Eigenvalues and Eigenvectors

week 11-12 Fall 2006

1 Eigenvalues and eigenvectors

The most simple linear transformation from R™ to R™ may be the transformation of the form:

T((El,.’bQ, e ,il'n) = ()\11'1, )\Q.TQ, ceey )\nl'n),
X1 )\1 0 0 i X1

T2 0 )\2 0 T2

T ) = . . . .
In 0 0 - A L Tn

Example 1.1. The linear transformation T : R? — R2, defined by

T(az)=[(2) g”i;]:{gi;

is to dilate the first coordinate two times and the second coordinate three times.

Example 1.2. Let T : R2 — R? be a linear transformation defined by
_ 4 =2 I
=[5 35

What can we say about T geometrically? Consider the basis B = {u;,us} of R?, where

Then

For any vector v = ciju; + caue, we have [v]p = [ 21 ], and
2
T(v) = c1T(u1) + coT(u2) = 3c1ur — 2cous,
_ 3es | _[3 O c1
- 21]-[2 2][2]

If the one uses the basis B to describe vector v with coordinate vector v, then the coordinate vector of T'(v)
under the basis B simply described as

Thus

This means that the matrix of T relative to the basis B is as simple as a diagonal matrix.



The above discussion demonstrates that the nonzero vectors v satisfying the condition
T(v) = \v (1.1)
for scalars A is important to describe a linear transformation 7.

Definition 1.1. Given a linear transformation
T:R" - R" T(x)=Ax.
A nonzero vector v in R™ is called an eigenvector of T' (the matrix A) if there exists a scalar A such that
T(v) = Av = \v. (1.2)

The scalar A is called an eigenvalue of T' (the matrix A) and the nonzero vector v is called an eigenvector
of T (of the matrix A) corresponding to the eigenvalue ).

1 6

Example 1.3. Let A = { 5 9

} Then u = [ 72 ] is an eigenvector of A. However, but v = [ 72 } is

not an eigenvector of A.
Proposition 1.2. For any n x n matriz A, the value 0 is an eigenvalue of A <= det A = 0.

Proof. Note that the set of eigenvectors of A corresponding to the zero eigenvalue is the set Nul A — {0};

and A is invertible if and only if Nul A # {0}. The theorem follows from the two facts. O
Theorem 1.3. Ifvi,va,...,v, be eigenvectors of a matriz A corresponding to distinct eigenvalues A1, A, ..., Ap,
respectively, then vy, v, ..., v, are linearly independent.

Proof. Let k be the smallest positive integer such that vi,vs,..., v, are linearly independent. If &k = p,
nothing is to be proved. If k < p, then vgy; is a linear combination of vq,...,v; that is, there exist
constants ¢, ca, ..., ¢, such that

Vi+1 = C1U1 “+ CoVg + - - + Cp V.

Applying the matrix A to both sides, we have

Avgpr = A1V
= Np1(cvr + cva + - + cpor)
= ClAR+1V1 + C2Ap1V2 + - Cp A1 VRS

Aviyr = A(cvr + cova + -+ + ¢, vg)
1AV + 0 Avg + - - - + ¢ Avy,

Cl)\lvl + CQ)\Q’UQ + 4 Ck)\kvk~

Thus
c1(Apg1 — A)vr + co(Apgp1 — A2)va + - - + c(App1 — Ax)ve = 0.

Since vy, vs, ..., v are linearly independent, we have
c1(Akt1 — A1) = ca(Apg1 — A2) = - = ck(Ag41 — ) = 0.
Note that the eigenvalues are distinct. Hence
co=cy=---=¢, =0,

which implies that vy is the zero vector 0. This is contradictory to that vg,q1 # 0. O



2 How to find eigenvectors?

To find eigenvectors, it is meant to find vectors  and scalar A such that
Az = \x, (2.1)

that is,
(M —-A)x=0. (2.2)

Since @ is required to be nonzero, the system (2.2) is required to have nonzero solutions; we thus have
det(A\I — A) = 0. (2.3)
Expanding the det(AI — A), we see that
p(A) = det(A — A)

is a polynomial of degree n in A, called the characteristic polynomial of A. To find eigenvalues of A,
it is meant to find all roots of the polynomial p(A). The polynomial equation (2.3) about A is called the
characteristic equation of A. For an eigenvalue A of A, the system

M-Ax=0

is called the eigensystem for the eigenvalue J; its solution set Nul (Al — A) is called the eigenspace
corresponding to the eigenvalue .

Theorem 2.1. The eigenvalues of a triangular matrix are the entries on its main diagonal.
Example 2.1. The matrix

2 -1 0

0 5 0

0 -1 2
has the characteristic polynomial

pA=| 0 A=5 0 |=(A\-2)72*)-5).
0 1 A—2

Then there are two eigenvalues A\; = 2 and Ay = 5.
For \; = 2, the eigensystem

)\1 -2 1 0 T 0 1 0 T 0
0 )\1 -5 0 o = 0 -3 0 X9 = 0
0 1 )\1 -2 T3 0 1 0 X3 0
has two linearly independent eigenvectors
1 0
v = 0 , V2 = 0
0 1
For Ay = 5, the eigensystem
-2 1 0 T (3 1 0 T 0
0 /\2 -5 0 To = 0O 0 O o = 0
0 1 Ay — 2 T3 |01 3 T3 0
has one linearly independent eigenvector )
1
V3 = -3
1




Example 2.2. The matrix

2 -1 0
0 5 0
-1 -1 2
has the characteristic polynomial
A—2 1 0
pA)=| 0 AX=5 0 |[=0\-22*X\-5).
1 1 A—2

We obtain two eigenvalues \; = 2 and A\ = 5.
For A\; = 2 (though it is of multiplicity 2), the eigensystem

0 10 1 0
0 -3 0 zo | =10
1 1 0 T3 0
has only one linearly independent eigenvector
0
v = 0
1
For Ay = 5, eigen-system
3 10 x1 0
0 0 0 xo | =10
1 1 3 x3 0
has one linearly independent eigenvector
3
Vo = -9
2

Example 2.3. Find the eigenvalues and the eigenvectors for the matrix
1 3 3
A=1]13 1 3
3 3 1

The characteristic equation of A is

A—-1 =3 -3
det()\I — A) = -3 A—1 -3 (RQ - Rg)
-3 -3 A-1
A—1 -3 -3
— | 0 At2 —(A+2)
-3 -3 A—1

-3 -3
A+2 —(A+2)

A+2 —(A+2)

A T S

-]
= A=1DA+2)A—4) =18\ +2) = (A +2)2(A—T).

Then A has two eigenvalues Ay = —2 and A\ = 7.
For A\ = —2 (its multiplicity is 2), the eigen-system

-3 -3 -3 1 0
-3 -3 -3 2 | =10
-3 -3 =3 x3 0



has two linearly independent eigenvectors

-1 -1
v = 1 , Vg = 0
1
For A = 7, the eigen-system
6 -3 -37][m 0
-3 6 -3 x2 | =10
-3 =3 6 ]| x3 0
has one linearly independent eigenvector )
1
V3 = 1
|1
Theorem 2.2. Let A\, u and v be distinct eigenvalues of a matriz A. Let wi, s, ..., up be linearly indepen-
dent eigenvectors for the eigenvalue A; v1,va,...,vq be linearly independent eigenvectors for the eigenvalue
Wy and wy,ws, ..., w, be linearly independent eigenvectors for the eigenvalue v. Then the vectors
ul,u2,...,up, ’Ul,’Ug,...,’Uq, w1, W, ...,W,
together are linearly independent.
Proof. Suppose there are scalars ay, ..., ap, b1, ..., by, c1, ..., ¢ such that
(aruq + -+ apuy) + (v + -+ + byvy) + (Gwr + - - + ,w,) = 0. (2.4)
It suffices to show that all the scalars aq, ..., ap, b1, ..., bg, c1, ..., ¢, are 0. Set

uU=a1U + -+ apty, vV=bvi+-+buy, w=crw+---+cw,.

Note that
Au = a1Auy + - - + apAuy = e dug + - - apAu, = Au.
Similarly, Av = pv and Aw = vw. If uw = 0, then the linear independence of uy, ..., u, implies that
ap=---=ap,=0.
Similarly, v = 0 implies b; = --- =b, =0, and w = 0 implies ¢; = --- = ¢, = 0.

Now we claim that w = v = w = 0. If not, there are following three types.

Type 1: u # 0, v =w = 0. Since v = w = 0, it follows from (2.4) that u = 0, a contradiction.

Type 2: u # 0, v # 0, w = 0. Then wu is the eigenvector of A for the eigenvalue A and v the eigenvector
of A for the eigenvalue u; they are eigenvectors for distinct eigenvalues. So w and v are linearly independent.
But (2.4) shows that u + v = 0, which means that u and v are linearly dependent, a contradiction.

Type 3: u # 0, v # 0, w # 0. This means that u, v, w are eigenvectors of A for distinct eigenvalues A,
1, p respectively. So they are linearly independent. However, (2.4) shows that w 4+ v + w = 0, which means
that u, v, w are linearly dependent, a contradiction again. O

Note 1. The above theorem is also true for more than three distinct eigenvalues.

3 Diagonalization

Definition 3.1. An n x n matrix A is said to be similar to an n x n matrix B if there is an invertible
matrix P such that
P'AP =B.



Theorem 3.2. Similar matrices have the same characteristic polynomial and hence have the same eigen-
values.

Note. Similar matrices may have different eigenvectors. For instance, the matrices

2 -1 0 2 -1 0
A= 0 5 0 and B=| 0 5 0
-1 -1 2 0 -1 2

have the same eigenvalues \; = 2 and Ay = 5; but A and B have different eigenvectors.

A square matrix A is called diagonal if all non-diagonal entries are zero, that is,

a 0 --- 0
0 ay - 0
A= S :
0 O an
It is easy to see that for any k,

at 0 0
0 ab 0

AF = :
0 0 ak

Definition 3.3. A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that
is, there exists an invertible matrix P and a diagonal matrix D such that

P'AP =D.

Theorem 3.4 (Diagonalization Theorem). An n x n matriz A is diagonalizable iff A has n linearly
independent eigenvectors.

Proof. We demonstrate the proof for the case n = 3.
If A is diagonalizable, there exist an invertible matrix P and a diagonal matrix D such that P"1AP = D,

where
up v wa

A0 O
P=luv,wl=| us v2 wy |, D=0 pu 0
us vVs Ws 0 0 v

Note that P~1AP = D is equivalent to AP = PD. Since AP = Alu,v,w] = [Au, Av, Aw] and

up v wi A0 O Aup  pvp vw
PD=| uy vy wy 0 pw 0 |=| Aue pve rvwy | =[lu,pv,vw),
us U3 w3 0 0 v Aug  pvy  vws

we have [Au, Av, Aw| = [\u, pv, vw]. Thus
Au = \u, Av=pv, Aw =rw.

Since P is invertible, the vectors u, v, w are linearly independent. It follows that w, v, w are three linearly
independent eigenvectors of A.

Conversely, if A has three linear independent eigenvectors u, v, w corresponding to the eigenvalues A, u, v
respectively. Then Au = \u, Av = pv, Aw = vw. Let

Uy U1 wy
P=luv,w|=| us v2 we |, D=
Uz vz ws

o O
o' O
R OO



Then

AP = Alu,v,w] = [Au, Av, Aw] = [A\u, pv, vw)
[ uyp opvr v
= Aus vy Vws
| Aug  puz vws

u; V1 wp A0 O
= Uy Vo Wy 0 uw 0| =PD.
uz Uz W3 0 0 v

Since u, v, w are linearly independent, thus the matrix P is invertible. Therefore

PT'AP = D.
This means that A is diagonalizable.
Example 3.1. Diagonalize the matrix
3 11
A= 1 3 1
-1 -1 1
and compute A8.
The characteristic polynomial of A is
A—=3 -1 -1
Ry + R3
M- A] = -1 A=-3 -1 Ty
1 1 oa_q | Bi-(A=3)Rs
0 —-(A=2) —(A—2)2
= |0 A-2 A—2 | =(A-22%)\-3).
1 1 A—1
There are two eigenvalues \; = 2 and Ay = 3.
For A\; = 2, the eigensystem
-1 -1 -1 1 0
-1 -1 -1 o | =10
1 1 1 T3 0
has two linearly independent eigenvectors
-1 -1
v = 1 , Uy = 0
1
For Ay = 3, the eigensystem
0 -1 -1 1 0
-1 0 —1 x2 | =10
1 1 2 x3 0
has one linearly independent eigenvector
-1
V3 = -1
1
Set
-1 -1 -1 2 00
P= 1 0 -1, D=0 2 0
0 1 1 0 0 3



Then

-1 -1
1 0
0 1

-1
1
-1

0
1
-1

-1

27

1/2
1

-1 0 -1 3 1 1
P'AP = 1 1 2 1 31
-1 -1 -1 -1 -1 1
or equivalently,
PDP ! = A
Thus
A% = (ppDP Y)Y (PDPY)...(PDP ') = PD®P!
8
[ -1 -1 -1 22 0 0
= 1 0 -1 0 28 0
0 1 1 0 o0 3
[ 3% 3828 3828
= 38— 28 38 38 — 28
28738 28738 29738
Example 3.2. Compute the matrix A%, where
1 11
A= 0 3 3
-2 1 1
The characteristic polynomial of A is
A—-1 -1 -1
M- Al = 0 A—-3 -3
2 -1 Xx-1
A—=3 =3
- ()‘1)‘ 1 A1 ‘*
= (A=1)(A\%2 —4)\) +2)
= AMA—=2)(A=3).
We have eigenvalues \; = 0, Ao = 2, and A3 = 3.
For /\1 = 0,
-1 -1 -1 1
0 -3 -3 o |, v1=
2 -1 -1 T3
For Ay = 2,
1 -1 -1 1
0 -1 -3 ) , V2 =
2 -1 1 X3
For )\3 = 3,
2 -1 -1 1
0 0 -3 T2 ) U3 =
2 -1 2 T3
Set
0 -2
P = [’Uh’UQ,’Ug] = -1 -3
1 1

0

-1
-1
1

-1

2

-1

-1
-3



Then

00 0
PlAP=10 2 0| =D
0 0 3
Thus
00 07°
A® = (pDP YH(PDPY...(PDP HY=P| 0 2 0| P!
Y 0 0 3
0 —2 1/2 0 0 0 1 —1/2 1/2
= -1 -3 1 0 25 0 -1 1/2 1/2
11 0 0 0 38 -2 2 2
22 0 0
— 28 27 27
728 27 27

4 Complex eigenvalues

Theorem 4.1. For a 2 x 2 matriz, if one of the eigenvalues of A is not a real number, then the other
etgenvalue must be conjugate to this complex eigenvalue. Let

A=a—bt with b#0
be a complex eigenvalue of A and let € = u + 1w be a complex eigenvector of A for X, that is,
A(u 4+ w) = (a — br)(u + w).
Let P = [u,v]. Then
PlAP = { a —b ]
b a
Proof.

Axr = Au+14Av,
Az = Az = (a—b)(u+w) = (au + bv) + 1(—bu + av).
It follows that
Au = au + bv, Av = —bu + av.
Thus

AP:A[u,v]:[u,v]H H:p[z 2]

Example 4.1. Let A = ? _g } . Find a matrix P such that P~'AP is diagonal or antisymmetric.
) . A=5 2 9 .
Solution. Since 1 -3 |7 A% — 8\ + 17, the eigenvalues of A are complex numbers
—84+64—-4-1
A= 8 62 7 =4+

For A =4 —1, we have the eigensystem

2=



Solving the system, we have the eigenvector

10



