
Eigenvalues and Eigenvectors

week 11-12 Fall 2006

1 Eigenvalues and eigenvectors

The most simple linear transformation from Rn to Rn may be the transformation of the form:

T (x1, x2, . . . , xn) = (λ1x1, λ2x2, . . . , λnxn),

T







x1

x2

...
xn





 =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn







x1

x2

...
xn




Example 1.1. The linear transformation T : R2 → R2, defined by

T (x) =
[

2 0
0 3

] [
x1

x2

]
=

[
2x1

3x2

]
,

is to dilate the first coordinate two times and the second coordinate three times.

Example 1.2. Let T : R2 → R2 be a linear transformation defined by

T (x) =
[

4 −2
3 −3

] [
x1

x2

]
.

What can we say about T geometrically? Consider the basis B = {u1,u2} of R2, where

u1 =
[

2
1

]
, u2 =

[
1
3

]
.

Then

T (u1) =
[

6
3

]
= 3

[
2
1

]
= 3u1,

T (u2) =
[ −2
−6

]
= −2

[
1
3

]
= −2u2.

For any vector v = c1u1 + c2u2, we have [v]B =
[

c1

c2

]
, and

T (v) = c1T (u1) + c2T (u2) = 3c1u1 − 2c2u2,

Thus

[T (v)]B =
[

3c1

−2c2

]
=

[
3 0
0 −2

] [
c1

c2

]
.

If the one uses the basis B to describe vector v with coordinate vector v, then the coordinate vector of T (v)
under the basis B simply described as

[
T (v)

]
B =

[
3 0
0 −2

] [
v
]
B.

This means that the matrix of T relative to the basis B is as simple as a diagonal matrix.
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The above discussion demonstrates that the nonzero vectors v satisfying the condition

T (v) = λv (1.1)

for scalars λ is important to describe a linear transformation T .

Definition 1.1. Given a linear transformation

T : Rn → Rn, T (x) = Ax.

A nonzero vector v in Rn is called an eigenvector of T (the matrix A) if there exists a scalar λ such that

T (v) = Av = λv. (1.2)

The scalar λ is called an eigenvalue of T (the matrix A) and the nonzero vector v is called an eigenvector
of T (of the matrix A) corresponding to the eigenvalue λ.

Example 1.3. Let A =
[

1 6
5 2

]
. Then u =

[
6

−5

]
is an eigenvector of A. However, but v =

[
3

−2

]
is

not an eigenvector of A.

Proposition 1.2. For any n× n matrix A, the value 0 is an eigenvalue of A ⇐⇒ detA = 0.

Proof. Note that the set of eigenvectors of A corresponding to the zero eigenvalue is the set NulA − {0};
and A is invertible if and only if NulA 6= {0}. The theorem follows from the two facts.

Theorem 1.3. If v1,v2, . . . ,vp be eigenvectors of a matrix A corresponding to distinct eigenvalues λ1, λ2, . . . , λp,
respectively, then v1,v2, . . . ,vp are linearly independent.

Proof. Let k be the smallest positive integer such that v1,v2, . . . ,vk are linearly independent. If k = p,
nothing is to be proved. If k < p, then vk+1 is a linear combination of v1, . . . ,vk; that is, there exist
constants c1, c2, . . . , ck such that

vk+1 = c1v1 + c2v2 + · · ·+ ckvk.

Applying the matrix A to both sides, we have

Avk+1 = λk+1vk+1

= λk+1(c1v1 + c2v2 + · · ·+ ckvk)
= c1λk+1v1 + c2λk+1v2 + · · ·+ ckλk+1vk;

Avk+1 = A(c1v1 + c2v2 + · · ·+ ckvk)
= c1Av1 + c2Av2 + · · ·+ ckAvk

= c1λ1v1 + c2λ2v2 + · · ·+ ckλkvk.

Thus
c1(λk+1 − λ1)v1 + c2(λk+1 − λ2)v2 + · · ·+ ck(λk+1 − λk)vk = 0.

Since v1,v2, . . . ,vk are linearly independent, we have

c1(λk+1 − λ1) = c2(λk+1 − λ2) = · · · = ck(λk+1 − λk) = 0.

Note that the eigenvalues are distinct. Hence

c1 = c2 = · · · = ck = 0,

which implies that vk+1 is the zero vector 0. This is contradictory to that vk+1 6= 0.
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2 How to find eigenvectors?

To find eigenvectors, it is meant to find vectors x and scalar λ such that

Ax = λx, (2.1)

that is,
(λI −A)x = 0. (2.2)

Since x is required to be nonzero, the system (2.2) is required to have nonzero solutions; we thus have

det(λI −A) = 0. (2.3)

Expanding the det(λI −A), we see that

p(λ) = det(λI −A)

is a polynomial of degree n in λ, called the characteristic polynomial of A. To find eigenvalues of A,
it is meant to find all roots of the polynomial p(λ). The polynomial equation (2.3) about λ is called the
characteristic equation of A. For an eigenvalue λ of A, the system

(λI −A)x = 0

is called the eigensystem for the eigenvalue λ; its solution set Nul (λI − A) is called the eigenspace
corresponding to the eigenvalue λ.

Theorem 2.1. The eigenvalues of a triangular matrix are the entries on its main diagonal.

Example 2.1. The matrix 


2 −1 0
0 5 0
0 −1 2


 .

has the characteristic polynomial

p(λ) =

∣∣∣∣∣∣

λ− 2 1 0
0 λ− 5 0
0 1 λ− 2

∣∣∣∣∣∣
= (λ− 2)2(λ− 5).

Then there are two eigenvalues λ1 = 2 and λ2 = 5.
For λ1 = 2, the eigensystem




λ1 − 2 1 0
0 λ1 − 5 0
0 1 λ1 − 2







x1

x2

x3


 =




0 1 0
0 −3 0
0 1 0







x1

x2

x3


 =




0
0
0




has two linearly independent eigenvectors

v1 =




1
0
0


 , v2 =




0
0
1


 .

For λ2 = 5, the eigensystem



λ2 − 2 1 0
0 λ2 − 5 0
0 1 λ2 − 2







x1

x2

x3


 =




3 1 0
0 0 0
0 1 3







x1

x2

x3


 =




0
0
0




has one linearly independent eigenvector

v3 =




1
−3

1


 .
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Example 2.2. The matrix 


2 −1 0
0 5 0

−1 −1 2




has the characteristic polynomial

p(λ) =

∣∣∣∣∣∣

λ− 2 1 0
0 λ− 5 0
1 1 λ− 2

∣∣∣∣∣∣
= (λ− 2)2(λ− 5).

We obtain two eigenvalues λ1 = 2 and λ2 = 5.
For λ1 = 2 (though it is of multiplicity 2), the eigensystem




0 1 0
0 −3 0
1 1 0







x1

x2

x3


 =




0
0
0




has only one linearly independent eigenvector

v1 =




0
0
1


 .

For λ2 = 5, eigen-system 


3 1 0
0 0 0
1 1 3







x1

x2

x3


 =




0
0
0




has one linearly independent eigenvector

v2 =




3
−9

2


 .

Example 2.3. Find the eigenvalues and the eigenvectors for the matrix

A =




1 3 3
3 1 3
3 3 1


 .

The characteristic equation of A is

det(λI −A) =

∣∣∣∣∣∣

λ− 1 −3 −3
−3 λ− 1 −3
−3 −3 λ− 1

∣∣∣∣∣∣
(R2 −R3)

=

∣∣∣∣∣∣

λ− 1 −3 −3
0 λ + 2 −(λ + 2)
−3 −3 λ− 1

∣∣∣∣∣∣

= (λ− 1)
∣∣∣∣

λ + 2 −(λ + 2)
−3 λ− 1

∣∣∣∣− 3
∣∣∣∣
−3 −3

λ + 2 −(λ + 2)

∣∣∣∣

= (λ− 1)(λ + 2)(λ− 4)− 18(λ + 2) = (λ + 2)2(λ− 7).

Then A has two eigenvalues λ1 = −2 and λ2 = 7.
For λ1 = −2 (its multiplicity is 2), the eigen-system



−3 −3 −3
−3 −3 −3
−3 −3 −3







x1

x2

x3


 =




0
0
0



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has two linearly independent eigenvectors

v1 =



−1

1
0


 , v2 =



−1

0
1


 .

For λ = 7, the eigen-system



6 −3 −3
−3 6 −3
−3 −3 6







x1

x2

x3


 =




0
0
0




has one linearly independent eigenvector

v3 =




1
1
1


 .

Theorem 2.2. Let λ, µ and ν be distinct eigenvalues of a matrix A. Let u1,u2, . . . ,up be linearly indepen-
dent eigenvectors for the eigenvalue λ; v1,v2, . . . ,vq be linearly independent eigenvectors for the eigenvalue
µ; and w1,w2, . . . ,wr be linearly independent eigenvectors for the eigenvalue ν. Then the vectors

u1,u2, . . . ,up, v1,v2, . . . ,vq, w1,w2, . . . ,wr

together are linearly independent.

Proof. Suppose there are scalars a1, . . ., ap, b1, . . ., bq, c1, . . ., cr such that

(a1u1 + · · ·+ apup) + (b1v1 + · · ·+ bqvq) + (c1w1 + · · ·+ crwr) = 0. (2.4)

It suffices to show that all the scalars a1, . . ., ap, b1, . . ., bq, c1, . . ., cr are 0. Set

u = a1u1 + · · ·+ apup, v = b1v1 + · · ·+ bquq, w = c1w1 + · · ·+ crwr.

Note that
Au = a1Au1 + · · ·+ apAup = a1λu1 + · · · apλup = λu.

Similarly, Av = µv and Aw = νw. If u = 0, then the linear independence of u1, . . . ,up implies that

a1 = · · · = ap = 0.

Similarly, v = 0 implies b1 = · · · = bq = 0, and w = 0 implies c1 = · · · = cr = 0.
Now we claim that u = v = w = 0. If not, there are following three types.
Type 1: u 6= 0, v = w = 0. Since v = w = 0, it follows from (2.4) that u = 0, a contradiction.
Type 2: u 6= 0, v 6= 0, w = 0. Then u is the eigenvector of A for the eigenvalue λ and v the eigenvector

of A for the eigenvalue µ; they are eigenvectors for distinct eigenvalues. So u and v are linearly independent.
But (2.4) shows that u + v = 0, which means that u and v are linearly dependent, a contradiction.

Type 3: u 6= 0, v 6= 0, w 6= 0. This means that u, v, w are eigenvectors of A for distinct eigenvalues λ,
µ, ρ respectively. So they are linearly independent. However, (2.4) shows that u + v + w = 0, which means
that u, v, w are linearly dependent, a contradiction again.

Note 1. The above theorem is also true for more than three distinct eigenvalues.

3 Diagonalization

Definition 3.1. An n × n matrix A is said to be similar to an n × n matrix B if there is an invertible
matrix P such that

P−1AP = B.
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Theorem 3.2. Similar matrices have the same characteristic polynomial and hence have the same eigen-
values.

Note. Similar matrices may have different eigenvectors. For instance, the matrices

A =




2 −1 0
0 5 0

−1 −1 2


 and B =




2 −1 0
0 5 0
0 −1 2




have the same eigenvalues λ1 = 2 and λ2 = 5; but A and B have different eigenvectors.

A square matrix A is called diagonal if all non-diagonal entries are zero, that is,

A =




a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an


 .

It is easy to see that for any k,

Ak =




ak
1 0 · · · 0
0 ak

2 · · · 0
...

...
. . .

...
0 0 · · · ak

n


 .

Definition 3.3. A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that
is, there exists an invertible matrix P and a diagonal matrix D such that

P−1AP = D.

Theorem 3.4 (Diagonalization Theorem). An n × n matrix A is diagonalizable iff A has n linearly
independent eigenvectors.

Proof. We demonstrate the proof for the case n = 3.
If A is diagonalizable, there exist an invertible matrix P and a diagonal matrix D such that P−1AP = D,

where

P = [u,v,w] =




u1 v1 w1

u2 v2 w2

u3 v3 w3


 , D =




λ 0 0
0 µ 0
0 0 ν


 .

Note that P−1AP = D is equivalent to AP = PD. Since AP = A[u,v,w] = [Au, Av, Aw] and

PD =




u1 v1 w1

u2 v2 w2

u3 v3 w3







λ 0 0
0 µ 0
0 0 ν


 =




λu1 µv1 νw1

λu2 µv2 νw2

λu3 µv3 νw3


 = [λu, µv, νw],

we have [Au, Av, Aw] = [λu, µv, νw]. Thus

Au = λu, Av = µv, Aw = νw.

Since P is invertible, the vectors u,v,w are linearly independent. It follows that u,v,w are three linearly
independent eigenvectors of A.

Conversely, if A has three linear independent eigenvectors u,v,w corresponding to the eigenvalues λ, µ, ν
respectively. Then Au = λu, Av = µv, Aw = νw. Let

P = [u,v,w] =




u1 v1 w1

u2 v2 w2

u3 v3 w3


 , D =




λ 0 0
0 µ 0
0 0 ν


 .
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Then

AP = A[u,v,w] = [Au, Av, Aw] = [λu, µv, νw]

=




λu1 µv1 νw1

λu2 µv2 νw2

λu3 µv3 νw3




=




u1 v1 w1

u2 v2 w2

u3 v3 w3







λ 0 0
0 µ 0
0 0 ν


 = PD.

Since u,v,w are linearly independent, thus the matrix P is invertible. Therefore

P−1AP = D.

This means that A is diagonalizable.

Example 3.1. Diagonalize the matrix

A =




3 1 1
1 3 1

−1 −1 1




and compute A8.
The characteristic polynomial of A is

|λI −A| =

∣∣∣∣∣∣

λ− 3 −1 −1
−1 λ− 3 −1
1 1 λ− 1

∣∣∣∣∣∣
R2 + R3

R1 − (λ− 3)R3

=

∣∣∣∣∣∣

0 −(λ− 2) −(λ− 2)2

0 λ− 2 λ− 2
1 1 λ− 1

∣∣∣∣∣∣
= (λ− 2)2(λ− 3).

There are two eigenvalues λ1 = 2 and λ2 = 3.
For λ1 = 2, the eigensystem



−1 −1 −1
−1 −1 −1

1 1 1







x1

x2

x3


 =




0
0
0




has two linearly independent eigenvectors

v1 =



−1

1
0


 , v2 =



−1

0
1


 .

For λ2 = 3, the eigensystem



0 −1 −1
−1 0 −1

1 1 2







x1

x2

x3


 =




0
0
0




has one linearly independent eigenvector

v3 =



−1
−1

1


 .

Set

P =



−1 −1 −1

1 0 −1
0 1 1


 , D =




2 0 0
0 2 0
0 0 3


 .
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Then

P−1AP =



−1 0 −1

1 1 2
−1 −1 −1







3 1 1
1 3 1

−1 −1 1






−1 −1 −1

1 0 −1
0 1 1


 = D,

or equivalently,
PDP−1 = A.

Thus

A8 = (PDP−1)(PDP−1) · · · (PDP−1)︸ ︷︷ ︸
8

= PD8P−1

=



−1 −1 −1

1 0 −1
0 1 1







28 0 0
0 28 0
0 0 38






−1 0 −1

1 1 2
−1 −1 −1




=




38 38 − 28 38 − 28

38 − 28 38 38 − 28

28 − 38 28 − 38 29 − 38


 .

Example 3.2. Compute the matrix A8, where

A =




1 1 1
0 3 3

−2 1 1


 .

The characteristic polynomial of A is

|λI −A| =

∣∣∣∣∣∣

λ− 1 −1 −1
0 λ− 3 −3
2 −1 λ− 1

∣∣∣∣∣∣

= (λ− 1)
∣∣∣∣

λ− 3 −3
−1 λ− 1

∣∣∣∣ + 2
∣∣∣∣
−1 −1

λ− 3 −3

∣∣∣∣
= (λ− 1)(λ2 − 4λ) + 2λ

= λ(λ− 2)(λ− 3).

We have eigenvalues λ1 = 0, λ2 = 2, and λ3 = 3.
For λ1 = 0, 


−1 −1 −1

0 −3 −3
2 −1 −1







x1

x2

x3


 , v1 =




0
−1

1


 .

For λ2 = 2, 


1 −1 −1
0 −1 −3
2 −1 1







x1

x2

x3


 , v2 =



−2
−3

1


 .

For λ3 = 3, 


2 −1 −1
0 0 −3
2 −1 2







x1

x2

x3


 , v3 =




1/2
1
0


 .

Set

P = [v1,v2,v3] =




0 −2 1/2
−1 −3 1

1 1 0


 .
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Then

P−1AP =




0 0 0
0 2 0
0 0 3


 = D.

Thus

A8 = (PDP−1)(PDP−1) · · · (PDP−1)︸ ︷︷ ︸
8

= P




0 0 0
0 2 0
0 0 3




8

P−1

=




0 −2 1/2
−1 −3 1

1 1 0







0 0 0
0 28 0
0 0 38







1 −1/2 1/2
−1 1/2 1/2
−2 2 2




=




28 0 0
28 27 27

−28 27 27


 .

4 Complex eigenvalues

Theorem 4.1. For a 2 × 2 matrix, if one of the eigenvalues of A is not a real number, then the other
eigenvalue must be conjugate to this complex eigenvalue. Let

λ = a− bı with b 6= 0

be a complex eigenvalue of A and let x = u + ıv be a complex eigenvector of A for λ, that is,

A(u + ıv) = (a− bı)(u + ıv).

Let P = [u,v]. Then

P−1AP =
[

a −b
b a

]
.

Proof.

Ax = Au + ıAv,

Ax = λx = (a− bı)(u + ıv) = (au + bv) + ı(−bu + av).

It follows that
Au = au + bv, Av = −bu + av.

Thus

AP = A[u,v] = [u,v]
[

a −b
b a

]
= P

[
a −b
b a

]
.

Example 4.1. Let A =
[

5 −2
1 3

]
. Find a matrix P such that P−1AP is diagonal or antisymmetric.

Solution. Since
[

λ− 5 2
−1 λ− 3

]
= λ2 − 8λ + 17, the eigenvalues of A are complex numbers

λ =
−8±√64− 4 · 17

2
= 4± ı.

For λ = 4− ı, we have the eigensystem
[ −1− ı 2

−1 1− ı

] [
x1

x2

]
=

[
0
0

]
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Solving the system, we have the eigenvector
[

x1

x2

]
=

[
1− ı

1

]
=

[
1
1

]
+ ı

[ −1
0

]

Let P =
[

1 −1
1 0

]
. Then P−1 =

[
0 1
−1 1

]
.

[
0 1
−1 1

] [
5 −2
1 3

] [
1 −1
1 0

]
=

[
4 −1
1 4

]
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