Math111 – Linear Algebra – Fall 2006

Brief Outline: This is a fully fledged course on *linear algebra* for Year One students. We shall cover topics on systems of linear equations, matrices, determinants, vectors in \mathbb{R}^n , linear transformations, change of basis, eigenvalues and eigenvectors, diagonalization, inner product, orthogonal projection, Gram-Schmidt process, orthogonal diagonalization of symmetric matrices, and quadratic forms, etc. If time permits, we may add some more details to each topic. The A Level Pure Math or A Level Applied Math is required.

Instr/Tutor	r -	Office	Lecture/Tutorial Hour	Venue
Chen, Beifang		Rm 3470	L2, Tue, Thu 15:00pm-16:20pm Office hour: Wed, 2:00pm-4:00pm	Rm 2306
Leung, Kin-Kwan		Rm 3213	T2a, Wed, 17:00pm-17:50pm T2b, Mon, 18:00pm-18:50pm Office hour: Mon, 3:00-5:00pm	$\begin{array}{c} \mathrm{Rm} \ 2407 \\ \mathrm{Rm} \ 4502 \end{array}$
Textbook:	Linear Algebra and Its Applications (Third edition) by David C. Lay & Addison-Wesley 2003			
Homework:	Homework will be given biweekly on-line. The TA will be responsible to collect and partly grade each homework, and keep the records. The deadline for each homework will be decided by the TA. It is crucial to			

- Exams: There are midterm and final exams. Everyone must write the two exams without exception. Anybody who failed to attend the final exam will automatically get F grade, regardless his/her homework and midterm exam.
- Grading: Homework and quizzes 10%; midterm exam 25%; final exam 65%.

do all homeworks to understand the subjects.

Tentative Schedule

- Week 1-3 Linear Equations in Linear Algebra
- 1.1 System of Linear Equations
- 1.2 Row Reductions and Echelon Forms
- 1.3 Vector Equations
- 1.4 The Equation $A\boldsymbol{x} = \boldsymbol{b}$
- 1.5 Solution Sets of Linear Systems
- 1.7 Linear Independence
- 1.8 Introduction to Linear Transformations
- 1.9 The Matrix of a Linear Transformation
- Week 3-6 Matrix and Determinants
- 2.1 Matrix Operations

2.2	Inverse of a Matrix		
2.3	Characterization of Invertible Matrices		
2.8	Subspaces of \mathbb{R}^n		
2.9	Dimension and Rank		
3.1	Introduction to Determinants		
3.2	Properties of Determinants		
3.3	Cramer's Rule, Volume, and Linear Transformations		
Midterm	9 Oct. 2006, venue and time to be arranged		
Exam			
Week 6-8	Vector Spaces		
4 1	Vector Spaces and Subspaces		
4.2	Null Spaces Column Spaces and Linear Transformations		
4.3	Linear Independent Sets and Bases		
1.0	Coordinate Systems		
4.5	Dimension of a Vector Space		
4.6	Bank		
4.0	Change of Basis		
1.1	Change of Dasis		
Week 0 19	Figure Ligenvectors and Orthogonality		
Week 9-12	Eigenvalues, Eigenvectors and Orthogonality		
0.1 5 0	The Characteristic Equation		
0.Z	Disconsilication		
0.3	Diagonalization		
0.1	Inner Product, Length and Orthogonality		
0.2	Orthogonal Sets		
6.3	Orthogonal Projections		
6.4	Gram-Schmidt Process		
6.5	Least-Squares Problems		
6.7	Inner Product Spaces		
W. 1 10 14			
Week 12-14	Symmetric Matrices and Quadratic Forms		
7.1	Diagonalization of Symmetric Matrices		
7.2	Quadratic Forms		
7.3	Constrained Optimization		
TTT . 1 1 4			
week 14	Keview		
Final Fraze	To be amanged by APP Office		
r mai Exam	to be attailed by Ann Office		