Homework 4

 $\S5.1:\ 6,\ 8,\ 16;\ \ \S5.2:\ 12,\ 18;\ \ \S5.3:\ 6,\ 16,\ 24;\ \ \S6.1:\ 16,\ 24;\ \ \S6.2:\ 6,\ 10,\ 20;\ \S6.3:\ 2,\ 10,\ 14;\ \ \ \S6.4:\ 12$

1. Consider the matrix

$$A = \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix}$$

- (a) Diagonalize A;
- (b) Use the diagonalization to find A^{10} ;
- (c) Determine the invertibility of A from its diagonalization;
- (d) Use the diagonalization to compute $A^5 2A^4 + A^3$.
- 2. Determine whether the following statements are true or false (no reason needed).
 - (a) If all eigenvalues of A are 0, then A = 0.
 - (b) If $A^9 = 0$, then all eigenvalues of A are 0.
 - (c) If \boldsymbol{v} is an eigenvector of A, then \boldsymbol{v} is an eigenvector of A^2 .
 - (d) If \boldsymbol{v} is an eigenvector of A, then \boldsymbol{v} is an eigenvector of A^T .
 - (e) If \boldsymbol{u} and \boldsymbol{v} are eigenvectors of A, then $\mathbf{u} + \mathbf{v}$ is also an eigenvector of A.
 - (f) If \boldsymbol{u} is an eigenvector of A, so is $2\boldsymbol{u}$.
 - (g) If A and B are diagonalizable, so is AB.
 - (h) If A is diagonalizable and invertible, then A^{-1} is also diagonalizable.
 - (i) Similar matrices have the same eigenvalues.
 - (j) If two matrices have the same eigenvalues, then they are similar.
- 3. Consider the matrix

$$A = \begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 1 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}, \quad \boldsymbol{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- (a) Find an orthogonal basis of Col A;
- (b) Find the orthogonal projection of \boldsymbol{u} on $\operatorname{Col} A$;
- (c) Find the distance from \boldsymbol{u} to $\operatorname{Col} A$.
- 4. Find the standard matrix of the linear transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ which magnifies 3 times in the direction $\boldsymbol{u} = \begin{bmatrix} 1\\1 \end{bmatrix}$ and 5 times in the direction $\boldsymbol{u} = \begin{bmatrix} -1\\2 \end{bmatrix}$
- 5. Find numbers a, b, c such that

$$U = \begin{bmatrix} 1/3 & 2/3 & a \\ 2/3 & 1/3 & b \\ 2/3 & -2/3 & c \end{bmatrix}$$

is an orthogonal matrix. Then find U^{-1} .

- 6. Determine whether the following statements are true or false (no reason needed).
 - (a) Let v_1 , v_2 , v_3 , v_4 be vectors of \mathbb{R}^n . If v_1 is orthogonal to v_3 and v_2 is orthogonal to v_4 , then $v_1 + v_2$ is orthogonal to $v_3 + v_4$.
 - (b) If $\{v_1, v_2, v_3\}$ is an orthonormal set, then it is linearly independent.

- (c) If $\{v_1, v_2, v_3\}$ is an orthogonal basis of \mathbb{R}^3 , then $\{3v_1, -2v_2, 5v_3\}$ is also an orthogonal basis.
- (d) If $\boldsymbol{u} \perp \boldsymbol{v}, \, \boldsymbol{v} \perp \boldsymbol{w}$, then $\boldsymbol{u} \perp \boldsymbol{w}$.
- (e) If $\boldsymbol{u} \in W$ and $\boldsymbol{u} \in W^{\perp}$, then $\boldsymbol{u} = 0$.
- (f) If the orthogonal projection of y onto W is \hat{y} , then the orthogonal projection of 8y is $8\hat{y}$.
- (g) If the column vectors of a matrix is orthogonal, so are the row vectors.
- (h) If the row vectors of a square matrix is orthonormal, so are the column vectors.
- (i) If U and V are orthogonal matrices, so is U + V.
- (j) If U and V are orthogonal matrices, so is UV^{-1} .
- 7. Let \mathbb{P}_2 be the vector space of all real polynomials of degree at most 2. For $p(t), q(t) \in \mathbb{P}_2$, let

$$\langle p(t), q(t) \rangle = p(0)q(0) + p(0)q'(0) + p'(0)q(0) + 2p'(0)q'(0) + p''(0)q''(0).$$

- (a) Show that \langle , \rangle is an inner product on the vector space \mathbb{P}_2 .
- (b) Let $f(t) = 1 + 2t + 3t^2$, and let $\operatorname{Proj}_{f(t)} : \mathbb{P}_2 \to \mathbb{P}_2$ be the orthogonal projection along the vector f(t). Find the matrix of $\operatorname{Proj}_{f(t)}$ relative to the basis $\{1, t, t^2\}$ of \mathbb{P}_2 .
- (c) Find all eigenvalues of $\operatorname{Proj}_{f(t)}$.
- (d) For each eigenvalues of $\operatorname{Proj}_{f(t)}$, find its independent eigenvectors.
- 8. Let W be a subspace of \mathbb{R}^3 defined by the equation $x_1 x_2 + x_3 = 0$. Find a linear transformation $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ such that the range of T is W and

$$||T(\boldsymbol{x})|| = ||\boldsymbol{x}||$$
 for all $\boldsymbol{x} \in \mathbb{R}^3$.

9. Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$. Find an orthogonal matrix Q and an upper triangular matrix R such that A = QR.

10. Let W be the subspace of \mathbb{R}^4 defined by the linear system $\begin{cases} x_1 - x_2 + x_3 - x_4 = 0\\ x_1 + x_2 - x_3 - x_4 = 0 \end{cases}$.

- (a) Find the standard matrix of the orthogonal projection $\operatorname{Proj}_W : \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ of the Euclidean space \mathbb{R}^4 with the dot product.
- (b) Find all eigenvalues of Proj_W .
- (c) For each eigenvalues of Proj_W , find its independent eigenvectors.