮

θ(Γi)

(
zw̃∗Ξ(z)V L(z)V ∗Ξ(z)w̃ − 2z2m1(z)w̃

∗(V L(z)V ∗Ξ(z))2w̃

+ z3m2
1(z)w̃

∗(V L(z)V ∗Ξ(z))2V L(z)V ∗w̃
)
dz, (5.15)

and we take (5.14) as the definition of the remainder term R. It remains to
estimate S1, S2, S3 and R. From the definitions in (4.3) and (4.13), it is easy
to check the identity

1 + z−1 + θ(z)m1(θ(z)) = 0. (5.16)

With the above identity, we see that

V L(θ(z))V ∗ =
r∑

j=1

vjv
∗
j

1 + d−1
j + θ(z)m1(θ(z))

=

r∑

j=1

zdjvjv
∗
j

z − dj
.

Therefore, by the residue theorem,

S1 =
1

2πi

∮

Γi

θ(z)θ′(z)m2
1(θ(z))w̃

∗V L(θ(z))V ∗w̃ dz

= θ(di)θ
′(di)m

2
1(θ(di))d

2
i

∑

t∈I
(w̃∗vt)

2 =
d2i − y

di(di + y)

∑

t∈I
(w∗vt)

2. (5.17)

Similarly, using (5.16), we can get

S2 =
1

2πi

∮

Γi

(
2θ(z)θ′(z)m1(θ(z))

r∑

j=1

zdj
z − dj

(w̃∗vj)w̃
∗Ξ(θ(z))vj

− θ2(z)θ′(z)m2
1(θ(z))

r∑

j,k=1

z2djdk
(z − dj)(z − dk)

(w̃∗vj)(w̃
∗vk)v

∗
jΞ(θ(z))vk

)
dz.

Further by the residue theorem together with the definition of θ and m1 in
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(4.13) and (4.3), we can get

S2 = −2di(di + 1)2
∑

j,k∈I
w̃jw̃kχjk(θ(di))− 2f(di)

∑

j∈Ic
νi(dj)w̃j

∑

t∈I
w̃tχtj(θ(di))

− 2f(di)
∑

t∈I
w̃tχut(θ(di))− f(di)

2
∑

j,k∈I
w̃jw̃kχ

′
jk(θ(di))

= −2di(di + 1)w∗
I Ξ(θ(di))wI − 2

f(di)√
1 + di

w∗
I Ξ(θ(di))ςI −

f(di)
2

1 + di
w∗

I Ξ
′(θ(di))wI,

(5.18)

where we recall the notations in (5.3), (5.5) and (2.6). Next, we fix a suf-
ficiently large K > 0. For the case di ≤ K, by isotropic local law (4.16),
we can bound both the first and third term on the RHS of (5.18) by
O≺(

∑
t∈I |w̃t|2∆(di)N

−1/2). In the case di > K, this crude bound shall be

refined to O≺(
∑

t∈I |w̃t|2d3i∆(di)N
−1/2). Here in the latter case we carry the

additional factor d3i since it can be very large; for instance, when di ∼ NC .
Nevertheless, a more precise bound can be obtained for the combination of
the first and third terms (5.18) due to a hidden cancellation in case di > K.
In order to see this cancellation, we need to apply in Theorem 4.10. To this
end, we first set the following notation for the normalized vector

w0
I :=

{
wI/‖wI‖, if wI 6= 0;

0, otherwise.
(5.19)

Note that due to the triviality of the case wI = 0, we only discuss the case
wI 6= 0 in the sequel.

Recall the definition of the VESD from (4.21) with v = w0
I

F
w0

I

1N (x) =

M∑

i=1

∣∣〈φi,w
0
I 〉
∣∣21(λi(H) ≤ x), (5.20)

and we denote by F1(x) the distribution function of νMP,1(dx) in (4.2). By
Theorem 4.10, we obtain,

sup
x

|Fw0
I

1N (x)− F1(x)| = O≺(N
− 1

2 ). (5.21)

In light of the fact that w0
I
is the normalized wI, we can write the combina-
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tion of the first and third terms on the RHS of (5.18) as

∣∣∣− 2di(di + 1)w∗
I Ξ(θ(di))wI −

f(di)
2

1 + di
w∗

I Ξ
′(θ(di))wI

∣∣∣

= ‖wI‖2
∣∣∣
∫ (−2di(di + 1)

x− θ(di)
− (1 + di)(d

2
i − y)2/d2i(

x− θ(di)
)2

)
d
(
F

w0
I

1N (x)− F1(x)
)∣∣∣

≍ ‖wI‖2
∣∣∣∣
∫ λ++N− 2

3+ τ
2

λ−−N− 2
3+ τ

2

( 2di(di + 1)
(
x− θ(di)

)2 +
2(1 + di)(d

2
i − y)2/d2i(

x− θ(di)
)3

)(
F

w0
I

1N (x)− F1(x)
)
dx

∣∣∣∣,

(5.22)

where in the last step, we used integration by parts, together with the rigidity
results in Lemma 4.7. In the case di > K for sufficiently large K, by the
definition of θ(di), we see that θ(di) ∼ di and thus θ(di) is also sufficiently
large. Hence, applying Taylor expansion for both 1/(x−θ(di))2, 1/(x−θ(di))3
at x = 0, we can easily get the bound

2di(di + 1)
(
x− θ(di)

)2 +
2(1 + di)(d

2
i − y)2/d2i(

x− θ(di)
)3 = O(1/di) (5.23)

uniformly for x ∈ [λ−−N− 2
3
+ τ

2 , λ++N− 2
3
+ τ

2 ]. Then using (5.23) and (5.21),
we finally get the estimate

∣∣∣− 2di(di + 1)w∗
I Ξ(θ(di))wI −

f(di)
2

1 + di
w∗

I Ξ
′(θ(di))wI

∣∣∣ = O≺
(∑

t∈I
|w̃t|2N− 1

2

)
.

(5.24)

We therefore get a unified estimate O≺
(∑

t∈I |w̃t|2d2i∆(di)N
− 1

2

)
for this

combination, no matter di ≤ K or di > K.
Further, from the isotropic local law (4.16), Assumption 2.3, and the

definition of wI, ςI in (2.6), we get the following crude bound

S2 = O≺

(∑

t∈I
|w̃t|∆(di)N

−1/2
(
d2i

∑

t∈I
|w̃t|+

∑

j∈Ic
|w̃j |

d2i djδi0
δij

+ diδi0‖u‖
))

= O≺(Λ2), (5.25)

where we recall the notations δij , δi0 in (5.7) and define

Λ2 :=
(∑

t∈I

|w̃t|di
δi0

+
∑

j∈Ic

|w̃j |didj
δij

+ ‖u‖
)(∑

t∈I

|w̃t|di
δi0

)
δ2i0∆(di)N

− 1
2 .

(5.26)
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Since Λ2 can degenerate depending on the size of
∑

t∈I |w̃t|, it is necessary
to also consider the fluctuation of the higher order term S3. We shall obtain
more precise estimates for the summands in S2 in later context, after first
obtaining an estimate of S3.

Next, we turn to estimate S3 (c.f. (5.15)). We estimate the integrals of
three terms in the integrand separately. First, using the residue theorem
together with the notations in (5.3) and (5.5), we have

1

2πi

∮

θ(Γi)
zw̃∗Ξ(z)V L(z)V ∗Ξ(z)w̃ dz = θ(di)θ

′(di)d
2
i

∑

t∈I

(
w̃∗Ξ(θ(di))vt

)2

= g(di)
∑

t∈I

( ∑

j,k∈Ic
w̃jw̃kχtj(θ(di))χtk(θ(di)) + 2

∑

j∈Ic
w̃jχtj(θ(di))χut(θ(di)) + χ2

ut(θ(di))
)

+O≺
(
d2i (di −

√
y)∆(di)

2
∑

t∈I
|w̃t|‖w̃‖N−1

)
, (5.27)

where the error bound follows from the isotropic local law (4.16) and the
expression for g(d).

For the second part of the integral, we have

1

2πi

∮

θ(Γi)
−2z2m1(z)w̃

∗(V L(z)V ∗Ξ(z))2w̃ dz

= −2θ2(di)θ
′(di)m1(θ(di))

∑

j∈Ic, t∈I

d3i dj
di − dj

(w̃∗vj)w̃
∗Ξ(θ(di))vtχtj(θ(di))

− 2θ2(di)θ
′(di)m1(θ(di))

∑

j∈Ic, t∈I

d3i dj
di − dj

(w̃∗vt)w̃
∗Ξ(θ(di))vjχtj(θ(di))

− 2d2i
∑

t,k∈I
(w̃∗vt)

(
θ2(z)θ′(z)m1(θ(z))z

2w̃∗Ξ(θ(z))vkχtk(θ(z))
)′∣∣∣

z=di

= 2g(di)
∑

j∈Ic

(1 + di)dj
di − dj

w̃j

∑

t∈I
χtj(θ(di))

(∑

k∈Ic
w̃kχtk(θ(di)) + χut(θ(di))

)

+O≺
( ∑

t∈I,j∈Ic

(d3i djδi0
δij

+ d4i

)
|w̃t|‖w̃‖∆(di)

2N−1
)
. (5.28)

Similarly, we used isotropic local law (4.16) for l = 0, 1 and the definition
for g(d) in (5.5) for the estimates in the last step.

Analogously, for the last term, we obtain

1

2πi

∮

θ(Γi)
z3m2

1(z)w̃
∗(V L(z)V ∗Ξ(z))2V L(z)V ∗w̃ dz
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= g(di)
∑

j,k∈Ic

(1 + di)
2djdk

(di − dj)(di − dk)
w̃jw̃k

∑

t∈I
χtj(θ(di))χtk(θ(di))

+ 2g(di)
∑

j,k∈Ic

(1 + di)
2djdk

(di − dj)(di − dk)
w̃kχjk(θ(di))

∑

t∈I
w̃tχtj(θ(di))

+ 2
∑

t,k∈I,j∈Ic
w̃tw̃jd

2
i dj

(
θ(z)3θ′(z)m1(θ(z))

2 z3

z − dj
χtk(θ(z))χkj(θ(z))

)′∣∣∣
z=di

+
∑

t,k∈I,j∈Ic
w̃tw̃kd

2
i dj

(
θ(z)3θ′(z)m1(θ(z))

2 z3

z − dj
χtj(θ(z))χkj(θ(z))

)′∣∣∣
z=di

+
∑

t,j,k∈I
w̃tw̃kd

3
i

(
θ(z)3θ′(z)m1(θ(z))

2z3χtj(θ(z))χkj(θ(z))
)′′∣∣∣

z=di
. (5.29)

In the sequel, we will keep the first term on the RHS of (5.29) as it is and
estimate the other terms. First, notice that the second term on the RHS of
(5.29) can be estimated by

2g(di)
∑

j,k∈Ic

(1 + di)
2djdk

(di − dj)(di − dk)
w̃kχjk(θ(di))

∑

t∈I
w̃tχtj(θ(di))

= O≺
( ∑

j,k∈Ic,t∈I
|w̃t||w̃k|

d4i djdkδi0
δijδik

∆(di)
2N−1

)
, (5.30)

Similarly, simple calculation shows that the third term on the RHS of (5.29)
can be bounded crudely by

∑

t,k∈I,j∈Ic
w̃tw̃jd

2
i dj

[(θ′′(di)d4i + θ′(di)2d3i + θ′(di)d3i
di − dj

+
θ′(di)d4i
(di − dj)2

)
χtk(θ(di))χkj(θ(di))

+
θ′(di)2d4i
di − dj

(
χ′
tk(θ(di))χkj(θ(di)) + χtk(θ(di))χ

′
kj(θ(di))

)]

= O≺

( ∑

t∈I,j∈Ic
|w̃t||w̃j |

(d5i dj
δij

+
d5i djδi0
δ2ij

)
∆(di)

2N−1

)
. (5.31)

Next, we turn to the last term on the RHS of (5.29). We split the discus-
sion into two cases: di ≤ K or di > K, for some sufficiently large (but fixed)
K > 0. For di ≤ K , it is easy to compute the derivative by chain rule and use
isotropic local law (4.16) to get the boundO≺

(∑
t,k∈I |w̃t||w̃k|δ−1

i0 ∆(di)
2N−1

)

directly for the last term on the RHS of (5.29), and thus we omit the detail.
In case di > K, we first introduce a new form of eigenvector empirical spec-
tral distribution(VESD) of H with respect to two fixed unit vectors u,v,
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which is defined by

Fu,v
1N (x) =

M∑

i=1

〈φi,u〉〈φi,v〉1(λi(H) ≤ x). (5.32)

Correspondingly, we set Fu,v
1 (x) = 〈u,v〉F1(x). Then by triangle inequality

and Theorem 4.10, we have the estimate

sup
x

|Fu,v
1N (x)− Fu,v

1 (x)| ≤ 1

2
‖u+ v‖2 sup

x
|F (u+v)0

1N (x)− F1(x)|

+
1

2
sup
x

|Fu
1N (x)− F1(x)|+

1

2
sup
x

|F v
1N − F1|

= O≺(N
− 1

2 ). (5.33)

Here we use (u + v)0 to denote the normalized u + v. Similarly to (5.20)-
(5.24), after computing the derivative of the last term on the RHS of (5.29),
we will see the hidden cancellations among the resulting terms using the
following estimates,

2χtj(θ(z)) + θ(di)χ
′
tj(θ(z)) = O≺(d

−3
i N−1/2),

χtj(θ(z))χ
′
kj(θ(z))θ

′′(di) = O≺(d
−4
i ∆(di)

2N−1/2),

6χtj(θ(z)) + 6θ(di)χ
′
tj(θ(z)) + θ(di)

2χ′′
tj(θ(z)) = O≺(d

−3
i N−1/2)

which can be checked readily by using (5.33). Then after elementary compu-
tations, we can get for the case di > K, the last term on the RHS of (5.29)

admits the bound O≺
(∑

t,k∈I |w̃t||w̃k|N−1
)
. Combining the estimates for

the two cases, di ≤ K or di > K, we can uniformly bound the last term on
the RHS of (5.29) by

O≺
( ∑

t,k∈I
|w̃t||w̃k|d5i δ−1

i0 ∆(di)
2N−1

)
. (5.34)

Next, we turn to estimate the fourth term on the RHS of (5.29), which
by product rule can be written up as

∑

t,k∈I,j∈Ic
w̃tw̃kd

2
i dj

(
θ(z)3θ′(z)m1(θ(z))

2 z3

z − dj
χtj(θ(z))χkj(θ(z))

)′∣∣∣
z=di

= −di(1 + di)
2g(di)

∑

t,k∈I,j∈Ic
w̃tw̃k

dj
(di − dj)2

χtj(θ(di))χkj(θ(di))

+
∑

t,k∈I,j∈Ic
w̃tw̃k

d2i dj
di − dj

(
θ(z)3θ′(z)m1(θ(z))

2z3χtj(θ(z))χkj(θ(z))
)′∣∣∣

z=di
.

(5.35)
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The first term on the RHS of (5.35) can be further simplified to

−di(1 + di)g(di)
∑

j∈Ic

dj
(di − dj)2

(
w∗

I Ξ(θ(di))vj

)2
. (5.36)

The above may exceed the stochastic bound Λ2 defined in (5.26). While a
posteriori, it will be clear that Λ2 gives the typical size of S2. Hence, we
shall keep the term (5.36) explicit instead of grouping it into the errors. As
for the second term of (5.35), analogously to the last term on the RHS of
(5.29), by splitting the discussion into two cases based on the size of di, we
can get the estimate

O≺

( ∑

t,k∈I,j∈Ic
|w̃t||w̃k|

d4i dj
δij

∆(di)
2N−1

)
. (5.37)

Combining (5.27)-(5.37), after necessary simplification, we arrive at

S3 = g(di)
∑

t∈I

(
v∗tΞ(θ(di))ςI

)2
− di(1 + di)g(di)

∑

j∈Ic

dj
(di − dj)2

(
v∗jΞ(θ(di))wI

)2

+O≺(R3)

=: S̃3 +O≺(R3), (5.38)

where

R3 :=
(∑

t∈I

|w̃t|di
δi0

)
‖w̃‖

(∑

j∈Ic

dj
δij

+
di
δi0

)
d2i δ

2
i0∆(di)

2N−1

+
(∑

j∈Ic

|w̃j |didj
δij

)(∑

t∈I

|w̃t|di
δi0

)(∑

k∈Ic

dk
δik

+
di
δi0

+
∑

k∈Ic

di
δik

)
d2i δ

2
i0∆(di)

2N−1

+
(∑

t∈I

|w̃t|di
δi0

)2( di
δi0

+
∑

j∈Ic

dj
δij

)
d2i δ

2
i0∆(di)

2N−1. (5.39)

Now we claim that R3 ≺ N−εΛ2 for some small (but fixed) ε > 0, where Λ2

is defined in (5.26). This can be achieved by applying assumption (2.1) and
(2.2) and using the following three estimates

d3i
δi0

∆(di)N
− 1

2 ≺ N−ε,
∑

k∈Ic

d3i
δik

∆(di)N
− 1

2 ≺ N−ε,

∑

k∈Ic

d2i dk
δik

∆(di)N
− 1

2 ≺ N−ε. (5.40)
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The first two estimates in (5.40) can be easily checked by combining the
assumption for δi0 = di −

√
y in (2.1), the non-overlapping condition (2.2)

with the definition of ∆(di) in (4.19) and its estimates in Remark 4.9. The
last estimate in (5.40) can be derived as follows

∑

k

d2i dk
δik

∆(di)N
− 1

2 ≤
∑

k

( d3i
δik

+ d2i

)
∆(di)N

− 1
2

≤
∑

k

( d3i
δik

+
d3i
δi0

)
∆(di)N

− 1
2 ≺ N−ε. (5.41)

Here for the first inequality, we use the triangle inequality dk ≤ di + δik.
The last inequality above holds from the definition of ∆(di) and the non-
overlapping condition (2.2) for δi = minj∈Ic δij as well as the first estimate
in (5.40).

Thus to see R3 ≺ N−εΛ2, we first observe that the second and third terms
on the RHS of (5.39) are much smaller than Λ2 by applying the estimates in
(5.40) and the trivial fact di > δi0. For the first term on the RHS of (5.39),
notice that

‖w̃‖ ≤
(∑

t∈I

|w̃t|di
δi0

+
∑

j∈Ic

|w̃j |didj
δij

+ ‖u‖
)
, (5.42)

which is a consequence of the fact

didj
|di − dj |

> C

for some constant C > 0. Using (5.42) and the first and third estimates in
(5.40), we get the first term on the RHS of (5.39) is also negligible compared
to Λ2. To conclude, we have R3 ≺ N−εΛ2.

Therefore, we can rewrite

S3 = S̃3 +O≺
(Λ2

N ε

)
, (5.43)

for some small fixed positive ε. Further, using isotropic local law (4.16)
together with the definitions of wI, ςI in (2.6), we can crudely estimate the
size of S̃3 in (5.38) by O≺(Λ3) where

Λ3 :=
(∑

j∈Ic

|w̃j |dj
δij

+
‖u‖
di

)2
d4i δi0 ∆(di)

2N−1

+
( ∑

t∈I,j∈Ic

|w̃t|dj
δij

)( ∑

t∈I,j∈Ic

|w̃t|di
δij

)
d4i δi0 ∆(di)

2N−1. (5.44)
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Now it remains to estimate the remainder term R in (5.14). We shall
prove that

|R| = O≺
(Λ2 + Λ3

N ε

)
.

Following the derivation of (5.14), one has

R = 〈w,PIw〉 − S1 − S2 − S3

= − 1

2πi

∮

θ(Γi)
zm1(z)w̃

∗V (zL(z)V ∗Ξ(z)V )3(D−1 + zV ∗G1(z)V )−1m1(z)V
∗w̃ dz

+
2

2πi

∮

θ(Γi)
zm1(z)w̃

∗V (zL(z)V ∗Ξ(z)V )2(D−1 + zV ∗G1(z)V )−1V ∗Ξ(z)w̃ dz

− 1

2πi

∮

θ(Γi)
zw̃∗Ξ(z)V (zL(z)V ∗Ξ(z)V )(D−1 + zV ∗G1(z)V )−1V ∗Ξ(z)w̃ dz

=: T1 + T2 + T3. (5.45)

The estimations of T1, T2, T3 cannot be computed by only applying the
residue theorem. Instead, we shall follow the method used in Lemma 5.6
of [16]. More specifically, for T1, we first use the resolvent expansion formula

(D−1 + zV ∗G1(z)V )−1 = L(z)− (D−1 + zV ∗G1(z)V )−1zV ∗Ξ(z)V L(z)

to split it into two parts

T1 = − 1

2πi

∮

θ(Γi)
zm1(z)w̃

∗V (zL(z)V ∗Ξ(z)V )3L(z)m1(z)V
∗w̃ dz

+
1

2πi

∮

θ(Γi)
zm1(z)w̃

∗V (zL(z)V ∗Ξ(z)V )3(D−1 + zV ∗G1(z)V )−1V ∗Ξ(z)V L(z)m1(z)V
∗w̃ dz

=: T11 + T12. (5.46)

For T11, we estimate it using the residue theorem. Similar to the previous
calculations as in (5.18)-(5.25), one can derive that the magnitude of T11 is
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stochastically bounded by

(∑

j∈Ic

|w̃j |dj
δij

)(∑

j∈Ic

|w̃j |dj
δij

+
∑

t∈I,j∈Ic

|w̃t|dj
δij

)(∑

j∈Ic

dj
δij

)
d6i δi0∆(di)

3N− 3
2

+
(∑

j∈Ic

|w̃j |dj
δij

+
∑

t∈I,j∈Ic

|w̃t|dj
δij

)(∑

j∈Ic

|w̃j |dj
δij

+
∑

t∈I,j∈Ic

|w̃t|dj
δij

+
∑

t∈I

|w̃t|di
δi0

)
d6i∆(di)

3N− 3
2

+
(∑

j∈Ic

|w̃j |dj
δ2ij

+
∑

t∈I,j∈Ic

|w̃t|dj
δ2ij

)(∑

j∈Ic

|w̃j |dj
δij

+
∑

t∈I,j∈Ic

|w̃t|dj
δij

+
∑

t∈I

|w̃t|
δi0

)
d7i δi0∆(di)

3N− 3
2

+
(∑

j∈Ic

|w̃j |dj
δ2ij

+
∑

t∈I,j∈Ic

|w̃t|dj
δ2ij

)( ∑

t∈I,j∈Ic

|w̃t|di
δij

)
d7i δi0∆(di)

3N− 3
2

+
(∑

t∈I

|w̃t|di
δi0

)2
d6i∆(di)

3N− 3
2 . (5.47)

It is easy to check that (5.47) is negligible compared to Λ2,Λ3 in (5.26) and
(5.44). Hence, we can write

|T11| = O≺
(Λ2 + Λ3

N ε

)
. (5.48)

For the term T12, instead of using the residue theorem as above, we di-
rectly bound the integral as follows

|T12| ≤C
∫

Γi

∣∣z2(1 + z)2θ(z)2θ′(z)
∣∣
(∑

j

|w̃j |dj
|z − dj|

)2(∑

k

dk
|z − dk|

)2
|∆(θ(z))|4N−2

× ‖(D−1 + θ(z)V ∗G1(θ(z))V )−1‖op |dz|. (5.49)

Notice that for z ∈ Γi,

|z| ≍ di, |z −√
y| ≍ di −

√
y and |z − dj | ≍

{
|di − dj | for j ∈ I

c

ρi for j ∈ I
.

(5.50)

Besides,
∥∥∥(D−1 + θ(z)V ∗G1(θ(z))V )−1

∥∥∥
op

=
∥∥∥
((
D−1 + θ(z)m1(θ(z))

)
+ θ(z)V ∗Ξ(θ(z))V

)−1∥∥∥
op

≺ 1

minj |z − dj |/|zdj | − ‖θ(z)V ∗Ξ(θ(z))V ‖op
, (5.51)
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where for the last bound we used the fact that θ(z)m1(θ(z)) = −(1+1/z). By
elementary computations and the definitions of ρi, δij (see (5.9) and (5.7)),
one has

min
j∈Ic

|z − dj |/|zdj | ≍ min
j∈Ic

|di − dj |/didj ≥ min
j∈Ic

δij
di(di + δij)

≥ ρi
di(di + ρi)

≍ ρi
d2i
,

min
j∈I

|z − dj |/|zdj | ≍
ρi
d2i
,

and

‖θ(z)V ∗Ξ(θ(z))V ‖op ≺ di‖V ∗Ξ(θ(z))V ‖op
= O≺(di min{|θ(z)− λ+|−2, |θ(z)− λ+|−1/4}N−1/2)

= O≺(di∆(di)N
−1/2).

Note that the following bounds are implied by the non-overlapping condition
(2.2)

δi
d3i∆(di)N−1/2

≥ CN ε,
di −

√
y

d3i∆(di)N−1/2
≥ CN ε,

where δi = minj∈Ic |di − dj |. Recall ρi from (5.9). Thus

‖θ(z)V ∗Ξ(θ(z))V ‖op ≺ N−ε ρi
d2i
.

Consequently, from (5.51), we get

‖(D−1 + θ(z)V ∗G1(θ(z))V )−1‖op ≺ d2i
ρi
. (5.52)

Inserting the estimates (5.50) and (5.52) into (5.49), we arrive at

|T12| ≺
(∑

j∈Ic

|w̃j |dj
δij

+
∑

t∈I

|w̃t|di
δi0

+
∑

t∈I,j∈Ic

|w̃t|di
δij

)2

×
(∑

j∈Ic

dj
δij

+
∑

j∈Ic

di
δij

+
di
δi0

)2
d7i δi0 ∆(di)

4N−2. (5.53)

Further, applying the estimates (5.40) to the term
∑

j∈Ic
dj
δij

+
∑

j∈Ic
di
δij

+ di
δi0

above, we get

|T12| ≺ N−ε
(∑

j∈Ic

|w̃j |dj
δij

+
∑

t∈I

|w̃t|di
δi0

+
∑

t∈I,j∈Ic

|w̃t|di
δij

)2
d3i δi0 ∆(di)

2N−1.

(5.54)
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Next, we expand the squared term on the RHS of (5.54) and analyse them
term by term. Recalling the expression of Λ3 in (5.44), we directly have

(∑

j∈Ic

|w̃j |dj
δij

)2
d3i δi0 ∆(di)

2N−1 ≤ Λ3. (5.55)

Further recalling the estimates for S2, i.e. Λ2 in (5.26) and using the first
estimate in (5.40), we obtain

(∑

t∈I

|w̃t|di
δi0

)2
d3i δi0 ∆(di)

2N−1 ≺ N−ε
(∑

t∈I

|w̃t|di
δi0

)2
δ2i0 ∆(di)N

− 1
2 ≤ N−εΛ2.

(5.56)

It remains to bound the last squared term (
∑

t∈I,j∈Ic |w̃t|di/δij)2. First notice
that it follows from the triangle inequality and di/δi0 ≥ 1 that

∑

t∈I,j∈Ic

|w̃t|di
δij

≤
∑

t∈I,j∈Ic

|w̃t|dj
δij

+
∑

t∈I,j∈Ic

|w̃t|di
δi0

. (5.57)

By (5.57), we have

( ∑

t∈I,j∈Ic

|w̃t|di
δij

)2
d3i δi0 ∆(di)

2N−1

≤
( ∑

t∈I,j∈Ic

|w̃t|di
δij

)( ∑

t∈I,j∈Ic

|w̃t|dj
δij

)
d3i δi0 ∆(di)

2N−1

+
( ∑

t∈I,j∈Ic

|w̃t|di
δij

)(∑

t∈I

|w̃t|di
δi0

)
d3i δi0 ∆(di)

2N−1

≤Λ3 +Λ2. (5.58)

To obtain the last inequality above, we compared the first term with the
latter part in the expression of Λ3 in (5.44). And for the second term, we
used the non-overlapping condition (2.1) for δij and further compared it
with Λ2 in (5.26).

Combining (5.53)-(5.58), we finally have

|T12| = O≺
(Λ2 + Λ3

N ε

)
(5.59)

for some small fixed positive ε.



58 ZHIGANG BAO, XIUCAI DING, JINGMING WANG, KE WANG

Next, we turn to estimate T2 and T3. The method is analogous to that of
T12; we omit the details. By definition, we can bound T2 and T3 as follows

|T2| =
∣∣∣ 1

2πi

∮

θ(Γi)
zm1(z)w̃

∗V (zL(z)V ∗Ξ(z)V )2(D−1 + zV ∗G1(z)V )−1V ∗Ξ(z)w̃ dz
∣∣∣

≤ C

∮

Γi

∣∣∣z(1 + z)θ(z)2θ′(z)
∣∣∣
(∑

j

|w̃j |dj
|z − dj |

)(∑

k

dk
|z − dk|

)
‖w̃‖|∆(z)|3

N
3
2

× ‖(D−1 + θ(z)V ∗G1(θ(z))V )−1‖op |dz|

≺ N− 3
2

(∑

j∈Ic

|w̃j |dj
δij

+
∑

t∈I

|w̃t|di
δi0

+
∑

t∈I,j∈Ic

|w̃t|di
δij

)
‖w̃‖

×
(∑

j∈Ic

dj
δij

+
∑

j∈Ic

di
δij

+
di
δi0

)
d5i δi0 ∆(θ(di))

3

≺ N−1−ε
(∑

j∈Ic

|w̃j |dj
δij

+
∑

t∈I

|w̃t|di
δi0

+
∑

t∈I,j∈Ic

|w̃t|di
δij

)2
d3i δi0 ∆(θ(di))

2

≺ N−ε(Λ2 + Λ3) (5.60)

and

|T3| =
∣∣∣− 1

2πi

∮

θ(Γi)
zw̃∗Ξ(z)V (zL(z)V ∗Ξ(z)V )(D−1 + zV ∗G1(z)V )−1V ∗Ξ(z)w̃ dz

∣∣∣

≤ C

∮

Γi

‖w̃‖2
∣∣∣zθ(z)2θ′(z)

∣∣∣
(∑

k

dk
|z − dk|

) |∆(z)|3

N
3
2

‖(D−1 + θ(z)V ∗G1(θ(z))V )−1‖op |dz|

≺ ‖w̃‖2
(∑

j∈Ic

dj
δij

+
∑

j∈Ic

di
δij

+
di
δi0

)
d4i δi0 ∆(θ(di))

3N− 3
2

≺ N−ε(Λ2 + Λ3). (5.61)

To obtain the above bounds, we used the estimates in (5.40) and the in-
equality (5.42) for ‖w̃‖. Hence, using the estimates of T1, T2 and T3, we get
that

〈w,PIw〉 = S1 + S2 + S̃3 +O≺
(Λ2 + Λ3

N ε

)
, (5.62)

for some small constant ε > 0. Finally, using the definitions of Λ2,Λ3 in
(5.26) and (5.44) and the expression of wI, ςI in (2.6), one can rewrite the
error bound

Λ2 + Λ3

N ε
= O≺

((
δi0

√
di ‖ςI‖+ di‖wI‖

)
‖wI‖∆(di)N

− 1
2
−ε

)

+O≺

((
di‖ςI‖2 + d2i ‖wI‖2

(∑

j∈Ic

dj
δij

)(∑

j∈Ic

di
δij

))
δi0 di ∆(di)

2N−1−ε

)
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as in (5.8). This completes the proof.

Besides the Green representation for the eigenvector, we also have the
following lemma for the representation of the eigenvalue µi in the simple
case I = {i}. The extension to multiple case can be found in Appendix C;
see Proposition C.3.

Lemma 5.3. Suppose that the assumptions in Theorem 2.5 hold. In the
simple case I = {i}, we have

µi = θ(di)− (d2i − y)θ(di)χii

(
θ(di)

)
+O≺

(
d2i δi0∆(di)N

− 1
2
−ε

)
(5.63)

for some small fixed constant ε > 0.

Proof of Lemma 5.3. Recall the notations at the beginning of proof of
Lemma 5.1,

V = (v1, · · · ,vr), D = diag
(
d1/(1 + d1), · · · , dr/(1 + dr)

)
.

Then, by elementary calculation, we have

Q− z = Σ1/2G−1
1 (z)

(
IM + zG1(z)V DV

∗)Σ1/2.

Notice that µi is the ith largest real value such that det (Q− µi) = 0. Further
by the fact that µi stays away from the spectrum of H with high probability
(c.f., Lemma 4.6, Assumption 2.3), together with the identity det

(
IM +

zG1(z)V DV
∗) = det(D) det

(
D−1 + zV ∗G1(z)V

)
, we have that µi is the ith

largest real solution to the equation det
(
D−1 + zV ∗G1(z)V

)
= 0 with high

probability.

For x ∈ [λ++N
−2/3+δ ,∞)∩

(
θ(di)−d1/2i δ

1/2
i0 N−1/2+δ, θ(di)+d

1/2
i δ

1/2
i0 N−1/2+δ

)

with sufficiently small constant δ > 0, we define the matrices A(x) =
(Aij(x)) and Ã(x) = (Ãij(x)) by setting

Aij(x) = (1 + d−1
i )δij + xv∗i G1(x)vj − xm1(x)δij ,

Ãij(x) = δij((1 + d−1
i ) + xv∗i G1(x)vi − xm1(x)),

Further, we denote the eigenvalues of A(x) and Ã(x) by a1(x) ≤ . . . ≤ ar(x)
and ã1(x) ≤ . . . ≤ ãr(x) respectively. Apparently, one has

ãi(x) = (1 + d−1
i ) + xv∗i G1(x)vi − xm1(x), (5.64)
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with high probability by the isotropic local law (4.7) and the Assumption
2.3. We then claim that, in order to prove (5.63), it suffices to show the
following two estimates

µim1(µi) = −ai(θ(di)) +O≺
(
d
− 1

2
i δ

− 1
2

i0 N− 1
2
−ε

)
, (5.65)

ai(θ(di)) = ãi(θ(di)) +O≺
(
d
− 1

2
i δ

− 1
2

i0 N− 1
2
−ε

)
. (5.66)

for some small constant ε > 0. Combining (5.64), (5.65) and (5.66), we have

µim1(µi)− θ(di)m1(θ(di))

= −(1 + d−1
i )− θ(di)v

∗
i G1(θ(di))vi +O≺

(
d
− 1

2
i δ

− 1
2

i0 N− 1
2
−ε

)
.

Expanding µim1(µi) around θ(di)m1(θ(di)) with the aid of Lemma 4.6 will
then lead to (5.63). Therefore, what remains is to prove (5.65) and (5.66).

We start with (5.65). First, by the fact that µi is a solution to det
(
D−1+

zV ∗G1(z)V
)

= 0, it is easy to see that µim1(µi) = −ak(µi) for some

k. But by isotropic law (4.7), we see that A = Ã + O≺(d
− 1

2
i δ

− 1
2

i0 N− 1
2 ),

where O≺(d
− 1

2
i δ

− 1
2

i0 N− 1
2 ) represents a matrix bounded in operator norm by

O≺(d
− 1

2
i δ

− 1
2

i0 N− 1
2 ). This leads to the estimate ak(µi) = ãk(µi)+O≺(d

− 1
2

i δ
− 1

2
i0 N− 1

2 ).
Further, by (4.7) and Lemma 4.6 one can easily show that µim1(µi) =

−(1+ d−1
i )+O≺(d

− 1
2

i δ
− 1

2
i0 N− 1

2 ) and ãk(µi) = (1+ d−1
k )+O≺(d

− 1
2

i δ
− 1

2
i0 N− 1

2 ).
Therefore, due to the fact that di’s are well separated, more specifically,
non-overlapping condition (2.2), we have µim1(µi) = −ai(µi) with high
probability. Next, by the isotropic law (4.7), one can also check that

‖∂xA(x)‖op ≺ d
1
2
i δ

− 5
2

i0 N− 1
2

This together with Lemma 4.6 leads to

|ai(µi)− ai(θ(di))| ≺ diδ
−2
i0 N

−1 ≺ d
− 1

2
i δ

− 1
2

i0 N− 1
2
−ε,

where the last step is due to the fact that diδ
− 3

2
i0 N− 1

2 = O(N−ε) following
from (2.1).

Combining the above with the fact µim1(µi) = −ai(µi) with high proba-
bility, we arrive at (5.65).

Next, we prove (5.66). Observe that the diagonal entries of A− Ã are 0,
and Ã is a diagonal matrix. So expanding the eigenvalues of A around the
eigenvalues of Ã using the perturbation theory, we see that the first order
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term vanishes. Hence, it suffices to estimate the second order term. More
specifically, we have

|ai(θ(di))− ãi(θ(di))| ≺
‖A − Ã‖2op

minj 6=i |ãj(θ(di))− ãi(θ(di))|
≺ d

− 1
2

i δ
− 1

2
i0 N− 1

2
−ε,

for some small fixed ε > 0, where the last step follows from the fact that

ãk(θ(di)) = 1 + d−1
k + O≺(d

− 1
2

i δ
− 1

2
i0 N− 1

2 ) and the fact that the di’s are well
separated and satisfy (2.2). This concludes the proof of (5.66).

6. Proof of Theorems 2.5 and 2.9 . In this section, we prove the
main result Theorem 2.5, based on Proposition 6.2. The proof of Theorem
2.9 is nearly the same, and thus it will be only briefly stated in the end of
the section. The proof of Proposition 6.2 will be deferred to Section B. The
starting point is Lemma 5.1 and Remark 5.2, which state that the study of
〈w,PIw〉 can be reduced to the study of the random vector

(
w∗

I
Ξ′(z)wI, w∗

I
Ξ(z)wI, ς∗

I
Ξ(z)wI, {v∗tΞ(z)ςI}t∈I, {v∗jΞ(z)wI}j∈Ic

)∗

at z = θ(di).
In view of the isotropic local laws in Theorem 4.2 and Lemma 5.1, we

shall study the limiting distribution of the rescaled random vectors

χI(z) :=

√
N

∆(di)

(
c1(w

0
I
)∗Ξ(z)w0

I
+ c2(w

0
I
)∗Ξ′(z)w0

I
, (ς0

I
)∗Ξ(z)w0

I
, {v∗tΞ(z)ς0I }t∈I, {v∗jΞ(z)w0

I
}j∈Ic

)

(6.1)

at z = θ(di), where w
0
I
and ς0

I
are defined in (5.19) and (2.7) and we further

introduced the shorthand notations

c1 ≡ c1(di) := 2di and c2 ≡ c2(di) :=
(d2i − y)2

d2i
. (6.2)

We remark here, in the case when di > K for sufficiently large K or even
grows with N , that either summand in the first component of χI(z) may have
larger typical order than the other components of the vector χI(z), by a di-
rect application of the isotropic local laws (4.16). However, for such large di,
referring to the estimate of (5.18) in the proof of Lemma 5.1, more precisely,
(5.22)-(5.24), we shall also exploit a cancellation between two summands in
the first component of (6.1) that is simply proportional to the combination
in (5.18). Consequently, all the components of χI(z) are of comparable sizes.
The details of such arguments will be provided in later proofs. Thus our goal
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is to prove that χI(z) is asymptotically Gaussian (c.f. Lemma 6.1) and this
leads to the proof of Theorem 2.5.

Before we give the precise statement, let us introduce some necessary no-
tations. For brevity, in the sequel, we will very often omit the z-dependence
from the notations. For instance, we will write m1,2(z) as m1,2.

In the sequel, we fix an i ∈ J1, r0K and its corresponding index set I ≡ I(i).
For simplicity, we also denote

c̃1 =
d2i + 2diy + y

di + y
, c̃2 = c2 =

(d2i − y)2

d2i
. (6.3)

Define a symmetric matrixMI ≡ MI(z) ∈ C
(r+2)×(r+2) with diagonal entries

MI(j, j) =





2
∆(di)2

2∑
a,b=1

cac̃bm1
∑

a1,a2≥1
a1+a2=a+1

m
(a1−1)
1 (zm1)(b+a2−1)

(a1−1)!(b+a2−1)! , if j = 1;

1
∆(di)2

m2
1(zm1)

′, otherwise ;

(6.4)

and its non-zero off-diagonal entries as

MI(2, J3, r + 2K) =
1

∆(di)2

(
m2

1(zm1)
′
)({

〈w0
I ,vt〉

}
t∈I
,
{
〈ς0I ,vj〉

}
j∈Ic

)
,

MI(J3, |I| + 2K, J|I|+ 3, r + 2K) =
1

∆(di)2

(
m2

1(zm1)
′
)(

〈w0
I ,vt〉〈ς0I ,vj〉

)
t∈I,j∈Ic

.

(6.5)

Here for any matrix A = (aij)n×n and index sets S1,S2 ⊂ J1, nK, we denote
by A(S1,S2) the submatrix of A obtained via taking rows from S1 and
columns from S2. More specifically,

A(S1,S2) := (aij)i∈S1,j∈S2 .

When S1 = {a} is a singleton, we use the abbreviation A(a,S2) instead
of A({a},S2). We then further define the symmetric matrix KI ≡ KI(z) ∈
C
(r+2)×(r+2) whose r × r lower right corner has the block structure

(
KI(I, I) KI(I, I

c)
KI(I

c, I) KI(I
c, Ic)

)
,

given by

KI(I, I) =
1

∆(di)2
(zm2m

2
1)

2
(
s1,1,2(vt1 ,vt2 , ς

0
I
)
)
t1,t2∈I

,
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KI(I
c, Ic) =

1

∆(di)2
(zm2m

2
1)

2
(
s1,1,2(vj,vk,w

0
I )
)
j,k∈Ic

,

KI(I, I
c) =

1

∆(di)2
(zm2m

2
1)

2
(
s1,1,1,1(vt,vj , ς

0
I ,w

0
I )
)
t∈I,j∈Ic

. (6.6)

The remaining entries are defined by

KI(1, 1) =
s4(w

0
I
)

∆(di)2

( 2∑

s=1

c̃s
m1(zm2m1)

(s−1)

(s− 1)!

)( 2∑

s=1

cs
(zm2m

2
1)

(s−1)

(s − 1)!

)
,

KI(1, J2, r + 2K) =
zm2m

2
1

2∆(di)2

( 2∑

s=1

c̃s
m1(zm2m1)

(s−1)

(s− 1)!
+

2∑

s=1

cs
(zm2m

2
1)

(s−1)

(s − 1)!

)

×
(
s1,3(ς

0
I ,w

0
I ), {s1,1,2(vt, ς0I ,w0

I )}t∈I, {s1,3(vj,w0
I )}j∈Ic

)
,

KI(2, J2, r + 2K) =
(zm2m

2
1)

2

∆(di)2

×
(
s2,2(ς

0
I ,w

0
I ), {s1,1,2(vt,w0

I , ς
0
I )}t∈I, {s1,1,2(vj, ς0I ,w0

I )}j∈Ic
)
.

(6.7)

Finally, we define

VI(z) = MI(z) + κ4KI(z). (6.8)

Recall χI defined in (6.1). We have the following lemma.

Lemma 6.1. Under the assumptions of Theorem 2.5, we have

χI(θ(di)) ≃ N (0,VI(θ(di))) .

With the above lemma, we now can finish the proof of Theorem 2.5.

Proof of Theorem 2.5. Recall the shorthand notation δi0 = di −√
y.

Set

Θw
I := −(d2i − y)

1
2 (1 + di)∆(di)

( √
N

∆(di)

(
c1(w

0
I )

∗Ξ(z)w0
I + c2(w

0
I )

∗Ξ′(z)w0
I

))
,

Λw
I

:= −2(d2i − y)

√
di + 1

δi0
∆(di)

( √
N

∆(di)
(ς0

I
)∗Ξ(θ(di))w

0
I

)
,

∆w
It := −

√
dig(di)∆(di)

( √
N

∆(di)
v∗tΞ(θ(di))ς

0
I

)
for t ∈ I,

Πw
Ij := −

√
(1 + di)g(di)∆(di)

( √
N

∆(di)
v∗jΞ(θ(di))w

0
I

)
for j ∈ I

c. (6.9)
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Notice that Θw
I
, Λw

I
, ∆w

It and Πw
Ij for t ∈ I, j ∈ I

c are all linear combinations
of the components of χI(θ(di)). Then by Lemma 6.1, they are also asymptot-
ically jointly Gaussian with mean 0. The entries of the covariance matrix of
(Θw

I
,Λw

I
, {∆w

It }t∈I, {Πw
Ij }j∈Ic) can be obtained from VI(θ(di)). Further sim-

plifications can be achieved using the following identities at z = θ(di)

m2
1(zm1)

′ =
1

(di + y)2(d2i − y)
, m2

1(zm1)
′′ = − 2d3i

(di + y)2(d2i − y)3
,

m2
1(zm1)

′′′ =
6d4i (d

2
i + y)

(di + y)2(d2i − y)5
, m1m

′
1(zm1)

′ = − d2i
(di + y)3(d2i − y)2

,

m1m
′
1(zm1)

′′ =
2d5i

(di + y)3(d2i − y)4
, zm2m

2
1 = − 1

di(di + y)
,

(zm2m
2
1)

′ =
2di + y

(di + y)2(d2i − y)
, m1(zm2m1)

′ =
1

(di + y)(d2i − y)
,

as well as the explicit expressions for c1, c2, c̃1, c̃2 in (6.2) and (6.3).
We further set

Θw
wI

= Θw
I ‖wI‖2, Λw

ςI
= Λw

I ‖wI‖, ∆w
vt

= ∆w
It , Πw

vj
= Πw

Ij ‖wI‖.

It follows immediately from Lemma 5.1 that 〈w,PIw〉 can be written as the
RHS of (2.13) in Theorem 2.5 and

(
Θw

wI
,Λw

ςI
, {∆w

vt
}t∈I, {Πw

vj
}j∈Ic

)
≃ N

(
0, Aw

I + κ4
d2i − y

d2i
Bw

I

)
,

with the matrices Aw
I

and Bw
I

defined in (2.11) and (2.12). This completes
the proof of Theorem 2.5.

In the rest of this section, we prove Lemma 6.1, based on our key tech-
nical result, Proposition 6.2. In order to show the asymptotic Gaussianity
of χI(θ(di)), it suffices to show that all linear combinations of the compo-
nents of χI(θ(di)) are asymptotic Gaussian. Our proof will be based on a
moment estimate. This requires a deterministic bound for the Green func-
tion, in order to control the contribution of the bad event in the isotropic
local laws. To this end, we introduce a tiny imaginary part to the parameter
z, such that the Green functions can be bounded by 1/ℑz deterministically.
Specifically, in the sequel, we set

z = θ(di) + iN−K , (6.10)
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for some sufficiently large constant K > 0.
For a fixed deterministic column vector c = (c01, c02, {c1t}t∈I, {c2j}j∈Ic)∗ ∈

R
r+2, we define

P := c∗χI(z), (6.11)

where z is given in (6.10). Notice that |P| ≺ 1 by the isotropic local law.
Here we omit the dependence of P on c and the index set I for simplicity.
Hereafter we always assume that c and I are fixed. The following proposition
is our main technical task.

Proposition 6.2 (Recursive moment estimate). Let P be defined in
(6.11) with z given in (6.10). Under the assumption of Theorem 2.5, we
have

(i) EP = O≺(N
− 1

2 δ
− 3

2
i0 d

3
2
i ), (6.12)

(ii) EP l = (l − 1)VI,cEP l−2 +O≺(N
− 1

2 δ
− 3

2
i0 d

3
2
i ), (6.13)

where VI,c = c∗VI(θ(di))c with VI(θ(di)) defined in (6.8) and δi0 = di − √
y

is defined in (5.7).

With the above proposition, we can now show the proof of Lemma 6.1.

Proof of Lemma 6.1. By Proposition 6.2, one observes that P(z) is
asymptotically Gaussian with mean 0 and variance VI,c. By the definition
of z in (6.10), and a simple continuity argument for the Green function,
one can easily see that P(θ(di)) admits the same asymptotic distribution as
P(z), when K is chosen to be sufficiently large. Since VI,c = c∗VI(θ(di))c
and c is arbitrary, we have

χI(θ(di)) ≃ N (0,VI(θ(di))) .

This concludes the proof of Lemma 6.1.

In the end of this section, we briefly state the proof of Theorem 2.9.

Proof of Theorem 2.9. In addition to the expansion of 〈w,Piw〉 which
can be easily obtained from Lemma 5.1 in case I = {i}, by setting

Φi := −
√
N
√
d2i − yθ(di)χii

(
θ(di)

)
, (6.14)

it follows immediately from Lemma 5.3 that the eigenvalue µi can be written
in terms of Φi. Note that Φi is also a quadratic form similar to the other
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quadratic forms in the expansion of eigenvector in Lemma 5.1 in case I = {i}.
Hence their joint distribution can de deduced analogously to the proof of
Theorem 2.5 by adding one more quadratic form into the linear combinations
of quadratic forms P. Since the proof strategy of Theorem 2.5 can apply
mutatis mutandis to that of Theorem 2.9, we omit the details and conclude
the proof.

Acknowledgment. The second author would like to thank Igor Silin
for sharing the Python codes of [76] and providing some insights on the
statistical applications.

APPENDIX A: COLLECTION OF DERIVATIVES

In this section, we summarize some derivatives that appear in the previous
sections. And all these derivatives can be obtained by repeatedly applying
the second identity in (4.28) and chain rule. For convenience, we set

Ol := {(o1, · · · , ol) : ∃i ∈ {1, · · · , l}, oi = 0, and oj = 1, 2 for all j 6= i}
(A.1)

For simplicity, in the sequel, we still use Gs
a,G

(s)
a to denote Υs−1Gs

a,Υ
sG(s)

a

respectively for a = 1, 2. Below, we first collect the derivatives of (X∗Gs
1v)k

for any deterministic unit vector v, which can be derived by using (4.28)
and the product rule. The first derivative of (X∗Gs

1v)k is

∂(X∗Gs
1v)k

∂xqk
= (Gs

1v)q −
2∑

a=1

∑

s1,s2≥1;
s1+s2=s+1

(X∗Gs1
1 P

qk
a Gs2

1 v)k. (A.2)

The second derivative of (X∗Gs
1v)k is

∂2(X∗Gs
1v)k

∂x2qk
=2

(
−

2∑

a=1

∑

s1,s2≥1;
s1+s2=s+1

(
Gs1
1 P

qk
a Gs2

1 v
)
q

+

2∑

a1,a2=1

∑

s1,s2,s3≥1;∑3
i=1 si=s+2

(
X∗Gs1

1 P
qk
a1 G

s2
1 P

qk
a2 G

s3
1 v

)
k

−
∑

s1,s2≥1;
s1+s2=s+1

(
X∗Gs1

1 P
qk
0 Gs2

1 v
)
k

)
. (A.3)
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The third derivative of (X∗Gs
1v)k is

∂3(X∗Gs
1v)k

∂x3qk
=6

( 2∑

a1,a2=1

∑

s1,s2,s3≥1;∑3
i=1 si=s+2

(
Gs1
1 P

qk
a1 G

s2
1 P

qk
a2 G

s3
1 v

)
q

−
∑

s1,s2≥1;
s1+s2=s+1

(
Gs1
1 P

qk
0 Gs2

1 v
)
q

−
2∑

a1,a2,a3=1

∑

s1,··· ,s4≥1;∑4
i=1 si=s+3

(
X∗

( 3∏

i=1

(Gsi
1 P

qk
ai )

)
Gs4
1 v

)
k

+
∑

(a1,a2)∈O2

∑

s1,··· ,s3≥1;∑3
i=1 si=s+2

(
X∗

( 2∏

i=1

(Gsi
1 P

qk
ai )

)
Gs3
1 v

)
k

)
. (A.4)

The fourth derivative of (X∗Gs
1v)k is

∂4(X∗Gs
1v)k

∂x4ik
=4!

(
−

2∑

a1,a2,a3=1

∑

s1,··· ,s4≥1;∑4
i=1 si=s+3

(( 3∏

i=1

(Gsi
1 P

qk
ai )

)
Gs4
1 v

)
q

+
∑

(a1,a2)∈O2

∑

s1,s2,s3≥1;∑3
i=1 si=s+2

(( 2∏

i=1

(Gsi
1 P

qk
ai )

)
Gs3
1 v

)
q

+

2∑

a1,··· ,a4=1

∑

s1,··· ,s5≥1;∑5
i=1 si=s+4

(
X∗

( 4∏

i=1

(Gsi
1 P

qk
ai )

)
Gs5
1 v

)
k

−
∑

(a1,a2,a3)∈O3

∑

s1,··· ,s4≥1;∑4
i=1 si=s+3

(
X∗

( 3∏

i=1

(Gsi
1 P

qk
ai )

)
Gs4
1 v

)
k

+
∑

s1,s2,s3≥1;∑3
i=1 si=s+2

(
X∗

( 2∏

i=1

(Gsi
1 P

qk
0 )

)
Gs3
1 v

)
k

)
. (A.5)

Next, for P defined in (B.6), we collect its derivatives

∂sP
∂xsqk

=

√
N

∆(di)
y∗0

( 2∑

a=1

ca
∂sGa

1

∂xsqk

)
ϑ0 +

√
N

∆(di)

2∑

t=1

y∗t
∂sG1

∂xsqk
ϑt.
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For the first derivative, we have

∂P
∂xqk

= −
√
N

∆(di)

2∑

a=1

ca
∑

a1,a2≥1;
a1+a2=a+1

(
(y∗0Ga1

1 )q(X
∗Ga2

1 ϑ0)k + (X∗Ga1
1 y0)k(Ga2

1 ϑ0)q

)

−
√
N

∆(di)

2∑

t=1

(
(y∗t G1)q(X

∗G1ϑt)k + (X∗G1yt)k(G1ϑt)q

)
. (A.6)

By (4.17) and Remark 4.5, it is easy to see that the second term on the RHS
of (A.6) can be estimated by

∣∣∣
√
N

∆(di)

2∑

t=1

(
(y∗t G1)q(X

∗G1ϑt)k + (X∗G1yt)k(G1ϑt)q

)∣∣∣ ≺ ∆(di)
−1d

− 3
2

i (di −
√
y)−

1
2

≍ 1,

where the last step follows from the estimate of ∆(di) in (4.20). For the first
term on the RHS of (A.6), first using (4.16), We see that

∂P
∂xqk

= −
√
N

∆(di)

[(c1
2
m1 + c2m

′
1

)
(X∗G1ϑ0)ky0q

+
(c1
2
(X∗G1ϑ0)k + c2(X

∗G2
1ϑ0)k

)
(G∗

1y0)q +
(c1
2
m1 + c2m

′
1

)
(X∗G1y0)kϑ0q

+
(c1
2
(X∗G1y0)k + c2(X

∗G2
1y0)k

)
(G∗

1ϑ0)q

]
+O≺(d

1
2
i δ

− 1
2

i0 N− 1
2 ).

Note that by plugging the values of c1, c2 and m1,m
′
1 at z = θ(di), we have

c1
2
m1 + c2m

′
1 = −y(di + 1)

(di + y)2
= O(d−1

i ).

If di is large, i.e. di > K for sufficiently large constant K > 0, performing
the expansions for G1,G2

1 around −1/θ(di) and 1/(θ(di))
2 respectively, we

can further see the cancellation

c1
2
(X∗G1ϑ0)k + c2(X

∗G2
1ϑ0)k

= O(di)×
(
(X∗G1ϑ0)k + θ(di)(X

∗G2
1ϑ0)k

)
+O≺(N

− 1
2 )

= O(di)×O≺
((X∗Hϑ0)k

θ(di)2

)
= O≺(d

−1
i N− 1

2 ).

which leads to ∂P/∂xqk = O≺(1). Here we used the estimate (X∗Hϑ0)k =

O≺(N
− 1

2 ), which can be easily verified by the moment method. For the
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case di = O(1), simply using isotropic local laws (4.17) and Remark 4.5, we
obtain ∂P/∂xqk = O≺(1). To conclude, we always have

∂P
∂xqk

= O≺(1). (A.7)

The second derivative of P is

∂2P
∂x2qk

=
2
√
N

∆(di)

2∑

b=1

cb

( 2∑

a1,a2=1

∑

b1,b2,b3≥1;∑3
i=1 bi=b+2

y∗0
( 2∏

j=1

(Gbj
1 P

qk
aj )

)
Gb3
1 ϑ0

−
∑

b1,b2≥1;
b1+b2=b+1

y∗0Gb1
1 P

qk
0 Gb2

1 ϑ0

)

+
2
√
N

∆(di)

2∑

t=1

( 2∑

a1,a2=1

y∗t
( 2∏

j=1

(G1P
qk
aj )

)
G1ϑt − y∗t G1P

qk
0 G1ϑt

)
. (A.8)

Recalling the definition of P
qk
i for i = 0, 1, 2 in (4.27), one observes that all

the terms in the parenthesis admit one of the following forms

(X∗Gb1
1 η1)k(X

∗Gb2
1 )kq(Gb3

1 η2)q, (X∗Gb1
1 η1)k(Gb2

1 )qq(X
∗Gb3

1 η2)k,

(Gb1
1 η1)q(X

∗Gb2
1 X)akk(Gb3

1 η2)q

for η1,η2 = y0,y1,y2,ϑ0,ϑ1,ϑ2, a = 0, 1 and b1, b2, b3 = 1, 2 satisfying
b1 + b3 − 1 + a(b2 − 1) = b ∈ {1, 2}, which are bounded by O≺(N−1(di −√
y)−1d−2

i ), O≺(N−1(di−√
y)−1d−2

i ), O≺(d
−2
i ) respectively for b = 1 and by

O≺(N−1(di−√
y)−3d−1

i ), O≺(N−1(di−√
y)−3d−1

i ), O≺((di−√
y)−1d−2

i ) re-
spectively for b = 2, in light of (4.17) and Remark 4.5. Therefore, combining
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with the prefactor
√
N and coefficients c1,2 in (A.8), we get

∂2P
∂x2qk

=
2
√
N

∆(di)

[
c1

(
(G1y0)q(X

∗G1X)kk(G1ϑ0)q − (G1y0)q(G1ϑ0)q

)

+ c2

(
(G2

1y0)q(X
∗G1X)kk(G1ϑ0)q + (G1y0)q(X

∗G2
1X)kk(G1ϑ0)q

+ (G1y0)q(X
∗G1X)kk(G2

1ϑ0)q − (G2
1y0)q(G1ϑ0)q − (G1y0)q(G2

1ϑ0)q

)]

+O≺(
√
N∆(di)

−1d−2
i )

=
2
√
N

∆(di)

[
c1

(
(G1y0)q(zG2)kk(G1ϑ0)q

)
+ c2

(
(G2

1y0)q(zG2)kk(G1ϑ0)q

+ (G1y0)q(G2 + zG2
2 )kk(G1ϑ0)q + (G1y0)q(zG2)kk(G2

1ϑ0)q

)]

+O≺(
√
N(di −

√
y)

1
2 d

− 1
2

i )

= O≺
( 2

√
N

∆(di)

(
c1m

2
1(zm2) + c2(2m

′
1m1(zm2) +m2

1(zm2)
′)
))

+O≺(
√
N(di −

√
y)

1
2 d

− 1
2

i )

= O≺(
√
N(di −

√
y)

1
2d

− 1
2

i ). (A.9)

In the last step above, we used

c1m
2
1(zm2) + c2(2m

′
1m1(zm2) +m2

1(zm2)
′) = −y(d

2
i + 2di + y)

d2i (di + y)2
= O(d−2

i ).

The third derivative of P is

∂3P
∂x3qk

= − 6
√
N

∆(di)

2∑

b=1

cb

( 2∑

a1,a2,a3=1

∑

b1,··· ,b4≥1;∑4
i=1 bi=b+3

(
y∗0

( 3∏

j=1

(Gbj
1 P

qk
aj )

)
Gb4
1 ϑ0

)

−
∑

(a1,a2)∈O2

∑

b1,b2,b3≥1;∑3
i=1 bi=b+2

(
y∗0

( 2∏

j=1

(Gbj
1 P

qk
aj )

)
Gb3
1 ϑ0

))

− 6
√
N

∆(di)

2∑

t=1

( 2∑

a1,a2,a3=1

(
y∗t

( 3∏

j=1

(G1P
qk
aj )

)
G1ϑt

)

−
∑

(a1,a2)∈O2

(
y∗t

( 2∏

j=1

(G1P
qk
aj )

)
G1ϑt

))
. (A.10)
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By plugging in P
qk
a defined in (4.27), one can see that all summands above

contain either more than two quadratic forms of (X∗Ga
1 ) and one quadratic

form of (Gb
1), or one quadratic form of (X∗Ga

1 ) and two quadratic forms
of (Gb

1) for some a, b = 1, 2, which by (4.17) and (4.16) will contribute a

O≺(N−1/2d
−1/2+(a−1)
i (di−

√
y)−1/2−2(a−1)) factor and aO≺(d

−1
i (di−

√
y)−(a−1))

factor respectively. Using this fact together with contribution of cb/∆(di),
one can easily obtain the crude bound

∣∣∣ ∂
3P

∂x3qk

∣∣∣ ≺ 1. (A.11)

The fourth derivative of P is

∂4P
∂x4qk

=
4!
√
N

∆(di)

2∑

b=1

cb

[ 2∑

a1,··· ,a4=1

∑

b1,··· ,b5≥1;∑5
i=1 bi=b+4

(
y∗b

( 4∏

j=1

(Gbj
1 P

qk
aj )

)
Gb5
1 ϑ0

)

−
∑

(a1,a2,a3)∈O3

∑

b1,··· ,b4≥1;∑4
i=1 bi=b+3

(
y∗0

( 3∏

j=1

(Gbj
1 P

qk
aj )

)
Gb4
1 ϑ0

)

+
∑

b1,b2,b3≥1;∑3
i=1 bi=b+2

(
y∗0

( 2∏

j=1

(Gbj
1 P

qk
0 )

)
Gb3
1 ϑ0

)]

+
4!
√
N

∆(di)

2∑

t=1

[ 2∑

a1,··· ,a4=1

(
y∗t

( 4∏

j=1

(G1P
qk
aj )

)
G1ϑt

)

−
∑

(a1,a2,a3)∈O3

(
y∗t

( 3∏

j=1

(G1P
qk
aj )

)
G1ϑt

)
+

(
y∗t

( 2∏

j=1

(G1P
qk
0 )

)
G1ϑt

)]
.

(A.12)

APPENDIX B: PROOF OF PROPOSITION 6.2

This section is devoted to the proof of Proposition 6.2, the recursive mo-
ment estimates of P defined in (6.11). The basic strategy is to use the cumu-
lant expansion formula in Lemma 4.11 to the functionals of Green functions.
In the context of Random Matrix Theory, such an idea dates back to [45].
We also refer to [38, 51, 36, 37] for some recent applications of this strategy
for other problems in Random Matrix Theory.

First, we provide estimates for some random terms that appear frequently
in the proof. Indeed, they have one of the following forms: η∗1X

∗Gs
1η2,
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η∗1X
∗Gs

1Xη2, η
∗
1Gs

1η2, for any fixed s ∈ N and deterministic vectors η1,η2
whose ℓ2-norm are bounded by some constant C > 0. Notice that under the
choice of z in (6.10), we have the deterministic bound

|η∗1Gs
1η2| ≤ C(ℑz)−s. (B.1)

Similarly, by Cauchy-Schwarz inequality, we have

|η∗1X∗Gs
1η2| ≤ ‖η1‖‖X∗Gs

1η2‖ ≤ C
(
η∗2Gs

1(z̄)XX
∗Gs

1(z)η2

) 1
2

=
(
η∗2Gs

1(z̄)(I + zG1)Gs−1
1 (z)η2

) 1
2 ≤ C(ℑz)−s (B.2)

and

|η∗1X∗Gs
1Xη2| = |η∗1X∗XGs

2η2| = |η∗1Gs−1
2 η2 + zη∗1Gs

2η2| ≤ C(ℑz)−s.
(B.3)

According to Lemma 4.1 (ii), the above deterministic bounds allow us to
use the high probability bounds for the aforementioned quantities (following
from the isotropic local law) directly in the calculation of the expectations
in (6.12) and (6.13).

Next, we derive an initial bound on P := c∗χI(z) in (6.11), where χI is
the random vector defined in (6.1) and c = (c01, c02, {c1t}t∈I, {c2j}j∈Ic)∗ ∈
R
r+2 is an arbitrary fixed deterministic column vector of size r + 2. For

the case di ≤ K for sufficiently large constant K > 0, one can easily get
|P| = O≺(1) by a direct application of the isotropic local law (4.16). As for
the case di > K for sufficiently large constant K > 0, it is easy to see that
all the components of χI(z) other than the first one are of size O≺(1) by
applying the isotropic local law directly. Actually, as we mentioned earlier,
there is a cancellation between two summands in the first component of
χI(z). After exploiting this cancellation, similarly to the discussion in (5.22)-
(5.24), we can also get an O≺(1) bound for the first component of χI(z).
Hence, according to the above discussion, we have

P = O≺(1). (B.4)

With the above preliminary bounds at hand, we can now start formally
the proof of Proposition 6.2. The main tool for the proof is the cumulant
expansion formula in Lemma 4.11. For convenience, we first introduce the
following three column vectors

y0 := c01w
0
I , y1 :=

∑

t∈I
c1tvt, y2 := c02ς

0
I +

∑

j∈Ic
c2jvj (B.5)
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and define
ϑ0 = ϑ2 = w

0
I , ϑ1 = ς

0
I .

Then we can rewrite

P =

√
N

∆(di)
y∗0

( ∑

a=1,2

ca(G(a−1)
1 −m

(a−1)
1 )

)
ϑ0 +

√
N

∆(di)

∑

t=1,2

y∗t
(
G1 −m1

)
ϑt

(B.6)

and

E(P l) =

√
N

∆(di)
E

(
y∗0

( ∑

a=1,2

ca(G(a−1)
1 −m

(a−1)
1 )

)
ϑ0 +

∑

t=1,2

y∗t
(
G1 −m1

)
ϑt

)
P l−1.

(B.7)

Using the identity

Gt
1 = z−1(HGt

1 − Gt−1
1 ), t = 1, 2,

we rewrite (B.7) as

E(P l) =

√
N

∆(di)
E

(
y∗0

(
c2

( 1

(1 +m2)z
HG2

1 +
m2

1 +m2
G2
1 +

(zm2)
′

(1 +m2)z
G1 −

(zm2)
′ + 1

(1 +m2)z
G1 −m′

1

)

+ c1

( 1

(1 +m2)z
HG1 +

m2

1 +m2
G1 −

1

(1 +m2)z
−m1

))
ϑ0

+
∑

t=1,2

y∗t
( 1

(1 +m2)z
HG1 +

m2

1 +m2
G1 −

1

(1 +m2)z
−m1

)
ϑt

)
P l−1.

Repeatedly using the first and third identities in (4.5), we have

E(P l) =−
√
Nm1

∆(di)
E

(
y∗0

(
c2

(
HG2

1 + zm2G2
1 + (zm2)

′G1

)

+ c1

(
HG1 + zm2G1

)
− c2

m′
1

m2
1

(G1 −m1)
)
ϑ0

+
∑

t=1,2

y∗t
(
HG1 + zm2G1

)
ϑt

)
P l−1,

which can be further simplified to

E(P l) =−
√
Nm1

∆(di)
E

(
y∗0

(
c2

(
HG2

1 + zm2G2
1 + (zm2)

′G1

)

+
(
c1 + c2

m′
1

m1

)(
HG1 + zm2G1

))
ϑ0

+
∑

t=1,2

y∗t
(
HG1 + zm2G1

)
ϑt

)
P l−1. (B.8)
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For the coefficient c1 + c2m
′
1/m1 on the RHS of (B.8), by elementary com-

putations, we see

c2 + c2
m′

1(θ(di))

m1(θ(di))
= c̃1,

where c̃1 is defined in (6.3) and c1, c2 are given in (6.2). If we substitute
z = θ(di)+ iN−K into m′

1,m1 above, since the imaginary part can be taken

arbitrarily small, we can get c1 + c2m
′
1/m1 = c̃1 +O≺(N−K̃) for some suffi-

cient large K̃. Thus in later estimates, we shall simply replace the coefficient
c1 + c2m

′
1/m1 in (B.8) by c̃1 and the resulting error will be negligible by

taking K sufficiently large. Similarly, in the following, once we do the sub-
stitution to get the value of certain function of z, we simply take z = θ(di)
for the computation, up to negligible error.

To ease the notation, we use c̃2 = c2 (see the definition in (6.3)) in (B.8).
For t = 0, 1, 2, we introduce the following functions in terms of G1

Tt(G1) =

{ ∑2
a=1 c̃aGa

1 , if t = 0;
G1, if t = 1, 2.

(B.9)

With the above notations, we can simply write (B.8) as

E(P l) =−
√
Nm1

∆(di)
E

3∑

t=1

y∗tHTt(G1)ϑtP l−1

−
√
Nm1

∆(di)
E

(
y∗0

(
c̃2(zm2G2

1 + (zm2)
′G1) + c̃1zm2G1

)
ϑ0

+
∑

t=1,2

y∗t zm2G1ϑt

)
P l−1. (B.10)

Now, we apply the cumulant expansion to the terms−
√
Nm1

∆(di)
Ey∗tHTt(G1)ϑt

for t = 0, 1, 2. For simplicity, we use the following shorthand notation for
the summation

∑

q,k

=

M∑

q=1

N∑

k=1

,

and similar shorthand notations are also used for single sum. By Lemma
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4.11, we have

√
Nm1

∆(di)
Ey∗tHTt(G1)ϑtP l−1 =

√
Nm1

∆(di)
E

∑

q,k

ytq xqk(X
∗Tt(G1)ϑt)kP l−1

=

√
Nm1

∆(di)
E

∑

q,k

ytq

3∑

α=1

κα+1(xqk)

α!

∂α

∂xαqk

(
(X∗Tt(G1)ϑt)kP l−1

)
+Rt,

(B.11)

where Rt satisfies

|Rt| ≤
√
N
∣∣∣ m1

∆(di)

∣∣∣
∑

q,k

(
CE(|xqk|5)E

(
sup

|xqk|≤c

∣∣∣ytq
∂4

∂x4qk

(
(X∗Tt(G1)ϑt)kP l−1

)∣∣∣
)

+ CE
(
|xqk|51(|xqk| > c)

)
E

(
sup
xqk∈R

∣∣∣ytq
∂4

∂x4qk

(
(X∗Tt(G1)ϑt)kP l−1

)∣∣∣
))

for any constant c > 0 and some constant C > 0.
By the product rule, we have

∂α

∂xαqk

(
(X∗Tt(G1)ϑt)kP l−1

)
=

∑

α1,α2≥0
α1+α2=α

(
α

α1

)
∂α1(X∗Tt(G1)ϑt)k

∂xα1
qk

∂α2P l−1

∂xα2
qk

.

(B.12)

For t = 0, 1, 2, we set the notation

ht(α1, α2) :=
√
N

m1

∆(di)

∑

q,k

ytq
κα1+α2+1(xqk)

(α1 + α2)!

(
α1 + α2

α1

)
∂α1(X∗Tt(G1)ϑt)k

∂xα1
qk

∂α2P l−1

∂xα2
qk

.

(B.13)

Note that ht(α1, α2) depends on l and i. However, we drop this dependence
for brevity.

Using (B.11)-(B.13), we can now write

√
Nm1

∆(di)
Ey∗tHTt(G1)ϑtP l−1 =

∑

α1,α2≥0
1≤α1+α2≤3

Eht(α1, α2) +Rt. (B.14)

In the sequel, we estimate ht(α1, α2) and the remainder terms Rt for
t = 0, 1, 2. We collect the estimates in the following lemma, whose proof will
be postponed to the end of this section. Before we state the lemma, let us
first recall the shorthand notation δi0 = di −

√
y.
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Lemma B.1. Let l in (B.13) be any fixed positive integer. With the con-

vention m
(−1)
a /(−1)! = 1 for a = 1, 2, we have the following estimates on

ht(α1, α2) and Rt where t = 0, 1, 2.

(1): For ht(α1, α2), the non-negligible terms are

h0(1, 0) = −
√
Nm1

∆(di)

(
c̃1(y

∗
0G1ϑ0)(zm2) + c̃2(y

∗
0G1ϑ0)(zm2)

′

+ c̃2(y
∗
0G2

1ϑ0)(zm2)
)
P l−1 +O≺

(
d

3
2
i δ

− 3
2

i0 N− 1
2

)
, (B.15)

h0(0, 1) = −(l − 1)m1

∆(di)2

( 2∑

a,b=1

cac̃b

( ∑

a1,a2≥1,
a1+a2=a+1

m
(a1−1)
1 (zm1)

(b+a2−1)

(a1 − 1)!(b + a2 − 1)!

)

×
(
(y∗0y0)(ϑ

∗
0ϑ0) + (ϑ∗

0y0)
2
)

+
2∑

s=1

m1

( 2∑

b=1

c̃b
(zm1)

(b)

b!

)(
(y∗0ys)(ϑ

∗
0ϑs) + (y∗0ϑs)(ϑ

∗
0ys)

))
P l−2

+O≺(d
3
2
i δ

− 3
2

i0 N− 1
2 ), (B.16)

h0(1, 2) = −κ4(l − 1)m1

∆(di)2

2∑

s=1

c̃s

(
(zm2m1)

(s−1)

(s− 1)!

)( 2∑

b=1

cb
(zm2m

2
1)

(b−1)

(b− 1)!
s2,2(y0,ϑ0)

+
2∑

s=1

(zm2m
2
1)s1,1,1,1(y0,ϑ0,ys,ϑs)

)
P l−2 +O≺(N

− 1
2 ),

(B.17)

and for t = 1, 2,

ht(1, 0) = −
√
Nm1

∆(di)
y∗t G1ϑt(zm2)P l−1 +O≺

(
d

3
2
i δ

− 3
2

i0 N− 1
2

)
, (B.18)

ht(0, 1) = − (l − 1)

∆(di)2

( 2∑

a=1

ca

(
(zm1)

′m2
1

)(a−1)

a!

(
(y∗t y0)(ϑ

∗
tϑ0) + (y∗tϑ0)(ϑ

∗
ty0)

)

+

2∑

s=1

m2
1(zm1)

′
(
(y∗t ys)(ϑ

∗
tϑs) + (y∗tϑs)(ϑ

∗
tys)

))
P l−2

+O≺(d
3
2
i δ

− 3
2

i0 N− 1
2 ), (B.19)

ht(1, 2) = −κ4(l − 1)

∆(di)2
(zm2m

2
1)

( 2∑

b=1

cb
(zm2m

2
1)

(b−1)

(b− 1)!
s1,1,1,1(yt,ϑt,y0,ϑ0)
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+
2∑

s=1

(zm2m
2
1)s1,1,1,1(yt,ϑt,ys,ϑs)

)
P l−2 +O≺(N

− 1
2 ).

(B.20)

(2): Except for the above terms, all the other ht(α1, α2) terms with α1, α2 ≥
0 and α1 + α2 ≤ 3 can be bounded by O≺(N

− 1
2 ).

(3): For the remainder terms, we have

Rt = O≺(N
− 1

2 ). (B.21)

Now we show the proof of Proposition 6.2, based on Lemma B.1.

Proof of Proposition 6.2. First we show the proof of (6.12). Using
Lemma B.1 with l = 1, we can rewrite (B.14) as

√
N

m1

∆(di)
Ey∗tHTt(G1)ϑt = Eht(1, 0) +O≺(N

− 1
2 ).

Plugging the above estimate into (B.10) with l = 1, we obtain

EP = −
(
Eh0(1, 0) +

√
Nm1

∆(di)
E

(
c̃1(y

∗
0G1ϑ0)zm2 + c̃2(y

∗
0G1ϑ0)(zm2)

′ + c̃2(y
∗
0G2

1ϑ0)zm2

)

+ Eh1(1, 0) +
√
N
zm2m1

∆(di)
Ey∗1G1ϑ1 + Eh2(1, 0) +

√
N
zm2m1

∆(di)
Ey∗2G1ϑ2

)

+O≺(N
− 1

2 ).

We substitute the estimates (B.15) and (B.18) with l = 1 into the above
estimate and immediately get

EP = O≺(N
− 1

2 δ
− 3

2
i0 d

3
2
i ). (B.22)

This proves (6.12).
Next we turn to prove (6.13). By (B.14) and Lemma B.1, we observe that

√
N

m1

∆(di)
Ey∗tHTt(G1)ϑtP l−1 = Eht(1, 0) + Eht(0, 1) + Eht(1, 2) +O≺(N

− 1
2 )

(B.23)

for t = 0, 1, 2. Plugging (B.23) into (B.10), together with the estimates
(B.15) and (B.18), we get

E(P l) =−
(
Eh0(0, 1) + Eh0(1, 2) + Eh1(0, 1) + Eh1(1, 2) + Eh2(0, 1) + Eh2(1, 2)

)

+O≺
(
N− 1

2 δ
− 3

2
i0 d

3
2
i

)
. (B.24)



78 ZHIGANG BAO, XIUCAI DING, JINGMING WANG, KE WANG

It remains to compute the explicit expression for the RHS of the above
equation. First, using (B.16) and (B.19), we get

−
(
Eh0(0, 1) + Eh1(0, 1) + Eh2(0, 1)

)

=
l − 1

∆(di)2

((
‖y0‖2 + (y∗0w

0
I )

2
) 2∑

a,b=1

cac̃b
∑

a1,a2≥1,
a1+a2=a+1

m1m
(a1−1)
1 (zm1)

(b+a2−1)

(a1 − 1)!(b+ a2 − 1)!

+
(
‖y1‖2 + (y∗1ς

0
I
)2
)(
m2

1(zm1)
′
)

+
(
y∗1y2(ς

0
I )

∗w0
I + y

∗
1w

0
I y

∗
2ς

0
I

)(
2m2

1(zm1)
′
)
+

(
‖y2‖2 + (y∗2w

0
I )

2
)(
m2

1(zm1)
′
)

+
(
y∗0y1(w

0
I )

∗ς0I + y∗0ς
0
I y

∗
1w

0
I + y

∗
0y2‖w0

I ‖2 + y∗0w0
I y

∗
2w

0
I

)

×
( 2∑

a=1

ca

(
(zm1)

′m2
1

)(a−1)

a!
+

2∑

a=1

c̃a
m2

1(zm1)
(a)

a!

) )
EP l−2 +O≺(d

3
2
i δ

− 3
2

i0 N− 1
2 ).

Recall the definitions for y0,y1 and y2 in (B.5) and the matrix MI in (6.4)
and (6.5). By elementary calculation, we arrive at

−
(
Eh0(0, 1) + Eh1(0, 1) + Eh2(0, 1)) = (l − 1)c∗MIcEP l−2 +O≺(d

1
2
i δ

− 1
2

i0 N− 1
2 ).

(B.25)

Next, by (B.17) and (B.20) , we have

−
(
Eh0(1, 2) + Eh1(1, 2) + Eh2(1, 2)

)

=
(l − 1)κ4
∆(di)2

(
s2,2(y0,w

0
I )
( 2∑

s=1

c̃s
m1(zm2m1)

(s−1)

(s − 1)!

)( 2∑

s=1

cs
(zm2m

2
1)

(s−1)

(s− 1)!

)

+
(
s1,1,1,1(y0,w

0
I ,y1, ς

0
I ) + s1,1,2(y0,y2,w

0
I )
)
zm2m

2
1

×
( 2∑

s=1

c̃s
m1(zm2m1)

(s−1)

(s− 1)!
+

2∑

s=1

cs
(zm2m

2
1)

(s−1)

(s− 1)!

)

+
(
s2,2(y1, ς

0
I ) + s2,2(y2,w

0
I )
)
(zm2m

2
1)

2 + s1,1,1,1(y1, ς
0
I ,y2,w

0
I )
(
2(zm2m

2
1)

2
))

EP l−2,

which, by the definitions of y0,y1 and y2 in (B.5) and the matrix KI in
(6.6)-(6.7), can be simplified to

−
(
Eh0(1, 2) + Eh1(1, 2) + Eh2(1, 2)

)
= (l − 1)κ4c

∗KIcEP l−2. (B.26)

Combining (B.25) and (B.26), we complete the proof of (6.13) in Proposition
6.2. Hence, we conclude the proof of Proposition 6.2.
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The rest of this section is devoted to the proof of Lemma B.1. It is con-
venient to first introduce the next lemma, which will be used to control the
negligible terms in the proof of Lemma B.1.

Lemma B.2. For a fixed integer n ≥ 1, let ηi = (ηi1, . . . , ηiM )∗ ∈ C
M , i ∈

J0, nK be any given deterministic vectors with maxi ‖ηi‖ ≤ C for some pos-
itive constant C. For positive integers s0, s1, · · · , sn ∈ {1, 2} and a = 0, 1,
t = 0, 1, 2, we have the following estimates:

∑

q

∣∣∣η0q
(
Gs0
1 )qq

)a( n∏

k=1

(Gsk
1 ηk)q

)∣∣∣ = O≺
(
d−n−a
i (di −

√
y)−

∑n
k=1(sk−1)−a(s0−1)

)
,

(B.27)
∣∣∣
∑

k

(
(X∗Gs0

1 X)kk
)a
(X∗Tt(G1)η1)k

∣∣∣ = O≺
(
(di −

√
y)−

1
2
−a(s0−1)d

− 1
2
−a

i

)
.

(B.28)

Proof of Lemma B.2. The first estimate (B.27) can be proved by (4.25)
and the isotropic local law (4.16) as follows:

∑

q

∣∣∣η0q
(
(Gs0

1 )qq
)a( n∏

k=1

((Gsk
1 ηk)q

)∣∣∣

=
∑

q

∣∣∣η0q
(
(Gs0

1 )qq
)a( n∏

k=1

〈
eq,

G(sk−1)
1

(sk − 1)!
ηk

〉)∣∣∣

=
∑

q

∣∣∣∣η0q
(
m

(s0−1)
1

(s0 − 1)!
+O≺

( ∆(di)

Υs0−1
√
N

))a n∏

k=1

(
m

(sk−1)
1

(sk − 1)!
ηkq +O≺

( ∆(di)

Υsk−1
√
N

))∣∣∣∣

= O≺
(
d−n−a
i (di −

√
y)−

∑n
k=1(sk−1)−a(s0−1)

)
,

where in the last step we used the first and last estimates in (4.11) and the
fact |z| ≍ |θ(di)| ≍ di.

f Recall the definition of Tt(G1) from (B.9). To prove (B.28), we first claim
that for t = 0, 1, 2,

∣∣∣
∑

k

(X∗Tt(G1)η1)k

∣∣∣ = O≺
(
(di −

√
y)−

1
2d

− 1
2

i

)
. (B.29)

Notice that for t = 1, 2, by (4.17),

∣∣∣
∑

k

(X∗Tt(G1)η1)k

∣∣∣ =
∣∣∣
∑

k

(X∗G1η1)k

∣∣∣ =
√
N1∗NX

∗G1η1 = O≺
(
(di −

√
y)−

1
2 d

− 1
2

i

)
,
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where we recalled the notation
√
N1N ∈ R

N for the all-1 vector. For t = 0,
by definition, T0(G1) = c̃1G1+ c̃2G2

1 where c̃1,2 are defined in (6.3). If di ≤ K
with sufficiently large constant K > 0, then similarly to the above estimate,
we have

∣∣∣
∑

k

(X∗T0(G1)η1)k

∣∣∣ ≤ c̃1
√
N1∗NX

∗G1η1 + c̃2
√
N1∗NX

∗G2
1η1

= O≺
(
(di −

√
y)−

1
2 d

− 1
2

i

)
.

However, in the case that di > K with sufficiently large constant K > 0,
c̃1,2 are no longer bounded. Instead, we do the expansion for G1,G2

1 around
−1/θ(di) and 1/(θ(di))

2, respectively, to get a cancellation. More specifically,

∣∣∣
∑

k

(X∗T0(G1)η1)k

∣∣∣ =
√
N1∗NX

∗(θ(di)G1 + θ(di)
2G2

1)η1 +O≺
(
d−1
i

)

=
√
N

1∗NX
∗Hη1

θ(di)
+O≺

(
d−1
i

)
= O≺

(
d−1
i

)
.

In the last two steps above, we used

1∗NX
∗Haη1 = O≺(N

− 1
2 ) for any a ∈ Z

+, (B.30)

which can be checked easily by the moment method.
Hence, we conclude the proof of (B.29). Further, by (4.26) and the isotropic

local law Theorem 4.2, we get

∣∣∣
∑

k

(
(X∗Gs0

1 X)kk
)a
(X∗Tt(G1)η1)k

∣∣∣ =
∣∣∣
∑

k

(
(Gs0−1

2 + zGs0
2 )kk

)a
(X∗Tt(G1)η1)k

∣∣∣

=
∣∣∣
∑

k

( m(s0−2)
2

(s0 − 2)!
+
zm

(s0−1)
2

(s0 − 1)!
+O≺

(
N− 1

2ds0i δ
−2(s0−1)
i0 ∆(di)

))a
((X∗Tt(G1)η1)k

∣∣∣

=
∣∣∣
∑

k

( (1 + zm2)
(s0−1)

(s0 − 1)!
+O≺

(
N− 1

2ds0i δ
−2(s0−1)
i0 ∆(di)

))a
((X∗Tt(G1)η1)k

∣∣∣

= O≺
(
(di −

√
y)−

1
2
−a(s0−1)d

− 1
2
−a

i

)
, a = 0, 1,

by using the convention m
(−1)
2 /(−1)! = 1, the product rule and also noticing

that 1 + zm2 = O(1/di) and (zm2)
′ = O(d−1

i (di −
√
y)−1) from (4.11) and

(4.12). This concludes the proof of Lemma B.2.

With Lemma B.2, we can now prove Lemma B.1.
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Proof of Lemma B.1. In this proof, we fix l and i. First, we compute
ht(1, 0) for t = 0, 1, 2. Recall the definition in (B.13) and the expression of
Tt(G1) in (B.9). We need to compute separately for t = 0 and t = 1, 2. By
(A.2), we have

h0(1, 0) =
m1

∆(di)
√
N

∑

q,k

y0q
∂
(
X∗(

∑2
s=1 c̃sGs

1)ϑ0

)
k

∂xqk
P l−1

=
m1

∆(di)
√
N

∑

q,k

y0q

( 2∑

s=1

c̃s

(
(Gs

1ϑ0)q −
2∑

a=1

∑

s1,s2≥1
s1+s2=s+1

(
X∗Gs1

1 P
qk
a Gs2

1 ϑ0

)
k

))
P l−1,

where P
qk
a , a = 1, 2 are defined in (4.27). Taking the sum over q, k, we get

h0(1, 0) =

√
Nm1

∆(di)

2∑

s=1

c̃sy
∗
0Gs

1ϑ0P l−1

− m1√
N∆(di)

2∑

s=1

c̃s
∑

s1,s2≥1
s1+s2=s+1

(
y∗0Gs1

1 XX
∗Gs2

1 ϑ0 + y
∗
0Gs2

1 ϑ0 Tr(X
∗Gs1

1 X)
)
P l−1.

(B.31)

By the identity in (4.26) and the explicit expression for c̃1,2 in (6.3), we get

m1√
N∆(di)

2∑

s=1

c̃s
∑

s1,s2≥1
s1+s2=s+1

y∗t Gs1
1 XX

∗Gs2
1 ϑ0

=
m1√
N∆(di)

(
c̃1(y

∗
0G1XX

∗G1ϑ0) + 2c̃2(y
∗
0G1XX

∗G2
1ϑ0)

)

=
m1√
N∆(di)

(d2i + 2diy + y

di + y
(y∗0(G1 + zG′

1)ϑ0) +
(d2i − y)2

d2i
(y∗0(2G′

1 + zG′′
1 )ϑ0)

)
,
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which, by isotropic local law (4.16), can be estimated by

m1√
N∆(di)

2∑

s=1

c̃s
∑

s1,s2≥1
s1+s2=s+1

y∗t Gs1
1 XX

∗Gs2
1 ϑ0

=
m1√
N∆(di)

(
d2i + 2diy + y

di + y

(
(zm1)

′y∗0ϑ0 +O≺
(∆(di)d

2
i

δ2i0
√
N

))

+
(d2i − y)2

d2i

(
(zm1)

′′y∗0ϑ0 +O≺
(∆(di)d

3
i

δ4i0
√
N

)))

=
m1√
N∆(di)

(
d2i + 2diy + y

di + y
(zm1)

′ +
(d2i − y)2

d2i
(zm1)

′′
)
y∗0ϑ0 +O≺

( d2i
δ2i0N

)

=
m1√
N∆(di)

(
− 1

di + y

)
y∗0ϑ0 +O≺

( d2i
δ2i0N

)
= O≺

(d−
1
2

i δ
1
2
i0√

N

)
+O≺

( d2i
δ2i0N

)

= O≺
(√ di

δi0N

)
. (B.32)

Here we used the facts (zm1)
′ = 1/(d2i − y) and (zm1)

′′ = −2d3i /(d
2
i − y)3

together with the asymptotic expression for ∆(d) in (4.20). The last step is
due to the assumption (2.1).

Substituting (B.32) into (B.31) and using the fact P = O≺(1), we get

h0(1, 0) =

√
Nm1

∆(di)

2∑

s=1

c̃sy
∗
0Gs

1ϑ0P l−1

− m1√
N∆(di)

2∑

s=1

c̃s
∑

s1,s2≥1
s1+s2=s+1

(
y∗0Gs2

1 ϑ0 Tr(X
∗Gs1

1 X)
)
P l−1

+O≺
(√ di

δi0N

)
. (B.33)

Using the second identity in (4.26), and Theorem 4.2, more specifically,
(4.18), we have

m1√
N∆(di)

2∑

s=1

c̃s
∑

s1,s2≥1
s1+s2=s+1

(
y∗0Gs2

1 ϑ0 Tr(X
∗Gs1

1 X)
)
P l−1

=

√
Nm1

∆(di)

(
c̃1(y

∗
0G1ϑ0)

Tr(X∗G1X)

N
+ c̃2(y

∗
0G1ϑ0)

Tr(X∗G2
1X)

N
+ c̃2(y

∗
0G2

1ϑ0)
Tr(X∗G1X)

N

)
P l−1
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=

√
Nm1

∆(di)

(
c̃1(y

∗
0G1ϑ0)(1 + zm2) + c̃2(y

∗
0G1ϑ0)(zm2)

′ + c̃2(y
∗
0G2

1ϑ0)(1 + zm2)
)
P l−1

+O≺
(∣∣∣

√
N

∆(di)
m2

1c̃1

(Tr(zG2)

N
− zm2

)∣∣∣
)
+O≺

(∣∣∣
√
N

∆(di)
m2

1c̃2

(Tr(G2 + zG2
2)

N
− (zm2)

′
)∣∣∣
)

+O≺
(∣∣∣

√
N

∆(di)
m1m

′
1c̃2

(Tr(zG2)

N
− zm2

)∣∣∣
)
. (B.34)

Notice that c̃1 = O(di) and c̃2 = O≺(δ2i0). To estimate the error bounds in
(B.34), again, we need to separate the discussion into two cases: di ≤ K
or di > K for sufficiently large constant K > 0. In the case di ≤ K, we

can use the isotropic law (4.9) directly together with ∆(di) ≍ δ
− 1

2
i0 and

m1 = O(1),m′
1 = O(1/δi0) to get an O≺(δ

−3/2
i0 N−1/2) bound for all the

error terms in (B.34). In case di > K, we use the improved isotropic local
law (4.10) to get

∣∣∣Tr(zG2)

N
− zm2

∣∣∣ = O≺(N
−1d−1

i ),
∣∣∣Tr(G2 + zG2

2)

N
− (zm2)

′
∣∣∣ = O≺(N

−1d−2
i ).

(B.35)

The above two estimates with the facts m1(z) = O(1/di) and m′
1(z) =

O(d−1
i δ−1

i0 ) yield the O≺(N−1/2) bound for all the error terms in (B.34) in

the case di ≤ K. To unify the two cases, we use the O≺(d
3/2
i δ

−3/2
i0 N−1/2)

bound to estimate all the error terms in (B.34).
Then, we obtain

m1√
N∆(di)

2∑

s=1

c̃s
∑

s1,s2≥1
s1+s2=s+1

(
y∗0Gs2

1 ϑ0 Tr(X
∗Gs1

1 X)
)
P l−1

=

√
Nm1

∆(di)

(
c̃1(y

∗
0G1ϑ0)(1 + zm2) + c̃2(y

∗
0G1ϑ0)(zm2)

′ + c̃2(y
∗
0G2

1ϑ0)(1 + zm2)
)
P l−1

+O≺
(
d

3
2
i δ

− 3
2

i0 N− 1
2

)
,

which, together with (B.33), leads to

h0(1, 0) =−
√
Nm1

∆(di)

(
c̃1(y

∗
0G1ϑ0)(zm2) + c̃2(y

∗
0G1ϑ0)(zm2)

′ + c̃2(y
∗
0G2

1ϑ0)(zm2)
)
P l−1

+O≺
(
d

3
2
i δ

− 3
2

i0 N− 1
2

)
. (B.36)
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For the case t = 1, 2, we have

ht(1, 0) =
m1

∆(di)
√
N

∑

q,k

ytq
∂
(
X∗G1ϑt

)
k

∂xqk
P l−1

=
m1

∆(di)
√
N

∑

q,k

ytq

(
(G1ϑt)q −

2∑

a=1

(
X∗G1P

qk
a G1ϑt

)
k

)
P l−1

=

√
Nm1

∆(di)
y∗t G1ϑt −

m1

∆(di)
√
N

(y∗t G1XX
∗G1ϑt)−

√
Nm1

∆(di)
y∗t G1ϑt

1

N
Tr(X∗G1X)

= −
√
Nm1

∆(di)
y∗t G1ϑt(zm2) +O≺

(
d

3
2
i δ

− 3
2

i0 N− 1
2

)

where we used the estimates

m1

∆(di)
√
N

(y∗t G1XX
∗G1ϑt) =

m1

∆(di)
√
N

(zm1)
′y∗tϑt +O≺

( di
Nδ2i0

)

= O≺(d
− 1

2
i δ

− 1
2

i0 N− 1
2 )

and
√
Nm1

∆(di)
y∗t G1ϑt

1

N
Tr(X∗G1X) =

√
Nm1

∆(di)
y∗t G1ϑt(1 + zm2) +O≺

(
d

3
2
i δ

− 3
2

i0 N− 1
2

)
.

Both follow directly from the isotropic local laws (4.16) and (4.18).
Next, we turn to estimate ht(0, 1), which by the definition in (B.13) reads

ht(0, 1) = (l − 1)
m1√
N∆(di)

∑

q,k

ytq
(
X∗Tt(G1)ϑt

)
k

∂P
∂xqk

P l−2. (B.37)

Using the formula (A.6) to (B.37), we get

ht(0, 1)

= −(l − 1)m1

∆(di)2

[ 2∑

a=1

ca
∑

a1,a2≥1;
a1+a2=a+1

(
(y∗t Ga1

1 y0)(ϑ
∗
tTt(G1)XX

∗Ga2
1 ϑ0)

+ (y∗t Ga2
1 ϑ0)(ϑ

∗
tTt(G1)XX

∗Ga1
1 y0)

)

+

2∑

s=1

(
(y∗t G1ys)(ϑ

∗
tTt(G1)XX

∗G1ϑs) + (y∗t G1ϑs)(ϑ
∗
tTt(G1)XX

∗G1ys)
)]

P l−2.

(B.38)
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By (4.26), we have

Gs1
1 XX

∗Gs2
1 = Gs1+s2−1

1 + zGs1+s2
1 , a = 1, 2.

Hence, for t = 0, by (4.16) and the bound |P| ≺ 1, we have

h0(0, 1) = −(l − 1)m1

∆(di)2

[ 2∑

a=1

ca
∑

a1,a2≥1;
a1+a2=a+1

(
m

(a1−1)
1

(a1 − 1)!
(y∗0y0)

( 2∑

b=1

c̃b
(zm1)

(b+a2−1)

(b+ a2 − 1)!

)
(ϑ∗

0ϑ0)

+
m

(a2−1)
1

(a2 − 1)!
(y∗0ϑ0)

( 2∑

b=1

c̃b
(zm1)

(b+a1−1)

(b+ a1 − 1)!

)
(ϑ∗

0y0)

)

+

2∑

s=1

(
m1(y

∗
0ys)

( 2∑

b=1

c̃b
(zm1)

(b)

b!

)
(ϑ∗

0ϑs)

+m1(y
∗
0ϑs)

( 2∑

b=1

c̃b
(zm1)

(b)

b!

)
(ϑ∗

0ys)
)]

P l−2 +R, (B.39)

where the error term R is dominated by the sum of the absolute values of
the following two terms

R1 := −(l − 1)m1

∆(di)2

[ 2∑

a=1

ca
∑

a1,a2≥1;
a1+a2=a+1

(
(y∗0Ξ

(a1−1)y0)
( 2∑

b=1

c̃b
(zm1)

(b+a2−1)

(b+ a2 − 1)!

)
(ϑ∗

0ϑ0)

+ (y∗0Ξ
(a2−1)ϑ0)

( 2∑

b=1

c̃b
(zm1)

(b+a1−1)

(b+ a1 − 1)!

)
(ϑ∗

0y0)
)

+

2∑

s=1

(
(y∗0Ξys)

( 2∑

b=1

c̃b
(zm1)

(b)

b!

)
(ϑ∗

0ϑs) + (y∗0Ξϑs)
( 2∑

b=1

c̃b
(zm1)

(b)

b!

)
(ϑ∗

0ys)
)]
,

and

R2 := −(l − 1)m1

∆(di)2

[ 2∑

a=1

ca
∑

a1,a2≥1;
a1+a2=a+1

(
m

(a1−1)
1

(a1 − 1)!
(y∗0y0)

( 2∑

b=1

c̃bϑ
∗
0

[ (zΞ)(b+a2−1)

(b+ a2 − 1)!

]
ϑ0

)

+
m

(a2−1)
1

(a2 − 1)!
(y∗0ϑ0)

( 2∑

b=1

c̃bϑ
∗
0

[ (zΞ)(b+a1−1)

(b+ a1 − 1)!

]
y0

))

+
2∑

s=1

(
m1(y

∗
0ys)

( 2∑

b=1

c̃bϑ
∗
0

[(zΞ)(b)
b!

]
ϑs

)
+m1(y

∗
0ϑs)

( 2∑

b=1

c̃bϑ
∗
0

[(zΞ)(b)
b!

]
ys

))]
.

(B.40)
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In the sequel, we prove both R1 and R2 are negligible. First, we apply (4.16)
and the facts which can be checked by elementary computations

2∑

b=1

c̃b
(zm1)

(b)

b!
=

y(1 + di)

(di + y)(d2i − y)
,

2∑

b=1

c̃b
(zm1)

(b+1)

(b+ 1)!
= − d2i y

(di + y)(d2i − y)2

to get

R1 = O≺(d
1
2
i δ

− 1
2

i0 N− 1
2 ).

Next, we turn to R2. If di ≤ K with sufficiently large constant K >
0, direct applications of the isotropic local law (4.16) yield that |R2| =

O≺(δ
− 3

2
i0 N− 1

2 ). Hence, we focus on the case that di is large, i.e. di > K
with sufficiently large constant K > 0. Recall the new form of eigenvector
empirical spectral distribution(VESD) of H with respect to two fixed unit
vectors u,v from (5.32), Then for any given unit vectors v,u, we can derive

2∑

b=1

c̃bv
∗
[(zΞ)(b)

b!

]
u

=

∫ ( c̃1
x− z

+
c̃1z

(x− z)2
+

c̃2
(x− z)2

+
c̃2z

(x− z)3

)
d
(
Fu,v
1N (x)− Fu,v

1 (x)
)

≍
∫ λ++N− 2

3+ τ
2

λ−−N− 2
3+ τ

2

( −c̃1
(x− z)2

− 2c̃1z + 2c̃2
(x− z)3

− 3c̃2z

(x− z)4

)(
Fu,v
1N (x)− Fu,v

1 (x)
)
dx.

Further by (5.33), i.e. supx |Fu,v
1N (x)− Fu,v

1 (x)| = O≺(N
− 1

2 ) and the simple
estimate

−c̃1
(x− z)2

− 2c̃1z + 2c̃2
(x− z)3

− 3c̃2z

(x− z)4
= O(d−2

i )

which follows form the substitution of c̃1, c̃2 and z ≍ di, we finally have

2∑

b=1

c̃bv
∗
[(zΞ)(b)

b!

]
u = O≺(d

−2
i N− 1

2 ). (B.41)

Analogously, we have

2∑

b=1

c̃bv
∗
[(zΞ)(b+1)

(b+ 1)!

]
u = O≺(d

−3
i N− 1

2 ). (B.42)
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Plugging (B.41) back into (B.40), we see

R2 =− (l − 1)m1

∆(di)2

[( 2∑

b=1

c̃bϑ
∗
0

[(zΞ)(b)
b!

]
ϑ0

)
(y∗0y0)(

c1
2
m1 + c2m

′
1)

]

− (l − 1)m1

∆(di)2

[( 2∑

b=1

c̃bϑ
∗
0

[(zΞ)(b)
b!

]
y0

)
(y∗0ϑ0)(

c1
2
m1 + c2m

′
1)

]

− (l − 1)m1

∆(di)2

[
m1

(c1
2

2∑

b=1

c̃bϑ
∗
0

[(zΞ)(b)
b!

]
ϑ0 + c2

2∑

b=1

c̃bϑ
∗
0

[(zΞ)(b+1)

(b+ 1)!

]
ϑ0

)
(y∗0y0)

]

− (l − 1)m1

∆(di)2

[
m1

(c1
2

2∑

b=1

c̃bϑ
∗
0

[(zΞ)(b)
b!

]
y0 + c2

2∑

b=1

c̃bϑ
∗
0

[(zΞ)(b+1)

(b! + 1)

]
ϑ0

)
(y∗0ϑ0)

]

+O≺(N
− 1

2 ). (B.43)

By (B.41) and the fact that c1m1/2 + c2m
′
1 = O≺(1/di), we see that the

first two terms on the RHS of (B.43) are of order O≺(N
− 1

2 ). Similarly to
the estimates of (B.41) and (B.42), we also get

m1

(c1
2

2∑

b=1

c̃bϑ
∗
0

[(zΞ)(b)
b!

]
ϑ0 + c2

2∑

b=1

c̃bϑ
∗
0

[(zΞ)(b+1)

(b+ 1)!

]
ϑ0

)

≍ m1

(
c1
2

∫ λ++N− 2
3+ τ

2

λ−−N− 2
3+ τ

2

( −c̃1
(x− z)2

− 2c̃1z + 2c̃2
(x− z)3

− 3c̃2z

(x− z)4

)(
Fu,v
1N (x)− Fu,v

1 (x)
)
dx

+ c2

∫ λ++N− 2
3+ τ

2

λ−−N− 2
3+ τ

2

( −2c̃1
(x− z)3

− 3c̃1z + 3c̃2
(x− z)4

− 4c̃2z

(x− z)5

)(
Fu,v
1N (x)− Fu,v

1 (x)
)
dx

)
.

For z ≍ di > K, expanding (x − z)−i, i = 1, · · · , 5 at x = 0 and plug-
ging in the values of c1,2, c̃1,2 defined in (6.2) and (6.3), after elementary
computations, we see that

c1
2

( −c̃1
(x− z)2

− 2c̃1z + 2c̃2
(x− z)3

− 3c̃2z

(x− z)4

)

+ c2

( −2c̃1
(x− z)3

− 3c̃1z + 3c̃2
(x− z)4

− 4c̃2z

(x− z)5

)
= O(d−2

i ),

which together with (5.33) and m1 = O(d−1
i ) leads to

m1

(c1
2

2∑

b=1

c̃bϑ
∗
0

[(zΞ)(b)
b!

]
ϑ0 + c2

2∑

b=1

c̃bϑ
∗
0

[(zΞ)(b+1)

(b+ 1)!

]
ϑ0

)
= O≺(d

−3
i N− 1

2 ).
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Hence, we see the third and fourth terms on the RHS of (B.43) are crudely

bounded by O≺(N
− 1

2 ). Now, we conclude that |R2| = O≺(N
− 1

2 ) for large

di and |R2| = O≺(δ
− 3

2
i0 N− 1

2 ) for bounded di. This, together with |R1| =
O≺(d

1
2
i δ

− 1
2

i0 N− 1
2 ), finally leads to

h0(0, 1) = −(l − 1)m1

∆(di)2

[ 2∑

a=1

ca
∑

a1,a2≥1;
a1+a2=a+1

(
m

(a1−1)
1

(a1 − 1)!
(y∗0y0)

( 2∑

b=1

c̃b
(zm1)

(b+a2−1)

(b+ a2 − 1)!

)
(ϑ∗

0ϑ0)

+
m

(a2−1)
1

(a2 − 1)!
(y∗0ϑ0)

( 2∑

b=1

c̃b
(zm1)

(b+a1−1)

(b+ a1 − 1)!

)
(ϑ∗

0y0)

)

+

2∑

s=1

(
m1(y

∗
0ys)

( 2∑

b=1

c̃b
(zm1)

(b)

b!

)
(ϑ∗

0ϑs)

+m1(y
∗
0ϑs)

( 2∑

b=1

c̃b
(zm1)

(b)

b!

)
(ϑ∗

0ys)
)]

P l−2 +O≺(d
3
2
i δ

− 3
2

i0 N− 1
2 ).

(B.44)

For t = 1, 2, using the same arguments as for h0(0, 1), we can derive

ht(0, 1) = −(l − 1)m1

∆(di)2

[ 2∑

a=1

ca
∑

a1,a2≥1;
a1+a2=a+1

(
m

(a1−1)
1

(a1 − 1)!
(y∗t y0)

((zm1)
(a2)

(a2)!

)
(ϑ∗

tϑ0)

+
m

(a2−1)
1

(a2 − 1)!
(y∗tϑ0)

( (zm1)
(a1)

(a1)!

)
(ϑ∗

ty0)

)

+
2∑

s=1

(
m1(y

∗
t ys)(zm1)

′(ϑ∗
0ϑs) +m1(y

∗
tϑs)(zm1)

′(ϑ∗
0ys)

)]
P l−2

+O≺(d
3
2
i δ

− 3
2

i0 N− 1
2 ). (B.45)

Next, we show (B.17) and (B.20). First, by the definition in (B.13), we
have

ht(1, 2) =
κ4

2N
3
2

m1

∆(di)

∑

q,k

ytq
∂(X∗Tt(G1)ϑt)k

∂xqk

×
(
(l − 1)

∂2P
∂x2qk

P l−2 + (l − 1)(l − 2)
( ∂P
∂xqk

)2
P l−3

)

=: κ4(l − 1)J1t + κ4(l − 1)(l − 2)J2t, (B.46)
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In the following, we estimate J1t and J2t for t = 0, 1, 2. We only state the
details for the case t = 0 as proofs for the cases t = 1, 2 are analogous and
even simpler according to the the definition of Tt(G1) in (B.9).

To estimate J10, using (A.8) and (A.2), we see

J10 =
1

2N
3
2

m1

∆(di)

2∑

s=1

c̃s
∑

q,k

y0q
∂(X∗Gs

1ϑ0)k
∂xqk

∂2P
∂x2qk

P l−2

=
1

N

m1

∆(di)2

2∑

s=1

c̃s
∑

q,k

y0q

(
(Gs

1ϑ0)q −
2∑

a=1

∑

s1,s2≥1
s1+s2=s+1

(X∗Gs1
1 P

qk
a Gs2

1 ϑ0)k

)

×
[ 2∑

b=1

cb

( 2∑

a1,a2=1

∑

b1,b2,b3≥1;∑3
i=1 bi=b+2

y∗0
( 2∏

j=1

(Gbj
1 P

qk
aj )

)
Gb3
1 ϑ0 −

∑

b1,b2≥1;
b1+b2=b+1

y∗0Gb1
1 P

qk
0 Gb2

1 ϑ0

)

+

2∑

t=1

( 2∑

a1,a2=1

y∗t
( 2∏

j=1

(G1P
qk
aj )

)
G1ϑt − y∗t G1P

qk
0 G1ϑt

)]
P l−2.

(B.47)

Further, we claim that

J10 =
1

N

m1

∆(di)2

2∑

s=1

c̃s
∑

q,k

y0q

(
(Gs

1ϑ0)q −
∑

s1,s2≥1
s1+s2=s+1

(X∗Gs1
1 P

qk
2 Gs2

1 ϑ0)k

)

×
[ 2∑

b=1

cby
∗
0

( ∑

b1,b2,b3≥1
b1+b2+b3=b+2

Gb1
1 P

qk
1 Gb2

1 P
qk
2 Gb3

1 −
∑

b1,b2≥1
b1+b2=b+1

Gb1
1 P

qk
0 Gb2

1

)
ϑ0

+

2∑

t=1

y∗t
(
G1P

qk
1 G1P

qk
2 G1 − G1P

qk
0 G1

)
ϑt

]
P l−2 +O≺(N

− 1
2 ).

(B.48)

To see the reduction from (B.47) to (B.48), we first observe from Lemma

4.4 that |m1| ∼ d−1
i . Further notice that the terms absorbed into O≺(N

− 1
2 )

always contain some quadratic forms of X∗Ga
1 for some a ≥ 1 and at least

one quadratic form of Gb
1 for some b ≥ 1. Then the isotropic local law (4.17)

and Remark 4.5 can be applied to show that the quadratic forms of X∗Ga
1

and Gb
1 are bounded by O≺(N

− 1
2 δ

− 1
2

i0 d
− 1

2
i (δ−2

i0 di)
a−1) and O≺(d

−1
i δ

−(b−1)
i0 ),
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respectively, for a, b = 1, 2. For instance, we have

N− 3
2
m1

∆(di)

∑

q,k

y0q c̃s

( ∑

s1,s2≥1
s1+s2=s+1

(X∗Gs1
1 P1Gs2

1 ϑ0)k

) ∂2P
∂x2qk

P l−2

≺ N− 3
2

∣∣∣∣
m1

∆(di)

∑

q,k

∑

s1,s2≥1
s1+s2=s+1

y0q c̃s(X
∗Gs1

1 )kq(X
∗Gs2

1 ϑϕ(t))k
∂2P
∂x2qk

∣∣∣∣

≺ N−1 |m1|
∆(di)

∑

s1,s2≥1
s1+s2=s+1

c̃s

(∑

q

∣∣ytq
∣∣
)∑

k

∣∣(X∗Gs1
1 )kq

∣∣∣∣(X∗Gs2
1 ϑ0)k

∣∣
√
di −

√
y

di

= O≺(N
− 1

2 ).

In the first and second steps above, we used the bound |P| ≺ 1 and (A.9),
respectively. In the last step, we used the isotropic local law (4.17) and
also the fact

∑
q

∣∣ytq
∣∣ ≺

√
N . The other negligible terms can be estimated

similarly. We omit the details.
Plugging the definitions in (4.27) into (B.48) yields

J10 =
m1

N∆(di)2

2∑

s=1

c̃s
∑

q,k

y0q

(
(Gs

1ϑ0)q −
∑

s1,s2≥1
s1+s2=s+1

(X∗Gs1
1 X)kk(Gs2

1 ϑ0)q

)

×
[ 2∑

b=1

cb

( ∑

b1,b2,b3≥1
b1+b2+b3=b+2

(y∗0Gb1
1 )q(X

∗Gb2
1 X)kk(Gb3

1 ϑ0)q −
∑

b1,b2≥1
b1+b2=b+1

(y∗0Gb1
1 )q(Gb2

1 ϑ0)q

)

+

2∑

t=1

(
(y∗t G1)q(X

∗G1X)kk(G1ϑt)q − (y∗t G1)q(G1ϑt)q

)]
P l−2 +O≺(N

− 1
2 ).

Again, applying the identities in Lemma 4.12, the isotropic local laws (4.16),
and (4.9), we see

J10 =
m1

∆(di)2

2∑

s=1

c̃s

(
m

(s−1)
1

(s− 1)!
−

∑

s1,s2≥1
s1+s2=s+1

( m(s1−2)
2

(s1 − 2)!
+ z

m
(s1−1)
2

(s1 − 1)!

) m(s2−1)
1

(s2 − 1)!

)

×
( 2∑

b=1

cb

[ ∑

b1,b2,b3≥1
b1+b2+b3=b+2

m
(b1−1)
1

(b1 − 1)!

m
(b3−1)
1

(b3 − 1)!

( m(b2−2)
2

(b2 − 2)!
+ z

m
(b2−1)
2

(b2 − 1)!

)
− (m2

1)
(b−1)

(b− 1)!

]∑

q

y20qϑ
2
0q

+
2∑

t=1

(m2
1(1 + zm2)−m2

1)
∑

q

y0qytqϑ0qϑtq

)
P l−2 +O≺(N

− 1
2 ),
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which by elementary calculation can be rewritten as

J10 = − m1

∆(di)2

2∑

s=1

c̃s

(
(zm2m1)

(s−1)

(s − 1)!

)
×

( 2∑

b=1

cb
(zm2m

2
1)

(b−1)

(b− 1)!

∑

q

y20qϑ
2
0q

+
2∑

t=1

(zm2m
2
1)
∑

q

y0qytqϑ0qϑtq

)
P l−2 +O≺(N

− 1
2 ). (B.49)

Next, we show that

J20 =
m1

2N
3
2∆(di)

2∑

s=1

c̃s
∑

q,k

y0q
∂(X∗Gs

1ϑ0)k
∂xqk

( ∂P
∂xqk

)2
P l−3 = O≺(N

− 1
2 ).

(B.50)

With (A.2), we write J20 as

J20 =
m1

2N
3
2∆(di)

2∑

s=1

c̃s
∑

q,k

y0q

(
(Gs

1ϑ0)q −
2∑

a=1

∑

s1,s2≥1
s1+s2=s+1

(X∗Gs1
1 P

qk
a Gs2

1 ϑ0)k

)( ∂P
∂xqk

)2
P l−3

=
m1

2N
3
2∆(di)

2∑

s=1

c̃s
∑

q,k

y0q

(
(Gs

1ϑ0)q −
∑

s1,s2≥1
s1+s2=s+1

(X∗Gs1
1 X)kk(Gs2

1 ϑ0)q

)( ∂P
∂xqk

)2
P l−3

+O≺(N
− 1

2 ), (B.51)

where in the last step we bounded the a = 1 terms by O≺(N
− 1

2 ) since

∣∣∣∣
m1

2N
3
2∆(di)

2∑

s=1

c̃s
∑

q,k

y0q
∑

s1,s2≥1
s1+s2=s+1

(X∗Gs1
1 )kq(X

∗Gs2
1 ϑ0)kq

( ∂P
∂xqk

)2
P l−3

∣∣∣∣

≺ N−1∆(di)
−1|m1|

2∑

s=1

∑

s1,s2≥1
s1+s2=s+1

|c̃s|
∑

k

∣∣(X∗Gs1
1 )kq

∣∣∣∣(X∗Gs2
1 ϑ0)kq

∣∣

≺ N−1(di −
√
y)−

1
2 d

1
2
i ≺ N− 1

2 .

Here we used the O≺(1) bound for both P and ∂P/∂xqk (c.f., (A.7)) for the
first step, (4.17) for the second step and (2.1), (4.20) for the last step.
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Further, we have

m1

2N
3
2∆(di)

2∑

s=1

c̃s
∑

q,k

y0q

(
(Gs

1ϑ0)q −
∑

s1,s2≥1
s1+s2=s+1

(X∗Gs1
1 X)kk(Gs2

1 ϑ0)q

)( ∂P
∂xqk

)2
P l−3

=
m1

2N
3
2∆(di)

∑

q,k

y0qϑ0q

(
c̃1(−zm2m1) + c̃2(−zm2m1)

′
)( ∂P
∂xqk

)2
P l−3

+O≺(N
− 1

2 ) (B.52)

by using (4.16). Recall (6.3) and the explicit expressions of c̃1,2. Elementary
computations indicate

c̃1(−zm2m1) + c̃2(−zm2m1)
′ = −y(d

2
i + 2di + y)

d2i (di + y)
= O(d−1

i ), (B.53)

by which we can further estimate the RHS of (B.52) as

|m1|N− 1
2∆(di)

−1‖y0‖ ‖ϑ0‖d−1
i

∣∣∣ ∂P
∂xqk

∣∣∣
2
= O≺(N

− 1
2 ). (B.54)

Combining (B.51), (B.52) and (B.54), we proved (B.50). And this completes
the estimate of h0(1, 2).

For the case t = 1, 2, by similar arguments, we will have

ht(1, 2)

=
κ4

2N
3
2

m1

∆(di)

∑

q,k

ytq
∂(X∗G1ϑt)k

∂xqk

(
(l − 1)

∂2P
∂x2qk

P l−2 + (l − 1)(l − 2)
( ∂P
∂xqk

)2
P l−3

)

= −κ4(l − 1)

∆(di)2
zm2m

2
1

( 2∑

b=1

cb
(zm2m

2
1)

(b−1)

(b− 1)!

∑

q

ytqy0qϑtqϑ0q

+

2∑

s=1

zm2m
2
1

∑

q

ytqysqϑtqϑsq

)
P l−2 +O≺(N

− 1
2 ).

We omit the details here since it follows the same arguments as for h0(1, 2).
In the sequel, we prove (2) of Lemma B.1, i.e., we show that except for

(B.15)-(B.20), all the other terms ht(α1, α2) with α1+α2 ≤ 3 can be bounded

by O≺(N
− 1

2 ). We start with the case when α1 + α2 = 2, i.e. (α1, α2) =
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(2, 0), (0, 2), (1, 1). First, by (A.3), we have

h0(2, 0) =
κ3m1

2N∆(di)

2∑

s=1

c̃s
∑

q,k

y0q
∂2(X∗Gs

1ϑ0)k
∂x2qk

P l−1

=
κ3m1

N∆(di)

2∑

s=1

c̃s
∑

q,k

y0q

( 2∑

a1,a2=1

∑

s1,s2,s3≥1
s1+s2+s3=s+2

(
X∗Gs1

1 P
qk
a1 G

s2
1 P

qk
a2 G

s3
1 ϑ0

)
k

−
2∑

a=1

∑

s1,s2≥1
s1+s2=s+1

(
Gs1
1 P

qk
a Gs2

1 ϑ0

)
q
−

∑

s1,s2≥1
s1+s2=s+1

(
X∗Gs1

1 P
qk
0 Gs2

1 ϑ0

)
k

)
P l−1.

(B.55)

Note that each term above contains at least one quadratic form of X∗Ga
1

as a factor, for some a ≥ 1. This fact eventually leads to the O≺(N
− 1

2d−1
i )

bound for all the terms above, by the isotropic local law. More specifically,
plugging the definitions in (4.27) into (B.55) and taking the sums, we can see
that the RHS of (B.55) is a linear combination of the terms of the following
forms

N−1 c̃sm1

∆(di)

∑

q,k

y0q(X
∗Gs1

1 )kq(X
∗Gs2

1 )kq(X
∗Gs3

1 ϑ0)kP l−1, (B.56)

N−1 c̃sm1

∆(di)

∑

q,k

y0q
(
(X∗Gs1

1 X)kk
)a
(X∗Gs2

1 )kq(Gs3
1 ϑ0)qP l−1, (B.57)

N−1 c̃sm1

∆(di)

∑

q,k

y0q
(
(X∗Gs1

1 X)kk
)a
(Gs2

1 )qq(X
∗Gs3

1 ϑ0)kP l−1, a = 0, 1.

(B.58)

where s = 1, 2 and s = s1+s2+s3−2 for (B.56) and s = a(s1−1)+s2+s3−1
for (B.57) and (B.58).

It suffices to estimate (B.56)-(B.58). First, notice that |P l−1| = O≺(1),
|m1| = O≺(1/di) and the quadratic forms of (X∗G1) and (X∗G2

1) can be

bounded by O≺(N
− 1

2 (di−√
y)−

1
2 d

− 1
2

i ) and O≺(N
− 1

2 (di−√
y)−

5
2 d

1
2
i ) respec-

tively. By the Cauchy Schwarz inequality,
∑

q |ytq| = O≺(
√
N). With the

expression of c̃1,2 in (6.3), one see that the term in (B.56) is bounded by
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O≺(N−1(di −
√
y)−1). Second, combining the following bounds

|P l−1| = O≺(1), |(X∗G1X)kk| = O≺(d
−1
i ),

|(X∗G2
1X)kk| = O≺(d

−1
i (di −

√
y)−1),

|(X∗G1)kq| = O≺(N
− 1

2 (di −
√
y)−

1
2 d

− 1
2

i ),

|(X∗G2
1)kq| = O≺(N

− 1
2 (di −

√
y)−

5
2 d

1
2
i ),

together with the estimate of ∆(di) in (4.20), we have for a = 1,

(B.57) = O≺
(
N− 1

2 c̃sd
s2−2
i (di −

√
y)−(s1−1)−2(s2−1)

∑

q

∣∣ytq(Gs3
1 ϑϕ(t))q

∣∣
)

= O≺(N
− 1

2 c̃sd
s2−3
i (di −

√
y)−(s−1)−(s2−1)) = O≺(d

−1
i N− 1

2 ). (B.59)

In the last two steps above, we used (B.27), c̃1 = O(di) and c̃2 = O((di −√
y)2). More specifically, if s = 1, then s2 = 1, c̃sd

s2−3
i (di−√

y)−(s−1)−(s2−1) =

O(d−1
i ); if s = 2, we have c̃sd

s2−3
i (di −

√
y)−(s−1)−(s2−1) = O(d

−(3−s2)
i (di −√

y)2−s2) < O(d−1
i ). The case of a = 0 follows similarly as

(B.57) = O≺
(
N− 1

2 c̃sd
s2−1
i (di −

√
y)−2(s2−1)

∑

q

∣∣ytq(Gs3
1 ϑϕ(t))q

∣∣
)
= O≺(N

− 1
2 ).

(B.60)

Third, by Cauchy-Schwarz inequality and (4.16), we have

∣∣∣N−1 c̃sm1

∆(di)

∑

q,k

y0q
(
(X∗Gs1

1 X)kk
)a
(Gs2

1 )qq(X
∗Gs3

1 ϑ0)k

∣∣∣

≤ N−1 c̃s|m1|
∆(di)

‖y0‖
(∑

q

(Gs2
1 )2qq

)1/2∣∣∣
∑

k

(
(X∗Gs1

1 X)kk
)a
(X∗Gs3

1 ϑ0)k

∣∣∣

≺ N− 1
2 c̃sd

−2
i (di −

√
y)−(s2−1)∆(di)

−1
∣∣∣
∑

k

(
(X∗Gs1

1 X)kk
)a
(X∗Gs3

1 ϑ0)k

∣∣∣

≺ N− 1
2 . (B.61)

In the last step above, we get the O≺(d
−a− 1

2
+s3−1

i δ
− 1

2
−a(s0−1)−2(s3−1)

i0 ) bound

for the term
∣∣∣
∑

k

(
(X∗Gs1

1 X)kk
)a
(X∗Gs3

1 ϑ0)k

∣∣∣, similarly to (B.28). Hence,

we conclude h0(2, 0) = O≺(N
− 1

2 ). Similarly, for the cases of t = 1, 2, the
estimates of ht(2, 0) are reduced to those of the forms (B.56)-(B.58) only
with the coefficients c̃s removed. The computations turn out to be even
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easier; the details are omitted. Therefore, we also have ht(2, 0) = O≺(N
− 1

2 )
for t = 1, 2.

Next, in the case of (α1, α2) = (0, 2), by the definition in (B.13), we have

ht(0, 2) = (l − 1)(l − 2)
κ3m1

2N∆(di)

∑

q,k

ytq(X
∗Tt(G1)ϑt)k

( ∂P
∂xqk

)2
P l−3

+ (l − 1)
κ3m1

2N∆(di)

∑

q,k

ytq(X
∗Tt(G1)ϑt)k

∂2P
∂x2qk

P l−2. (B.62)

We then use the formula in (A.6). After expanding the first term in the RHS
of (B.62), one notices that it can be written as a linear combination of the
terms of the forms (by ignoring prefactor m1/∆(di)

3)
∑

q

ytq(G1η1)q(G1ψ1)q
∑

k

(X∗Tt(G1)ϑt)k(X
∗G1η2)k(X

∗G1ψ2)kP l−3,

(B.63)

∑

q,k

ytq(X
∗Tt(G1)ϑt)k

2∑

a=1

ca
∑

a1,a2≥1
a1+a2=a+1

(Ga1
1 η1)q(X

∗Ga2
1 η2)k

×
2∑

b=1

cb
∑

b1,b2≥1
b1+b2=b+1

(Gb1
1 ψ1)q(X

∗Gb2
1 ψ2)k, (B.64)

∑

q,k

ytq(X
∗Tt(G1)ϑt)k

( 2∑

a=1

ca
∑

a1,a2≥1
a1+a2=a+1

(Ga1
1 η0)q(X

∗Ga2
1 η0)k

)
(G1ψs)q(X

∗G1ψs)k,

s = 1, 2. (B.65)

where the vectors ηα,ψα (α = 1, 2) take ϑs or yt for s, t = 0, 1, 2. We

claim that the above forms (B.63)- (B.65) are bounded by O≺(N
− 1

2 d
− 7

2
i (di−√

y)−
3
2 ) for all choices of ηα,ψα listed above. To see this, we first notice that

the isotropic local law (4.17) implies
∑

k

(X∗G1ϑt)k(X
∗G1η2)k(X

∗G1ψ2)k = O≺(N
− 1

2 (di −
√
y)−

3
2d

− 3
2

i ). (B.66)

Plugging in the expressions of c̃1,2, we see that if di ≤ K with sufficiently
large constant K > 0,

(X∗T0(G1)ϑ0)k =

2∑

s=1

c̃s(X
∗Gs

1ϑ0)k = O≺(N
− 1

2 (di −
√
y)−

1
2 d

− 1
2

i ).
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If di > K with sufficiently large constant K > 0, expanding G1,G2
1 around

−1/θ(di) and 1/(θ(di))
2, respectively, we obtain

(X∗T0(G1)ϑ0)k =

2∑

s=1

c̃s(X
∗Gs

1ϑ0)k

= θ(di)
(
X∗(G1 + θ(di)G2

1

)
ϑ0

)
k
+O≺(N

− 1
2 (di −

√
y)−

1
2d

− 1
2

i )

=
(X∗Hϑ0)k
θ(di)

+O≺(N
− 1

2 d−1
i ) = O≺(N

− 1
2 d−1

i ), (B.67)

where in the last step, we used (X∗Hαϑ0)k = O≺(N−1/2) for α ∈ Z
+ which

can be proved simply by moment method.
Combining the two cases together with the isotropic local law for (X∗G1ϑt)k,

we get the estimate

(X∗Tt(G1)ϑt)k = O≺(N
− 1

2 (di −
√
y)−

1
2 d

− 1
2

i ), for t = 0, 1, 2. (B.68)

This implies

∑

k

(X∗T0(G1)ϑ0)k(X
∗G1η2)k(X

∗G1ψ2)k = O≺(N
− 1

2 (di −
√
y)−

3
2 d

− 3
2

i ).

(B.69)

Further, from (B.27), we have

∑

q

ytq(G1η1)q(G1ψ1)q = O≺(d
−2
i ). (B.70)

Combining (B.66), (B.69), (B.70), and the fact |P| ≺ 1, we easily get

(B.63) = O≺(N
− 1

2d
− 7

2
i (di −

√
y)−

3
2 ) for t = 0, 1, 2.

For (B.64) and (B.65), the coefficients c1,2 contain powers of di thus we
need to handle them more carefully in the case of large di. Notice that if
di = O(1) then c1,2 = O(1), hence similarly to the estimates (B.66), (B.69)

and (B.70), we can easily derive the crude bound O≺(N
− 1

2 d
− 7

2
i (di−√

y)−
3
2 )

for (B.64) and (B.64) by using the isotropic local law. In the sequel, we only
state the details for the case di > K with sufficiently large constant K > 0.
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First by plugging in the expressions of c1,2 and recalling (B.67), we see that

2∑

a=1

ca
∑

a1,a2≥1
a1+a2=a+1

(Ga1
1 η1)q(X

∗Ga2
1 η2)k

=
(c1
2
(X∗G1η2)k + c2(X

∗G2
1η2)k

)
(G1η1)q +

(c1
2
(G1η1)q + c2(G2

1η1)q

)
(X∗G1η2)k

= O≺(N
− 1

2 d−1
i )m1η1q +

(c1
2
m1 + c2m

′
1

)
η1qO≺(N

− 1
2 d−1

i ) +O≺(N
− 1

2 d−2
i )

= O≺(N
− 1

2 d−2
i )η1q, (B.71)

where we use the fact that c1
2 m1 + c2m

′
1 = O(d−1

i ). Then by (B.71) and
(B.68), we obtain that

(B.64) = O≺(N
− 1

2 d−5
i )

(∑

q

ytqη1qψ1q

)
= O≺(N

− 1
2 d−5

i ), (B.72)

which follows from Cauchy-Schwarz inequality for
∑

q ytqη1qψ1q. Analogously,

we also have (B.65) = O≺(N− 1
2d−5

i ). Note that we get the boundO≺(N− 1
2d−5

i )
in the large di case, which can be combined together with the case di = O(1)

to get the crude bound O≺(N
− 1

2d
− 7

2
i (di −

√
y)−

3
2 ) for (B.64) and (B.65).

Now, multiplying with the prefactor m1/∆(di)
3 and using m1 = O(d−1

i ), we
finally get the first term on the RHS of (B.62) is of order O≺(N−1/2).

Analogously, using the formula in (A.8), it is easy to see that the sec-
ond term in the RHS of (B.62) is a linear combination of the terms of the
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following forms containing coefficients c1,2

N− 1
2

m1

∆(di)2

2∑

b=1

cb
∑

b1,b2≥1
b1+b2=b+1

(∑

q

ytq(Gb1
1 η1)q(Gb2

1 η2)q

)

×
(∑

k

(X∗Tt(G1)ϑt)k

)
P l−2, (B.73)

N− 1
2

m1

∆(di)2

2∑

b=1

cb
∑

b1,b2,b3≥1
b1+b2+b3=b+1

(∑

q

ytq(Gb1
1 η1)q(Gb2

1 η2)q

)

×
(∑

k

(X∗Gb3
1 X)kk(X

∗Tt(G1)ϑt)k

)
P l−2, (B.74)

N− 1
2

m1

∆(di)2

2∑

b=1

cb
∑

b1,b2,b3≥1
b1+b2+b3=b+1

(∑

q

ytq(Gb1
1 η1)q

)

×
(∑

k

(X∗Gb2
1 )kq(X

∗Gb3
1 η2)k(X

∗Tt(G1)ϑt)k

)
P l−2,

(B.75)

N− 1
2

m1

∆(di)2

2∑

b=1

cb
∑

b1,b2,b3≥1
b1+b2+b3=b+1

(∑

q

ytq(Gb1
1 )qq

)

×
(∑

k

(X∗Gb2
1 η1)k(X

∗Gb3
1 η2)k(X

∗Tt(G1)ϑt)k

)
P l−2,

(B.76)

for η0,η1,η2 = ϑ1,ϑ2,y1,y2,y3, a = 0, 1 and b1, b2, b3 = 1 or 2 as well as
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the following forms irrelevant to c1,2,

N− 1
2

m1

∆(di)2

(∑

q

ytq(G1η1)q(G1η2)q

)(∑

k

(X∗Tt(G1)ϑt)k

)
P l−2, (B.77)

N− 1
2

m1

∆(di)2

(∑

q

ytq(G1η1)q(G1η2)q

)(∑

k

(X∗G1X)kk(X
∗Tt(G1)ϑt)k

)
P l−2,

(B.78)

N− 1
2

m1

∆(di)2

(∑

q

ytq(G1η1)q

)(∑

k

(X∗G1)kq(X
∗G1η2)k(X

∗Tt(G1)ϑt)k

)
P l−2,

(B.79)

N− 1
2

m1

∆(di)2

(∑

q

ytq(G1)qq

)(∑

k

(X∗G1η1)k(X
∗G1η2)k(X

∗Tt(G1)ϑt)k

)
P l−2,

(B.80)

for η0,η1,η2 = ϑ1,ϑ2,y1,y2,y3, a = 0, 1 and b1, b2, b3 = 1 or 2.
We claim that all of the above terms can be bounded crudely by O≺(N

− 1
2 (di−

√
y)−

1
2 d

1
2
i ). First, recall the bound |P| ≺ 1. The O≺(N

− 1
2 (di −

√
y)

1
2 d

− 1
2

i )
bounds for (B.77) and (B.78) follow directly from |m1| ∼ 1/di, (4.20), (B.27)
and (B.28). From (B.27) and the isotropic local law (4.17), together with

(B.68), we see that (B.79) is bounded by O≺(N−1d
− 1

2
i (di − √

y)−
1
2 ). The

estimate of (B.80) is similar to that of (B.79) by using the Cauchy-Schwarz
inequality and the isotropic local law (4.17). We thus omit the details.

In the sequel, we bound the terms (B.73)-(B.76). The estimates for (B.74)-
(B.76) are the same as those of (B.78)-(B.80) by using isotropic local laws,
(B.68) and the bounds c1 = O(di), c2 = O((di −

√
y)2),m1 = O(d−1

i ). We
observe that each summand for b = 1, 2 in (B.74)-(B.76) is crudely of order

O≺(N
− 1

2 ), hence we can conclude the O≺(N
− 1

2 ) bounds for (B.74)-(B.76).
As for (B.73), in the case that di ≤ K, using the same arguments as for

(B.77), one gets the bound O≺(N
− 1

2 ). We only need to show the case that
di > K, and we will observe the same cancellation as (B.71). More specifi-
cally, for (B.73), notice that

2∑

b=1

cb
∑

b1,b2≥1
b1+b2=b+1

(∑

q

ytq(Gb1
1 η1)q(Gb2

1 η2)q

)

=
∑

q

ytqη1qη2q

(
c1m

2
1 + 2c2m1m

′
1

)
+O≺(N

− 1
2 d−2

i )

= O≺(d
−2
i ). (B.81)
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This together with (B.28) leads to the bound O≺(N
− 1

2 ) for (B.73). Hence,

the second term in the RHS of (B.62) is also of orderO≺(N
− 1

2 ). This together
with the same bound for the first term in the RHS of (B.62) leads to

ht(0, 2) = O≺
(
N− 1

2

)
, for t = 0, 1, 2.

Next, we turn to ht(1, 1). By the definition in (B.13), we have

ht(1, 1) =
κ3m1

N∆(di)

∑

q,k

ytq
∂(X∗Tt(G1)ϑt)k

∂xqk

∂P
∂xqk

P l−2. (B.82)

Using (A.2) and (A.6), for t = 0, we can write

h0(1, 1)

= − κ3m1√
N∆(di)2

∑

q,k

y0q

((
T0(G1)ϑ0

)
q
−

2∑

s=1

c̃s

2∑

a=1

∑

s1,s2≥1
s1+s2=s+1

(X∗Gs1
1 Pqk

a Gs2
1 ϑ0)k

)

×
( 2∑

a=1

ca
∑

a1,a2≥1;
a1+a2=a+1

(
(y∗0Ga1

1 )q(X
∗Ga2

1 ϑ0)k + (X∗Ga1
1 y0)k(Ga2

1 ϑ0)q

)

+
2∑

t=1

(
(y∗t G1)q(X

∗G1ϑt)k + (X∗G1yt)k(G1ϑt)q

))
P l−1. (B.83)

Note that by denoting

T̃0(G1) :=
c1
2
G1 + c2G2

1 , T̃1(G1) = G1, (B.84)

we can represent the first term of ∂P/∂xqk as

2∑

a=1

ca
∑

a1,a2≥1;
a1+a2=a+1

(
(y∗0Ga1

1 )q(X
∗Ga2

1 ϑ0)k + (X∗Ga1
1 y0)k(Ga2

1 ϑ0)q

)

=
∑

t1,t2≥0
t1+t2=1

[
(y∗0T̃t1(G1))q(X

∗T̃t2(G1)ϑ0)k + (ϑ∗
0T̃t1(G1))q(X

∗T̃t2(G1)y0)k

]
.

Hence, it is easy to see that the RHS of (B.83) is a linear combination of
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the terms of the following forms

N− 1
2

m1

∆(di)2

(∑

q

ytq
(
T0(G1)ϑ0

)
q

(
T̃t1(G1)η1

)
q

)(∑

k

(
X∗T̃t2(G1)η2

)
k

)
P l−1,

N− 1
2
m1c̃s
∆(di)2

(∑

q

ytq
(
Gs1
1 ϑ0

)
q

(
T̃t1(G1)η1

)
q

)(∑

k

(X∗Gs2
1 X)kk

(
X∗T̃t2(G1)η2

)
k

)
P l−1,

N− 1
2
m1c̃s
∆(di)2

(∑

q

ytq
(
T̃t1(G1)η1

)
q

)(∑

k

(X∗Gs1
1 )kq(X

∗Gs2
1 ϑ0)k

(
X∗T̃t2(G1)η2

)
k

)
P l−1,

(B.85)

where t1, t2 = 0, 1, s1, s2 = 1, 2 satisfying s = s1 + s2 − 1 ∈ {1, 2} and
η1,η2 = y0,y1,y2,ϑ0,ϑ1,ϑ2. Recall the definitions of c̃1,2 and c1,2 (c.f.
(6.2), (6.3)). We can write

(
X∗T̃0(G1)η2

)
k
=

(
X∗T0(G1)η2

)
k
+O(1)×

(
X∗G1η2

)
k
. (B.86)

Similar estimates like (B.28) and (B.68) can be deduced from replacing
Tt(G1) by T̃t(G1). Besides, we also have

(
T̃0(G1)η1

)
q
=

(
T0(G1)η1

)
q
+O(1)×

(
G1η1

)
q

= (c̃1m1 + c̃2m
′
1)η1q +

(
(c̃1Ξ + c̃2Ξ

′)η
)
q
+O≺

(
d−1
i

)
η1q

=
(
(c̃1Ξ + c̃2Ξ

′)η
)
q
+O≺

(
d−1
i

)
η1q

= O≺
(
d−1
i

)
η1q (B.87)

which can be verified by directly applying isotropic local law (4.16) for the
case di ≤ K or involving eigenvector empirical spectral distribution to do
further analysis of

(
(c̃1Ξ + c̃2Ξ

′)η
)
q
for the case di > K. The details for

the case di > K are analogous to that of (B.41) and hence we skip them.
Then, with the above estimates, similar to the estimates of (B.73)-(B.75),

all the terms in (B.85) can be bounded by O≺(N
− 1

2 ). For the case t = 1, 2,
similarly, we still see the forms in (B.85) with T0(G1) replaced by G1 and the

coefficients c̃s removed. These forms can be bounded by O≺(N
− 1

2 ) using the
isotropic local laws (4.16) and (4.17). We omit the details here. Hence, we

proved ht(1, 1) = O≺(N
− 1

2 ).
Next, we consider the other cases for α1 + α3 = 3 except for (B.17)

and (B.20), i.e. (α1, α2) = (3, 0), (2, 1), (0, 3). We start with the formulas in
(A.4) and (A.10). Notice that according to the definition in (A.1), we have
O2 = {(0, 1), (0, 2), (1, 0), (2, 0)} in (A.4) and (A.10).
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With (A.4), we can now estimate ht(3, 0). By the definition in (B.13),

ht(3, 0) =
κ4m1

3!N
3
2∆(di)

∑

q,k

ytq
∂3(X∗Tt(G1)ϑt)k

∂x3qk
P l−1. (B.88)

For t = 0, after plugging in (A.4) and taking the sums, one can check that
except for the following type of terms

N− 3
2
m1c̃s
∆(di)

(∑

q

y0q(Gs3
1 )qq(Gs4

1 ϑ0)q

)(∑

k

(
(X∗Gs1

1 X)kk
)a(

(X∗Gs2
1 X)kk

)b)P l−1

a, b = 0, 1, (B.89)

all the other terms of (B.88) contain at least one quadratic form of X∗Ga
1

for some a = 1, 2 and one quadratic form of Gb
1 for some b = 1, 2. Here,

s1, s2, s3, s4 = 1, 2 satisfy s = s3 + s4 − 1 + a(s1 − 1) + b(s2 − 1) ∈ {1, 2}.
Actually, by the isotropic local law (4.17), those terms with at least one
quadratic form of X∗Ga

1 and one quadratic form of Gb
1 can all be dominated

by a crude bound O≺(N
− 1

2 ). For instance,

N− 3
2
m1c̃s
∆(di)

∑

q,k

y0q
(
Gs1
1 P

qk
1 Gs2

1 P
qk
1 Gs3

1 ϑ0

)
q
P l−1

= N− 3
2
m1c̃s
∆(di)

∑

q,k

y0q(Gs1
1 )qq(X

∗Gs2
1 )kq(X

∗Gs3
1 ϑ0)kP l−1

= O≺(N
−1(di −

√
y)−

1
2d

− 1
2

i ),

where s = s1 + s2 + s3 − 2 ∈ {1, 2} and s1, s2, s3 = 1, 2. The other terms
with at least one quadratic form of X∗Ga

1 and one quadratic form of Gb
1 can

be estimated similarly. And we use a crude bound O≺(N−1/2) to estimate
them. We skip the details for those terms. Further, using (B.27), Remark
4.5, c̃1 = O(di) and c̃2 = O((di − √

y)2), one can easily get the terms in

(B.89) are bounded by O≺(N
− 1

2 ). Analogously to the above statements, we

can derive the crude boundO≺(N− 1
2 ) for the case t = 1, 2. As a consequence,

we get ht(3, 0) = O≺(N
− 1

2 ).
For ht(2, 1), t = 0, 1, 2, by the definition in (B.13), we have

ht(2, 1) =
(l − 1)κ4m1

2N
3
2∆(di)

∑

q,k

ytq
∂2(X∗Tt(G1)ϑt)k

∂x2qk

∂P
∂xqk

P l−2. (B.90)

Using the formula in (A.3) and further theO≺(N
− 1

2 (di−√
y)−

1
2
−2(a−1)d

− 1
2
+(a−1)

i )

bound for the quadratic forms ofX∗Ga
1 for a = 1, 2, theO≺((di−

√
y)−(b−1)d−1

i )
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bound for the quadratic forms of Gb
1 for b = 1, 2, it is not difficult to see

c̃s∂
2(X∗Gs

1ϑt)k
∂x2qk

= O≺(N
− 1

2 (di −
√
y)−

1
2d

− 1
2

i ).

Similarly, we can also obtain

∂2(X∗Tt(G1)ϑt)k
∂x2qk

= O≺(N
− 1

2 (di −
√
y)−

1
2 d

− 1
2

i ) for t = 0, 1, 2.

Then, from the above bound, |P| = O≺(1), |∂P/∂xqk| = O≺(1) (c.f., (A.7))

andm1 = O(d−1
i ), one can conclude that for t = 0, 1, 2, ht(2, 1) = O≺(N− 1

2 ).
For ht(0, 3), we write

ht(0, 3) =
κ4m1

3!N
3
2∆(di)

∑

q,k

ytq(X
∗Tt(G1)ϑt)k

∂3P l−1

∂x3qk

= κ4(l − 1)(l − 2)(l − 3)L1 + κ4(l − 1)(l − 2)L2 + κ4(l − 1)L3,

where

L1 :=
m1

3!N
3
2∆(di)

∑

q,k

ytq(X
∗Tt(G1)ϑt)k

( ∂P
∂xqk

)3
P l−4,

L2 :=
m1

2!N
3
2∆(di)

∑

q,k

ytq(X
∗Tt(G1)ϑt)k

∂P
∂xqk

∂2P
∂x2qk

P l−3,

L3 :=
m1

3!N
3
2∆(di)

∑

q,k

ytq(X
∗Tt(G1)ϑt)k

∂3P
∂x3qk

P l−2.

First, note that L1 = O≺(N
− 1

2 ), by using the facts |∂P/∂xik | ≺ 1 (c.f.,

(A.7)), |m1| ≍ d−1
i and |(X∗Tt(G1)vi)k| ≺ N− 1

2 (di−√
y)−

1
2 d

− 1
2

i (c.f., (B.68)),
together with the Cauchy-Schwarz inequality.

Second, as for L2, we use the formula of ∂2P/∂x2qk in (A.8). Observe
that, by the isotropic local laws (4.16) and (4.17), the terms in (A.8) can be

bounded by either O≺(N−1/2(di−
√
y)−

1
2d

1
2
i ) or O≺(

√
N(di−

√
y)

1
2 d

1
2
i ). More

precisely, the O≺(N−1/2(di − √
y)−

1
2d

1
2
i ) bound is derived for the following

forms
√
Ncb

∆(di)
(X∗Gb1

1 η1)k(X
∗Gb2

1 )kq(Gb3
1 η2)q,

√
Ncb

∆(di)
(X∗Gb1

1 η1)k(Gb2
1 )qq(X

∗Gb3
1 η2)k,
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and the O≺(
√
N(di −√

y)
1
2 d

1
2
i ) bound is obtained for the form

√
Ncb∆(di)

−1(Gb1
1 η1)q(X

∗Gb2
1 X)akk(Gb3

1 η2)q.

Here, η1,η2 = y1,y2,y3,w
0
I
or ς0

I
, a = 0, 1 and b1, b2, b3 = 1 or 2 with

b1 + b2 + b3 − 2 = b ∈ {1, 2}. The contribution from the O≺(N−1/2(di −
√
y)−

1
2 d

1
2
i ) terms can be discussed similarly to L1. We thus omit the details.

For the contribution from the those O≺(
√
N(di −

√
y)

1
2 d

1
2
i ) terms, recalling

the notations in (B.84), we notice that it suffices to consider the bound of
the following forms

m1cb√
N∆(di)3

(∑

q

ytq(Gb1
1 η1)q(Gb2

1 η2)q(T̃t1(G1)η3)q

)

×
(∑

k

(X∗Tt(G1)ϑt)k(X
∗T̃t2(G1)η4)k(X

∗Gb3
1 X)kk

)
P l−3,

m1√
N∆(di)3

2∑

b=1

cb
∑

b1,b2≥1
b1+b2=b+1

(∑

q

ytq(Gb1
1 η1)q(Gb2

1 η2)q(T̃t1(G1)η3)q

)

×
(∑

k

(X∗Tt(G1)ϑt)k(X
∗T̃t2(G1)η4)k

)
P l−3,

m1√
N∆(di)3

(∑

q

ytq(G1η1)q(G1η2)q(T̃t1(G1)η3)q

)

×
(∑

k

(X∗Tt(G1)ϑt)k(X
∗T̃t2(G1)η4)k

(
(X∗G1X)kk

)a)P l−3,

(B.91)

for a = 0, 1, t1, t2 = 0, 1 and b = b1 + b2 + b3 − 2 ∈ {1, 2}. By (B.86), we get
similar estimates to (B.27) for the sum

∑
q ytq(Gb1

1 η1)q(Gb2
1 η2)q(T̃t1(G1)η3)q.

This bound, together with (B.87), (B.68), Remark 4.5 and the estimates

c1 = O(di), c2 = O((di −
√
y)−2), leads to the crude bound O≺(N

− 1
2 ) for

the first and last forms in (B.91). For the second form, one can refer to the
estimate (B.81). Analogously, we can also get

2∑

b=1

cb
∑

b1,b2≥1
b1+b2=b+1

(∑

q

ytq(Gb1
1 η1)q(Gb2

1 η2)q(T̃t1(G1)η3)q

)
= O≺(d

−3
i ),

by which together with (B.87), (B.68), we have that the second form of

(B.91) is bounded crudely by O≺(N
− 1

2 ). Hence, L2 is also bounded by

O≺(N
− 1

2 ).
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Finally, for L3, we use the bound in (A.11). Then following the same

argument as for L1, one can prove that L3 = O≺(N
− 1

2 ). Thus, we have

ht(0, 3) = O≺(N
− 1

2 ) for t = 0, 1, 2 and the proof of (2) in Lemma B.1 is
complete.

Before we proceed to the proof of the remainder term Rt, let us comment
that, using the same reasoning as we previously did for ht(α1, α2) with α1+
α2 ≤ 3, t = 0, 1, 2, one can also get

N−2 |m1|
∆(di)

∑

q,k

∣∣∣ytq
∂4

(
(X∗Tt(G1)ϑt)kP l−1

)

∂x4qk

∣∣∣ = O≺(N
− 1

2 ), (B.92)

which implies that ht(α1, α2) = O≺(N
− 1

2 ) for α1 + α2 = 4. The main tools
are still Lemma B.2 and the isotropic local laws (4.16) and (4.17). We omit
the details. The necessary formulas for the fourth derivatives of (X∗Gs

1)kj
and P are recorded in the Appendix A for the readers’ convenience.

In the end, we prove (3) of Lemma B.1. By Lemma 4.11, we can bound
Rt by

|Rt| ≤
√
N

|m1|
∆(di)

∑

q,k

E

(
N− 5

2 sup

|xqk|≤N−1
2+ǫ

∣∣∣ytq
∂4

(
(X∗Tt(G1)ϑt)kP l−1

)

∂x4qk

∣∣∣

+N−K̃ sup
xqk∈R

∣∣∣ytq
∂4

(
(X∗Tt(G1)ϑt)kP l−1

)

∂x4qk

∣∣∣
)
,

(B.93)

for any sufficiently large constant K̃. We evaluate the RHS of (B.93) term
by term.

First, we claim that similarly to (B.92) we have

√
N

|m1|
∆(di)

E

(
N− 5

2 sup

|xqk|≤N− 1
2+ǫ

∑

q,k

∣∣∣ytq
∂4

(
(X∗Tt(G1)ϑϕ(t))kP l−1

)

∂x4qk

∣∣∣
)

= O≺(N
− 1

2 ). (B.94)

The difference between (B.92) and (B.94) is that we actually consider a
random matrix X̃ with the (q, k)-th entry deterministic while all the other
entries random. Using a regular perturbation argument through the resol-
vent expansion, one can show that replacing one random entry xqk in X by
any deterministic number bounded by N−1/2+ǫ while keeping all the other
X entries random will not change the isotropic local law. Thus the isotropic
local law together with the deterministic bounds (B.1)-(B.3) leads to (B.94).
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For the second term on the RHS of (B.93), we simply apply the crude
deterministic bounds (B.1)-(B.3). By choosing K̃ sufficiently large, we can
conclude that the second term in (B.93) is negligible.

Thus |Rt| = O≺(N
− 1

2 ). This completes the proof of Lemma B.1.

APPENDIX C: PROOFS OF THEOREMS IN SECTION 3

In this section, we prove the two theorems in Section 3, Theorems 3.3 and
3.7, and also their corollaries, Corollaries 3.4 and 3.9. We also provide a result
equivalent to the joint eigenvalue-eigenvector distribution in the multiple
case, which will be needed in the proofs of some of the aforementioned
theorems and corollaries. In addition, the proofs of Theorems 3.3 and 3.7 rely
on Propositions C.1-C.5, among which the proofs of Propositions C.1, C.4
and C.5 are analogous to that of Theorem 2.5, and the proof of Proposition
C.3 is an extension of that of Lemma 5.3. More specifically, Proposition
C.1 is an extension of Theorem 2.9 by considering more simple spikes and
it will support the proof of the all-simple spikes case for both Theorem
3.3 and Theorem 3.7. Second, Proposition C.5 generalizes Theorem 2.9 to
allow multiple spikes. Consequently, the case of all-equal spikes for both
Theorem 3.3 and Theorem 3.7 will rely on Proposition C.5. It will be seen
that the proof of Theorems 3.3 and 3.7 will also rely on Proposition C.3 which
establish the expansion of the spiked eigenvalue estimator for a multiple
spike.

Recall the notation 1E as the indicator function of some event E, and
also the notation Ic = J1, rK \ I for any I ⊂ J1, rK. Further, we recall the
notation I ≡ I(i) as the set of indices of the multiple dt’s including di. We
remark here that throughout this section, I is used to denote a generic
subset of J1, rK, which may include the indices of distinct dt’s. In contrast,
the notation I ≡ I(i) is always used to denote a set of indices of a multiple
di.

Further, we raise the following notation as a rewriting of (2.6) in certain
cases: For a fixed i ∈ J1, rK, and any unit vector u ∈ Span{vj}j∈J1,MK\I(i),
we set

ςui :=
∑

j∈J1,MK\{i}

di
√
dj + 1

di − dj
〈u,vj〉vj. (C.1)

Here we made the convention that 〈u,vj〉/(di − dj) = 0, in case 〈u,vj〉 =
di−dj = 0. Note that ςui = ςI(i) (with w = u) (c.f. (2.6)). Here we emphasize
the dependence of the notation on w = u, and also the dependence of I(i) on
i. Such a rewriting will be mostly suitable for the discussion in this section.
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Recall the projection PI defined in (3.5). In the sequel, we state and briefly
prove the aforementioned propositions. We will consider the projections of
vectors onto PI , and we are primarily interested in the case that either
{dt}t∈I are all distinct and well-separated or are all equal. We call the former
as all-simple case, and the latter as all-equal case. Nevertheless, many of our
results hold for more general I in the sense that it can contain indices of
both simple and multiple dt’s.

First, we consider an extension of Theorem 2.9. Suppose we are interested
in the all-simple case, i.e., all the di’s for i ∈ I are simple, we have the
following proposition.

Proposition C.1. Suppose that Assumptions 1.1 , 2.3, and the setting
(1.5) hold. In case di ≡ di(N) → ∞ as N → ∞ for some i ∈ I, we
additionally assume that |y − 1| ≥ τ0 for some small but fixed τ0 > 0. We
further assume that all di, i ∈ I are simple. Then for each i ∈ I, we have the
expansion of i-th eigenvalue µi in (2.17). Moreover, we have the following
statements:
(1). For any vi with i ∈ I, we have

〈vi,PIvi〉 =
d2i − y

di(di + y)
+

1√
N(d2i − y)

Θvi
vi

− 1

N

∑

t∈{i}c

didt
(di − dt)2

(Πvi
vt
)2 +

‖ςvi

j ‖2
N

∑

j∈I\{i}

1

dj
(∆vi

vj
)2

+O≺

(
N−(1+ε)

∑

j∈I\{i}

1

dj
‖ςvi

j ‖2
)

+O≺

(
N−ε

(
N− 1

2
1√
d2i − y

+
1

N

∑

t∈{i}c

didt
(di − dt)2

))
.

Further, {Φi}i∈I , {Θvi
vi
}i∈I , {Πvi

vt
}i∈I,t∈{i}c, {∆vi

vj
}i,j∈I,j 6=i are asymptotically

jointly Gaussian distributed. Especially,

(
{Φi}i∈I , {Θvi

vi
}i∈I

)
≃ N (0, CI) (C.2)
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where CI is defined entrywise by the RHS of the following equations

cov(Φi,Φj)
.
= 1{i=j} · 2(1 + d−1

i )2

+ κ4(1− yd−2
i )

1
2 (1 + d−1

i )(1− yd−2
j )

1
2 (1 + d−1

j )s2,2(vi,vj),

cov(Θvi
vi
,Θ

vj
vj
)
.
= 1{i=j} · 2yh(di)2(1 + yh(di)

2)

+ κ4(1− yd−2
i )

1
2f(di)(1− yd−2

j )
1
2 f(dj)s2,2(vi,vj),

cov(Φi,Θ
vj
vj )

.
= 1{i=j} · 2yh(di)2(1 + d−1

i )

+ κ4(1− yd−2
i )

1
2 (1 + d−1

i )(1− yd−2
j )

1
2f(dj)s2,2(vi,vj),

for i, j ∈ I. Here Φi is given in (2.17).
(2). Let J be any fixed index set. Further, let {uj}j∈J ⊂ Span{vi}i∈J1,MK\I
be any set of orthonormal vectors. Then

〈uj ,PIuj〉 =
∑

i∈I

‖ςuj

i ‖2
Ndi

(∆
uj
vi
)2 +O≺

(
N−(1+ε)

∑

i∈I
d−1
i ‖ςuj

i ‖2
)
, for j ∈ J

and
(
{∆uj

vi }(j,i)∈J×I
)
≃ N (0,U0). The covariance matrix U0 is defined by

the RHS of the following equation

cov(∆
uj1
vi1
,∆

uj2
vi2

)
.
= 1{i1=i2}h(di1)〈

(
ς
uj1
i1

)0
,
(
ς
uj2
i2

)0〉

+ κ4

√
(d2i1 − y)h(di1)

di1

√
(d2i2 − y)h(di2)

di2
s1,1,1,1

(
vi1 ,vi2 ,

(
ς
uj1
i1

)0
,
(
ς
uj2
i2

)0)
,

(C.3)

for j1,2 ∈ J , i1,2 ∈ I. Here we use the notation
(
ς
uj

i

)0
as the normalized ς

uj

i

similarly to (2.7). And we define U to be the matrix obtained by multiplying
the entry of U0, the RHS of (C.3), by ‖ςuj1

i1
‖‖ςuj2

i2
‖/
√
di1di2 .

Remark C.2. We remark here that (C.2) and the whole statement (2)
in Proposition C.1 hold for general I ⊂ J1, r0K, with the same expression
of the covariance structure CI and U0. Here general I means that it can
contain the indices of either simple dt’s or multiple ones, or even both. The
proof of such an extended version is nearly the same as the simple one.

Proof of Proposition C.1. The proof is basically the same as the one
of Theorem 2.9. The only change is that now one needs to put all Green
function quadratic forms corresponding to distinct simple spikes together
and consider their joint Gaussianity. It will only require one to change the
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quadratic forms in the definition of P in (6.11) and go through the recursive
moment estimate again. Hence, we omit the details and conclude the proof.

Next, we consider the all-equal case, i.e., all di, i ∈ I are identical. Anal-
ogously to the all-simple case, we can also estimate the multiple spike from
the data. In the sequel, we present the detailed estimation of the unknown
di in the multiple case. Recall the index set I(i) as the collection of in-
dices for a multiple di. In the sequel, we are primarily interested in the case
|I(i)| > 1, but the results apply to the degenerated (simple) case as well.

For any t ∈ I(i), according to Lemma 4.6, we have |µt − θ(di)| ≺ d
1
2
i δ

1
2
i0N

− 1
2 .

We shall derive the expansion for {µt}t∈I(i) and further get the expression of∑
t∈I(i) µt/|I(i)| which can be applied to estimate the unknown θ(di). Define

DI(i) :=
di

1 + di
I|I(i)| and VI(i) := ({vt}t∈I(i)),

where I|I(i)| means an identity matrix of dimension |I(i)| and VI(i) is the
submatrix of V obtained by selecting the columns with indices in I(i). For
convenience, for the columns in VI(i), we keep their original indices in V .
With some abuse of notation, in this section, we will use the notation
(λt(V

∗
I(i)AVI(i)))t∈I(i) to represent the family of eigenvalues of V ∗

I(i)AVI(i), with

the increasing order λt1(V
∗
I(i)AVI(i)) ≤ λt2(V

∗
I(i)AVI(i)) if t1, t2 ∈ I(i), t1 < t2.

We recall that δi0 := di−
√
y, the distance of the multiple di to critical value√

y. With the above notations, we have the following proposition, whose
proof will be stated in the end.

Proposition C.3. Suppose that the assumptions in Theorem 2.5 hold.
Let i ∈ J1, r0K. For any t ∈ I(i), we have

µt = θ(di)− (d2i − y)θ(di)λt
(
V ∗
I(i)Ξ(θ(di))VI(i)

)
+O≺

(
d

1
2
i δ

1
2
i0N

− 1
2
−ε

)

for some small fixed ε > 0.

Recall the representation in Lemma 5.1. Similarly to Theorem 2.5, we can
also derive the joint distribution of generalized components of eigenvectors
and all entries of the matrix V ∗

I(i)Ξ(θ(di))VI(i) under appropriate scaling. The

result is collected in the following proposition. Set the |I(i)| × |I(i)| matrix

Φ ≡ (Φst)s,t := −
√
N(d2i − y) θ(di)V

∗
I(i)Ξ(θ(di))VI(i).

We remark here that with certain abuse of notation Φii ≡ Φi in (6.14) in
the simple case |I(i)| = 1.
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Proposition C.4. Under the assumptions in Theorem 2.5, besides the
expansions for eigenvalues in Proposition C.3 and the expansion for gener-
alized components (2.13), for all of the upper triangular entries of Φ, i.e.,
{Φst}s,t∈I(i),s≤t, together with the random terms in (2.13), we have

({
{Φst}t∈I(i),t≥s

}
s∈I(i),Θ

w
wI(i)

,Λw
ςI(i)

, {∆w
vt
}t∈I(i), {Πw

vj
}j∈(I(i))c

)
≃ N (0, Cw

I(i))

where Cw
I(i) is of size r+2+ |I(i)|2 and the lower right (r+2)× (r+2) corner

of Cw
I(i) is given by Aw

I(i) + κ4
d2i−y

d2i
Bw

I(i) with Aw
I(i) and Bw

I(i) defined in (2.11)

and (2.12) respectively. And the other entires of Cw
I(i) are defined by the RHS

of the following equations

cov(Φℓ1k1 ,Φℓ2k2)
.
= 1{(ℓ1,k1)=(ℓ2,k2)}(1 + 1ℓ1=k1)(1 + d−1

i )2

+ κ4(1− yd−2
i )(1 + d−1

i )2s1,1,1,1(vℓ1 ,vk1 ,vℓ2 ,vk2),

cov(Φℓk,Θ
w
wI
)
.
= 2yh(di)

2(1 + d−1
i )〈wI(i),vℓ〉〈wI(i),vk〉

+ κ4(1− yd−2
i )(1 + d−1

i )f(di)s1,1,2(vℓ,vk,wI),

cov(Φℓk,Λ
w
ςI
)
.
= κ4(1− yd−2

i )(1 + d−1
i )g(di)s1,1,1,1(vℓ,vk, ς

0
I(i),wI),

cov(Φℓk,∆
w
vt
)
.
= κ4(1− yd−2

i )(1 + d−1
i )

√
h(di)s1,1,1,1(vℓ,vk,vt, ς

0
I(i)), for t ∈ I(i),

cov(Φℓk,Π
w
vj
)
.
= κ4(1− yd−2

i )(1 + d−1
i )l(di)s1,1,1,1(vℓ,vk,vj,wI(i)), for j ∈ I(i)c,

for ℓ, ℓ1, ℓ2, k, k1, k2 ∈ I(i) satisfying ℓ ≤ k, ℓ1 ≤ k1, ℓ2 ≤ k2.

Proof. Note that the entries of V ∗
I(i)Ξ(θ(di))VI(i) admit the form χst(θ(di)) =

v∗sΞ(θ(di))vt for s, t ∈ I(i). Putting these quadratic forms together with those
in Lemma 5.1, and modifying the definition of P in (6.11) by including those
quadratic forms as entries of V ∗

I(i)Ξ(θ(di))VI(i), one can apply the proof strat-
egy of Theorem 2.5 mutatis mutandis to the proof of Proposition C.4. Hence
we omit the details and conclude the proof.

We can then propose an estimator of θ(di), that is
∑

t∈I(i) µt/|I(i)|. The
estimator of θ(di) then leads to an estimator of di via taking the inverse θ−1.
Applying Proposition C.3, we see that this estimator admits the following
expansion

1

|I(i)|
∑

t∈I(i)
µt = θ(di)− (d2i − y)θ(di)

1

|I(i)|TrV
∗
I(i)Ξ(θ(di))VI(i) +O≺

(
d

1
2
i δ

1
2
i0N

− 1
2
−ε

)
.

(C.4)
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Therefore, to perform hypothesis testing with this estimator, we shall study
the fluctuation of 1

|I(i)|TrV
∗
I(i)Ξ(θ(di))VI(i) under appropriate scaling. Note

that 1
|I(i)|TrV

∗
I(i)Ξ(θ(di))VI(i) is simply a linear combination of the quadratic

forms, i.e,

1

|I(i)|TrV
∗
I(i)Ξ(θ(di))VI(i) =

1

|I(i)|
∑

t∈I(i)
χtt(θ(di)),

where we recall χtt(z) = v
∗
tΞ(z)vt. Hence, the joint distribution of the above

term and the other quadratic forms in the expansion of eigenvector in Lemma
5.1 can be derived in the same manner as the proof of Theorem 2.5.

Let

ΦI(i) := −
√
N(d2i − y) θ(di)

1

|I(i)|
∑

t∈I(i)
χtt(θ(di)). (C.5)

We have the following proposition.

Proposition C.5. Under the assumptions in Theorem 2.5, we have

1

|I(i)|
∑

t∈I(i)
µt = θ(di) +

√
d2i − y
√
N

ΦI(i) +O≺
(
d

1
2
i δ

1
2
i0N

− 1
2
−ε

)
, (C.6)

for some small fixed ε > 0.
(1). For any vk, k ∈ I(i), we recall from (2.15) with w = vk,

〈vk,PI(i)vk〉 =
d2i − y

di(di + y)
+

1√
N(d2i − y)

Θvk
vk

− 1

N

∑

t∈Ic

didt
(di − dt)2

(Πvk
vt
)2

+O≺

(
N−ε

(
N− 1

2
1√
d2i − y

+
1

N

∑

t∈{i}c

didt
(di − dt)2

))
. (C.7)

Further,
(
ΦI(i), {Θvk

vk
}k∈I(i), {Πvk

vt }k∈I,t∈(I(i))c
)
is asymptotically Gaussian dis-

tributed. In particular,

(
ΦI(i), {Θvk

vk
}k∈I(i)

)
≃ N (0, CI(i),e) (C.8)
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where CI(i),e is defined by the RHS of the following equations

var(ΦI(i))
.
=

2(1 + d−1
i )2

|I(i)|2 + κ4
(1− yd−2

i )(1 + d−1
i )2

|I(i)|2
∑

k1,k2∈I(i)
s2,2(vk1 ,vk2),

cov(Θ
vk1
vk1
,Θ

vk2
vk2

)
.
= 1{k1=k2} · 2yh(di)2(1 + yh(di)

2) + κ4(1− yd−2
i )f(di)

2s2,2(vk1 ,vk2),

cov(ΦI(i),Θ
vk
vk
)
.
=

2yh(di)
2(1 + d−1

i )

|I(i)| + κ4
(1− yd−2

i )(1 + d−1
i )f(di)

|I(i)|
∑

t∈I(i)
s2,2(vt,vk)

for k, k1, k2 ∈ I(i).
(2). Let J be any fixed index set. Let {uk}k∈J ⊂ Span{vj}j∈J1,MK\I(i) be any
given family of orthonormal vectors. Then according to the second case in
Remark 2.7, i.e., (2.16), we have

〈uk,PI(i)uk〉 =
‖ςuk

I(i)‖2

Ndi

∑

t∈I(i)
(∆uk

vt
)2 +O≺

(
N−(1+ε)d−1

i ‖ςuk

I(i)‖2
)
,

with {∆uk
vt }(k,t)∈J×I(i) ≃ N (0,Um). Here Um is a symmetric matrix of

dimension |J ||I(i)| that can be defined by the RHS of the following equation

cov(∆
uk1
vt1

,∆
uk2
vt2

)
.
=1{t1=t2}h(di)〈

(
ς
uk1
t1

)0
,
(
ς
uk2
t2

)0〉

+ κ4
(d2i − y)

d2i
h(di)s1,1,1,1

(
vt1 ,vt2 ,

(
ς
uk1
t1

)0
,
(
ς
uk2
t2

)0)
,

for k1,2 ∈ J , t1,2 ∈ I(i). Here
(
ς
uk

I(i)

)0
represents the normalized ςuk

I(i)
similarly

to (2.7).

Proof. First, (C.6) is an obvious conclusion of (C.4)-(C.5). Then, (C.7)
is simply a rewriting of (2.15) withw = vk. Observe that ΦI(i) = |I(i)|−1

∑
t∈I(i)Φtt.

In addition, according Remark C.2, we can also write up the joint distribu-
tion of {Φtt}t∈I(i) and {Θvk

vk
}k∈I(i), which admits the same form as (C.2) by

choosing I = I(i). Then the joint distribution in (C.8) can be regarded as
a corollary of such a more general joint distribution. The whole statement
(2) above is also analogous to its counterpart, Proposition C.1 (2); see Re-
mark C.2. The details can be checked similarly to Theorem 2.5, and are thus
omitted. Hence, we conclude the proof.

With the above propositions and remarks, we are now ready to prove
Theorems 3.3 and 3.7.
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Proof of Theorem 3.3 . Under the null hypothesis of (3.2), without
loss of generality, we can choose ui = vi for i ∈ I, since our statistic

√
NT

is independent of the choice of the basis of Z0. To ease the understanding
of the reader, we will first show the proof in all-simple case, and then we
discuss the all-equal case, and finally we conclude the extension to more
general case.

First, assume that all di, i ∈ I are simple. We assume that ξi is the
eigenvector corresponding to di and the direction vi. By definition of T in
(3.4), we have the following derivation

√
NT =

√
N

∑

i∈I
〈vi,PIvi〉 − ϑ(d̂i))

=
√
N

∑

i∈I

(
|〈ξi,vi〉|2 − ϑ(di) + ϑ(di)− ϑ(d̂i)

)
+

√
N

∑

i∈I

∑

j∈I\{i}
|〈ξj ,vi〉|2

=
∑

i∈I

1√
d2i − y

Θvi
vi

−
√
N

∑

i∈I
ϑ′(di)(d̂i − di) +O≺

(
N−ε

∑

i∈I

1√
d2i − y

)

=
∑

i∈I

1√
d2i − y

Θvi
vi

−
∑

i∈I
ϑ′(di)(θ

−1)′(θ(di))
√
d2i − yΦi

+O≺
(
N−ε

∑

i∈I

1√
d2i − y

)
, (C.9)

for some small constant ε > 0. Here in the third step, we used Remark 2.7
and Assumption 3.1 to absorb the χ2-terms into the error, and also the term√
N

∑
i∈I,j∈I\{i} |〈ξj ,vi〉|2 which possesses the same bound that can be seen

from Proposition C.1 and the definition of ςui in (C.1). More precisely, from
statement (2) of Proposition C.1, we see that for each i ∈ I,

√
N

∑

j∈I\{i}
|〈ξj ,vi〉|2 = O≺

( ∑

j∈I\{i}

‖ςvi

j ‖2
√
Ndj

(
∆vi

uj

)2)

= O≺
(
N− 1

2

∑

j∈I,t∈{j}c

djdt
(dj − dt)2

)

where in the last step, we plugged in the definition of ςui . Then by Assump-
tion 3.1, we can also absorb the above term into the error.

By elementary computation, we further obtain

ϑ′(di) =
y(d2i + 2di + y)

d2i (di + y)2
, (θ−1)′(θ(di)) = (1− yd−2

i )−1,
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so that the coefficient of Φi in the last line of (C.9) is

− y(d2i + 2di + y)

(di + y)2(d2i − y)
1
2

.

Therefore, we can apply the result in Proposition C.1 to finish the proof by
the fact that it is a linear combination of asymptotically Gaussian random
variables.

Next, we prove (3.8) for the all-equal case, i.e. di = de for all i ∈ I, and
I = I(i). Recall the definition of T in (3.4). We have

√
NT =

√
N

∑

t∈I

(
〈vt,PIvt〉 − ϑ(dt) + ϑ(dt)− ϑ(d̂t)

)

= (d2e − y)−
1
2

∑

t∈I
Θvt

vt
−
√
N |I|ϑ′(de)(θ−1)′(θ(de))

( 1

|I|
∑

i∈I
µi − θ(de)

)

+O≺
(
N−ε 1√

d2e − y

)

= (d2e − y)−
1
2

∑

t∈I
Θvt

vt
− |I|ϑ′(de)(θ−1)′(θ(de))(d

2
e − y)

1
2ΦI

+O≺
(
N−ε 1√

d2e − y

)
(C.10)

for some small constant ε > 0. Note that by (C.5) and di = de for all i ∈ I, we
can rewrite ΦI(i) =

1
|I(i)|

∑
t∈I Φtt by setting Φtt := −

√
N(d2t − y)θ(dt)χtt(θ(dt))

which is consistent to the defined Φi ≡ Φii in the simple case (see Theorem
2.9 and its proof). Hence, we can represent

√
NT by

√
NT =

∑

t∈I
(d2t − y)−

1
2Θvt

vt
−

∑

t∈I
ϑ′(dt)(θ

−1)′(θ(dt))(d
2
t − y)

1
2Φtt

+O≺
(
N−ε

∑

t∈I

1√
d2t − y

)
(C.11)

which coincides with the representation in (C.9). And the asymptotic dis-
tribution is reduced to the joint distribution of {Θvt

vt
}t∈I , {Φtt}t∈I which is

asymptotically Gaussian, sharing the same covariance structure as all-simple
case, as we mentioned in Remark C.2. Since here di = de for all i ∈ I, we can
get the explicit expression of the variance of

√
NT (c.f.(3.9)) by applying

(1) of Proposition C.5.
In the end, we claim the result for the general case where I =

⋃ℓ
k=1 Ik

such that all the spikes with indices from the same subset Ik are equal
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and distinct otherwise with distance satisfying Assumptions 2.3 and 3.1 .
Especially, we do not further require that each subset is a singleton or not.
We then do the decomposition

√
NT =

√
N

ℓ∑

k=1

∑

t∈Ik

(
〈vt,PIvt〉 − ϑ(dt) + ϑ(dt)− ϑ(d̂t)

)

=
ℓ∑

k=1

(√
N

∑

t∈Ik

(
〈vt,PIkvt〉 − ϑ(dt) + ϑ(dt)− ϑ(d̂t)

))

+O≺
(
N−ε

∑

t∈I

1√
d2t − y

)
.

Applying the discussion for the all-equal case to each summand above, we
can finish the proof analogously. The details are omitted. Hence, we conclude
the proof of Theorem 3.3.

Proof of Theorem 3.7. Recall the definition of the statistic (3.12).
We can write

NT2 = N
∑

j∈J
〈uj,PIuj〉 =

ℓ∑

k=1

∑

j∈J
N〈uj ,PIkuj〉

=
∑

i∈I,j∈J

‖ςuj

i ‖2
di

(∆
uj
vi
)2 +O≺

(
N−ε

∑

i∈I

1√
d2i − y

)
,

for some small constant ε > 0 by using statement (2) of Proposition C.5 for
each summand in the third step. And the asymptotic distribution immedi-
ately follows from jointly CLT of {∆uj

vi
}i∈I,j∈J . Then combining the results

in Proposition C.1 and Proposition C.5 further with Remark C.2, we can
then finish the proof.

In the end, we prove Proposition C.3, by adapting the proof of Proposition
4.5 of [47]. We emphasize that the discussion in [47] was done for deformed
Wigner matrices, where the strength of the deformation is required to be
bounded above by a constant. Here we need to adapt the discussion to
our model with possibly diverging di’s. Hence, we need to keep tracking the
dependence of the error terms on di more carefully. Nevertheless, apart from
the size of di, the discussion is essentially the same as that of Proposition
4.5 of [47].
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Proof of Proposition C.3 . Similarly to the proof of Lemma 5.3, µt
is an eigenvalue outside the spectrum of H if and only if z = µt solves the
equation det(D−1 + zV ∗G1(z)V ) = 0 or equivalently D−1 + µtV

∗G1(µt)V
has a zero eigenvalue. By Lemma 4.6, we see that for t ∈ I(i), |µt − θ(di)| =
O≺(d

1/2
i δ

1/2
i0 N−1/2). Without loss of generality, up to a permutation, we

assume the following decomposition

D−1 = D−1
I(i) ⊕D−1

I(i)c
, V = (VI(i), VI(i)c). (C.12)

Here we recall I(i)c = J1, rK \ I(i). For simplicity, we set the following neigh-
borhood of θ(di)

D(θ(di)) =
(
θ(di)− d

1/2
i δ

1/2
i0 N−1/2+δ, θ(di) + d

1/2
i δ

1/2
i0 N−1/2+δ

)

=: (θ−, θ+) (C.13)

for some sufficiently small δ. We will identify those µt’s by analysing the
behaviour of eigenvalues of D−1 + xV ∗G1(x)V as x varies. Our discussion
in the sequel will rely on the fact that the eigenvalues of D−1 + xV ∗G1(x)V
should not attain zero simultaneously as x varies in D(θ(di)) with high
probability, so that we can exactly find all the µt for t ∈ I(i). In order to
see this, similarly to the counterpart in [47], we introduce an additional
randomness, by adding some small perturbation ι∆ where ∆ is a Hermitian
matrix with entries i.i.d. and has an absolutely continuous law supported
in the unit disc. And the scalar ι ≡ ι(N) > 0 can be chosen arbitrarily
small, say e−N . We now turn to study the behaviours of eigenvalues of
D−1 + xV ∗G1(x)V + ι∆ instead.

First, for x ∈ D(θ(di)) for some sufficiently small δ, we define two matrices
Aι(x) and Ãι(x) by

Aι(x) := D−1 + xV ∗G1(x)V + ι∆− xm1(x)Ir,

Ãι(x) := Aι
I(i)(x)⊕Aι

I(i)c(x).

Here we use the notation Aι
I(x) to represent a submatrix of Aι(x) by taking

columns and rows both from I. In particular,Aι
I(i)(x) = D−1

I(i)+xV
∗
I(i)G1(x)VI(i)+

ι∆I(i)−xm1(x)I|I(i)|, where ∆I(i) is the submatrix of ∆ with row and column
indices both from I.

By definition, we see that Ãι(x) is obtained from Aι(x) by taking the
two block matrices on diagonal. Using isotropic local law (4.7) and taking ι
small enough, say e−N , we can easily get

‖Aι(x)− Ãι(x)‖op ≺ d
− 1

2
i δ

− 1
2

i0 N− 1
2 . (C.14)
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Next, we claim that the spectrum of the two block matrices in Ãι(x) are
well separated, i.e. we will establish a lower bound on the spectral gap

dist
(
Spec

(
Aι

I(i)(x)
)
,Spec

(
Aι

I(i)c(x)
))
.

This can be easily achieved by using triangle inequality and isotropic local
law (4.7), by choosing ι sufficiently small,

dist
(
Spec

(
Aι

I(i)cl
(x)

)
,Spec

(
Aι

I(i)(x)
))

≥ dist
(
D−1

I(i),D
−1
I(i)c

)
− d

− 1
2

i δ
− 1

2
i0 N− 1

2
+ ε

2

with high probability. Then by non-overlapping condition (2.2), we see that

dist
(
D−1

I(i)
,D−1

I(i)c
)
> d

− 1
2

i δ
− 1

2
i0 N− 1

2
+ε for some small fixed ε > 0. This implies

with high probability,

dist
(
Spec

(
Aι

I(i)(x)
)
,Spec

(
Aι

I(i)c(x)
))

> d
− 1

2
i δ

− 1
2

i0 N− 1
2
+ε (C.15)

by slightly modifying the value of ε.
Further, we define {ãιt(x)}t∈I(i) (resp. {ãιj(x)}j∈I(i)c) the eigenvalues of

Ãι
I(x) (resp. Ãι

I(i)c(x)) in an increasing order. And they are actually the

eigenvalues of Ãι(x) due to its block structure. Correspondingly, we denote
by aιk(x) the eigenvalues of Aι(x). Note that for x ∈ D(θ(di)), by isotropic
local law (4.7)

ãιt(x) = 1 + d−1
i +O≺(d

−1/2
i δ

−1/2
i0 N−1/2), for t ∈ I(i)

ãιj(x) = 1 + d−1
j +O≺(d

−1/2
i δ

−1/2
i0 N−1/2), for j ∈ I(i)c.

This with (C.14) and non-overlapping condition (2.2), implies that for j ∈
I(i)c,

aιj(x) + xm1(x) ≍ d−1
j − d−1

i .

Hence, aιj(x) = −xm1(x) get no solution on D(θ(di)) for j ∈ I(i)c.

We then further set Hι := Σ
1/2
ι XX∗Σ1/2

ι where we define that Σι =
I+V (diag({1/dt}t∈I(i), {1/dj}j∈I(i)c)+ι∆)−1V ∗ with V = (VI(i), VI(i)c). Note
that since ι can be choosing arbitrarily small, then by Lemma 4.6, we
get that Hι has with high probability exactly |I(i)| eigenvalues {µιt}t∈I(i)
in D(θ(di)) and µιt − θ(di) = O≺(d

1/2
i δ

1/2
i0 N−1/2) further with µιtm1(µ

ι
t) =

−(1+ 1/di)+O≺(d
−1/2
i δ

−1/2
i0 N−1/2). Here tentatively we do not specify the

ordering of the eigenvalues {µιt}t∈I(i). Later we will see how to pin down
each µιt for t ∈ I(i). Recall the notations in (C.12). By elementary computa-
tion, det(D−1 + µιtV

∗G1(µ
ι
t)V + ι∆) = 0 which implies that Aι(µιt) has an

eigenvalue −µιtm1(µ
ι
t).
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From all the above arguments, we see that all those µιt can be a solution
to the equation aιt(x) = −xm1(x) only when t ∈ I(i) and x ∈ D(θ(di)). We
can further claim that for all x ∈ D(θ(di)), a

ι
t(x) = −xm1(x) for at most

one t ∈ I(i) (a.s.) by referring to the proof of Proposition 4.5 in [47], thanks
to the continuously distributed perturbation term ι∆. Next, we can claim
that aιt(x) = −xm1(x) indeed has solution in D(θ(di)) for each t ∈ I(i) by
the continuity of aιt(x),−xm1(x) and showing that

aιt(θ
−) < −θ−m1(θ

−), aιt(θ
+) > −θ+m1(θ

+). (C.16)

We will show the detail for the first inequality above and the second one can
be done analogously. By isotropic local law (4.7), we have

aιt(θ
−) + θ−m1(θ

−) = ãιt(θ
−) + θ−m1(θ

−) +O≺(d
−1/2
i δ

−1/2
i0 N−1/2)

= −θ(di)m1(θ(di)) + θ−m1(θ
−) +O≺(d

−1/2
i δ

−1/2
i0 N−1/2)

=
θ− − θ(di)

d2i − y
+O≺(d

−1/2
i δ

−1/2
i0 N−1/2)

= −O≺(d
−1/2
i δ

−1/2
i0 N−1/2+δ) < 0. (C.17)

The above arguments state that with high probability each equation
aιt(x) = −xm1(x) identifies at least one distinct µιt for t ∈ I(i), and totally,
we have |I(i)| eigenvalues of Hι sitting in D(θ(di)). Thus with high proba-
bility, we shall have a one-to-one correspondence between µιt and solution of
aιt(x) = −xm1(x) in D(θ(di)) for t ∈ I(i) so that −µιtm1(µ

ι
t) = aιt(µ

ι
t). Next,

by isotropic local law (4.7), one can also check ‖∂Aι(x)‖op ≺ d
1/2
i δ

−5/2
i0 N−1/2

which together with µιt− θ(di) = O≺(d
1/2
i δ

1/2
i0 N−1/2) and (2.1) further leads

to

aιt(µ
ι
t)− aιt(θ(di)) = O≺(d

− 1
2

i δ
− 1

2
i0 N− 1

2
−ε) (C.18)

for some small fixed ε > 0.
Furthermore, by using perturbation theory we can claim that

aιt(θ(di)) = ãιt(θ(di)) +O≺(d
− 1

2
i δ

− 1
2

i0 N− 1
2
−ε), (C.19)

which can be checked by applying Proposition A.1 of [47] that

∣∣aιt(θ(di))− ãιt(θ(di))
∣∣ ≺

‖Aι − Ãι‖2op
dist

(
σ
(
Aι

I(i)(x)
)
, σ

(
Aι

I(i)c
(x)

))
− ‖Aι − Ãι‖op

= O≺(d
− 1

2
i δ

− 1
2

i0 N− 1
2
−ε).
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Combining (C.18), (C.19) and −µιtm1(µ
ι
t) = aιt(µ

ι
t), we eventually arrive at

−µιtm1(µ
ι
t) = ãιt(θ(di)) +O≺(d

− 1
2

i δ
− 1

2
i0 N− 1

2
−ε)

= λt

(
D−1

I(i) + θ(di)V
∗
I(i)G1(θ(di))VI(i) + ι∆I(i) − θ(di)m1(θ(di))I|I(i)|

)

+O≺(d
− 1

2
i δ

− 1
2

i0 N− 1
2
−ε).

Here we emphasize that we use the notation λt(AI(i)) for a |I(i)| × |I(i)| Her-
mitian matrix AI(i) indexed by |I(i)| to denote its eigenvalues that admit the
ordering λt1(AI(i)) ≤ λt2(AI(i)) for any t1, t2 ∈ I(i), t1 ≤ t2. Using the identity

1 + d−1
i = −θ(di)m1(θ(di)) and expanding µιtm1(µ

ι
t) around θ(di)m1(θ(di)),

we get

µιt − θ(di) = − 1

d2i − y
λt

(
θ(di)V

∗
I(i)Ξ(θ(di))VI(i) + ι∆I(i)

)

+O≺(d
− 1

2
i δ

− 1
2

i0 N− 1
2
−ε).

In the end, let ι→ 0, we ultimately proved Proposition C.3.

Proofs of Corollaries 3.4 and 3.9. The conclusions in Corollaries
3.4 and 3.9 follow from Theorems 3.3 and 3.7 and the fact that d̂I (resp. d̂)
is a consistent estimator of dI (resp. d) after appropriate scaling.

APPENDIX D: ADDITIONAL SIMULATIONS

In this section, we provide additional simulation results regarding the
two-point random variable 1

3δ
√
2 +

2
3δ− 1√

2

.
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Method d = 2 d = 5 d = 10 d = 50 d = 100 d = 2 d = 5 d = 10 d = 50 d = 100
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Table 7

Scenario I: simulated type I error rates under the nominal level 0.1 for y = 0.1. We
report our results based on 2,000 Monte-Carlo simulations with two-point random

variables. We highlighted the two most accurate methods for each value of d.
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N = 200 N = 500

Method d = 2 d = 5 d = 10 d = 50 d = 100 d = 2 d = 5 d = 10 d = 50 d = 100

Fr-bootstrap 0.031 0.042 0.039 0.043 0.052 0.035 0.043 0.045 0.051 0.049

Fr-Bayes 0.043 0.047 0.049 0.052 0.059 0.041 0.045 0.039 0.052 0.068

En-bootstrap 0.039 0.046 0.052 0.057 0.059 0.041 0.045 0.039 0.057 0.052

En-Bayes 0.038 0.043 0.052 0.061 0.068 0.041 0.049 0.043 0.057 0.064

Fr-Datadriven 0.034 0.038 0.029 0.042 0.048 0.029 0.035 0.044 0.051 0.059
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Table 9

Scenario I: simulated type I error rates under the nominal level 0.1 for y = 10. We report
our results based on 2,000 Monte-Carlo simulations with two-point random variables. We

highlighted the two most accurate methods for each value of d.
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Fr-Datadriven 0.034 0.033 0.042 0.049 0.052 0.039 0.045 0.048 0.052 0.055
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Sp-Bayes 0.057 0.063 0.069 0.088 0.092 0.063 0.074 0.082 0.089 0.095

Fr-Adaptive 0.091 0.103 0.104 0.095 0.103 0.103 0.103 0.093 0.096 0.098

Table 10

Scenario II: simulated type I error rates under the nominal level 0.1 for y = 0.1. We
report our results based on 2,000 Monte-Carlo simulations with two-point random

variables. We highlighted the two most accurate methods for each value of d.

[12] F. Benaych-Georges, A. Guionnet, and M. Maida. Fluctuations of the extreme eigen-
values of finite rank deformations of random matrices. Electronic Journal of Probabil-
ity, 16, 1621–1662, 2011.

[13] F. Benaych-Georges, R. R. Nadakuditi. The singular values and vectors of low rank
perturbations of large rectangular random matrices. Journal of Multivariate Analysis,
111, 120–135, 2012.

[14] F. Benaych-Georges, R. R. Nadakuditi. The eigenvalues and eigenvectors of finite,
low rank perturbations of large random matrices. Advances in Mathematics, 227(1),
494–521, 2011.



122 ZHIGANG BAO, XIUCAI DING, JINGMING WANG, KE WANG

N = 200 N = 500

Method d = 2 d = 5 d = 10 d = 50 d = 100 d = 2 d = 5 d = 10 d = 50 d = 100

Fr-bootstrap 0.037 0.042 0.048 0.053 0.061 0.042 0.048 0.051 0.057 0.059

Fr-Bayes 0.047 0.049 0.056 0.064 0.073 0.051 0.049 0.062 0.071 0.078

En-bootstrap 0.039 0.041 0.049 0.058 0.062 0.048 0.041 0.053 0.059 0.058

En-Bayes 0.052 0.049 0.058 0.062 0.064 0.049 0.053 0.059 0.061 0.063

Fr-Datadriven 0.031 0.029 0.042 0.046 0.051 0.047 0.052 0.042 0.051 0.049

HPV-LeCam 0.812 0.795 0.773 0.862 0.767 0.815 0.833 0.799 0.787 0.813

Sp-bootstrap 0.042 0.053 0.058 0.064 0.059 0.051 0.058 0.047 0.058 0.059

Sp-Bayes 0.056 0.049 0.052 0.058 0.063 0.042 0.051 0.057 0.063 0.059

Fr-Adaptive 0.11 0.11 0.104 0.097 0.095 0.102 0.092 0.094 0.107 0.103

Table 11

Scenario II: simulated type I error rates under the nominal level 0.1 for y = 1. We report
our results based on 2,000 Monte-Carlo simulations with two-point random variables. We

highlighted the two most accurate methods for each value of d.

N = 200 N = 500

Method d = 2 d = 5 d = 10 d = 50 d = 100 d = 2 d = 5 d = 10 d = 50 d = 100

Fr-bootstrap 0.035 0.037 0.051 0.049 0.059 0.036 0.045 0.054 0.057 0.055

Fr-Bayes 0.049 0.047 0.055 0.059 0.062 0.043 0.051 0.057 0.053 0.062

En-bootstrap 0.041 0.042 0.053 0.052 0.049 0.048 0.053 0.049 0.055 0.062

En-Bayes 0.048 0.052 0.049 0.053 0.061 0.043 0.056 0.061 0.058 0.059

Fr-Datadriven 0.034 0.041 0.039 0.052 0.049 0.046 0.037 0.049 0.039 0.046

HPV-LeCam 0.894 0.913 0.952 0.934 0.933 0.898 0.913 0.922 0.935 0.911

Sp-bootstrap 0.039 0.041 0.047 0.051 0.053 0.042 0.049 0.052 0.049 0.057

Sp-Bayes 0.049 0.059 0.054 0.062 0.064 0.045 0.053 0.056 0.061 0.059

Fr-Adaptive 0.097 0.102 0.094 0.101 0.103 0.094 0.103 0.103 0.105 0.104

Table 12

Scenario II: simulated type I error rates under the nominal level 0.1 for y = 10. We
report our results based on 2,000 Monte-Carlo simulations with two-point random

variables. We highlighted the two most accurate methods for each value of d.
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Fig 11: Scenario A: simulated type I error rates for (3.3) using (3.12). We report

our results based on 2,000 Monte-Carlo simulations with two-point variables. The

critical values are generated using Corollary 3.9.
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Fig 12: Scenario B: simulated type I error rates for (3.3). We report our results

based on 2,000 Monte-Carlo simulations with two-point variables. The critical val-

ues are generated using Corollary 3.9.
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Fig 13: Comparison of power for Scenario I. We choose d = 5 and use two-point

random variables. We report our results under the nominal level 0.1 based on 2, 000

simulations. Here N = 500.
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Fig 14: Comparison of power for Scenario I. We choose d = 50 and use two-point

random variables. We report our results under the nominal level 0.1 based on 2, 000

simulations. Here N = 500.
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Fig 15: Comparison of power for Scenario II. We choose d = 5 and use two-point

random variables. We report our results under the nominal level 0.1 based on 2, 000

simulations. Here N = 500.
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Fig 17: Power of Scenario A for two-point random variables using (3.12). We report

our results under the nominal level 0.1 based on 2, 000 simulations. Here N = 500

and the critical values are generated using Corollary 3.9.
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