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1 Linear Transformations

Definition 1.1. Let X and Y be nonempty sets. A function from X to Y is a rule, written f : X → Y ,
such that each element x in X is assigned a unique element y in Y ; the element y is denoted by f(x), written

y = f(x),

called the image of x under f ; and the element x is called the preimage of f(x). Functions are also called
maps, or mappings, or transformations.

Definition 1.2. A function T : Rn → Rm is said to be a linear transformation if, for any vectors u,v in
Rn and scalar c,

(a) T (u + v) = T (u) + T (v),

(b) T (cu) = cT (u).

Example 1.1. (a) The function T : R2 → R2, defined by T (x1, x2) = (x1 + 2x2, x2), is a linear transfor-
mation, see Figure 1
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Figure 1: The geometric shape under a linear transformation.

(b) The function T : R2 → R2, defined by T (x1, x2) = (x1 + 2x2, 3x1 + 4x2), is a linear transformation.

(c) The function T : R3 → R2, defined by T (x1, x2, x3) = (x1 + 2x2 + 3x3, 3x1 + 2x2 + x3), is a linear
transformation.

Example 1.2. The transformation T : Rn → Rm by T (x) = Ax, where A is an m × n matrix, is a linear
transformation.

Example 1.3. The map T : Rn → Rn, defined by T (x) = λx, where λ is a constant, is a linear transfor-
mation, and is called the dilation by λ.

Example 1.4. The refection T : R2 → R2 about a straight line through the origin is a linear transformation.

Example 1.5. The rotation T : R2 → R2 about an angle θ is a linear transformation, see Figure 2.

1



O

t

t

t

u+v

y

u

v

T(u+v)

T(u)

T(v)

x

Figure 2: Rotation about an angle θ.

Proposition 1.3. Let T : Rn → Rm be a linear transformation. Let v1,v2, . . . ,vk be vectors in Rn and let
c1, c2, . . . , ck be scalars. Then

T (0) = 0;

T (c1v1 + v2 + · · ·+ ckvk) = c1T (v1) + c2T (v2) + · · ·+ ckT (vk).

Theorem 1.4. Let T : Rn → Rm be a linear transformation. Let v1,v2, . . . ,vk be vectors in Rn and let
c1, c2, . . . , ck be real numbers.

(a) If v1,v2, . . . ,vk are linearly dependent, then T (v1), T (v2), . . . , T (vk) are linearly dependent.

(b) If T (v1), T (v2), . . . , T (vk) are linearly independent, then v1,v2, . . . ,vk are linearly independent.

2 Standard Matrix of Linear Transformation

Let T : Rn → Rm be a linear transformation. Consider the following vectors

e1 =




1
0
...
0


 , e2 =




0
1
...
0


 , . . . , en =




0
0
...
1




in the coordinate axis of Rn. It is clear that any vector

x =




x1

x2

...
xn


 = x1e1 + x2e2 + · · ·+ xnen

is a linear combination of e1, e2, . . ., en. Thus

T (x) = x1T (e1) + x2T (e2) + · · ·+ xnT (en).

This means that T (x) is completely determined by the images T (e1), T (e2), . . ., T (en). The ordered set
{e1, e2, . . . ,en} is called the standard basis of Rn.

Definition 2.1. The standard matrix of a linear transformation T : Rn → Rm is the m× n matrix

A =
[
T (e1), T (e2), . . . , T (en)

]
=

[
Te1, Te2, . . . , Ten

]
.
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Proposition 2.2. Let T : Rn → Rm be a linear transformation whose standard matrix is A. Then

T (x) = Ax.

Proof.

T (x) = T (x1e1 + x2e2 + · · ·+ xnen)
= x1T (e1) + x2T (e2) + · · ·+ xnT (en)
= [T (e1), T (e2), . . . , T (en)]x = Ax.

Example 2.1. (a) The linear transformation T : R2 → R2, T (x1, x2) = (x1 + 2x2, 3x1 + 4x2), can be
written as the matrix form

T

([
x1

x2

])
=

[
x1 + 2x2

3x1 + 4x2

]
= x1

[
1
3

]
+ x2

[
2
4

]
=

[
1 2
3 4

] [
x1

x2

]
.

(b) Let T : R3 → R2, T (x1, x2, x3) = (x1 + 2x2 + 3x3, 3x1 + 2x2 + 1x3). Then T is a linear transformation
and its standard matrix is given by

T







x1

x2

x3





 =

[
x1 + 2x2 + 3x3

3x1 + 2x2 + x3

]

= x1

[
1
3

]
+ x2

[
2
2

]
+ x3

[
3
1

]

=
[

1 2 3
3 2 1

]


x1

x2

x3


 .

Example 2.2. Let T : R2 → R2 be a rotation about an angle θ counterclockwise. Then

T (e1) =
[

cos θ
sin θ

]
, T (e2) =

[ − sin θ
cos θ

]
.

Thus

T

([
x1

x2

])
=

[
cos θ − sin θ
sin θ cos θ

] [
x1

x2

]
.

F igure

Proposition 2.3. Let f, g : Rn → Rm be linear transformations with the standard matrices A and B,
respectively, that is,

f(x) = Ax, g(x) = Bx, x ∈ Rn.

Then f ± g : Rn → Rm are linear transformation with standard matrix A±B, that is,

(f ± g)(x) = f(x)± g(x) = (A±B)x, x ∈ Rn;

and for any scalar c, cf : Rn → Rm is a linear transformation with the standard matrix cA, that is,

(cf)(x) = cf(x) = (cA)x, x ∈ Rn.

Example 2.3. Let f, g : R3 → R2 be linear transformations defined by (writing in coordinates)

f(x1, x2, x3) = (x1 − x2, x2 − x3),

g(x1, x2, x3) = (x1 + x2, x2 + x3).
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Writing in vectors,

f







x1

x2

x3





 =

[
x1 − x2

x2 − x3

]

=
[

1 −1 0
0 1 −1

]


x1

x2

x3


 ,

g







x1

x2

x3





 =

[
x1 + x2

x2 + x3

]

=
[

1 1 0
0 1 1

]


x1

x2

x3


 .

We then have

(f + g)







x1

x2

x3





 =

[
x1 − x2

x2 − x3

]
+

[
x1 + x2

x2 + x3

]

=
[

2x1

2x2

]
=

[
2 0 0
0 2 0

] [
x1

x2

]
;

(f − g)







x1

x2

x3





 =

[
x1 − x2

x2 − x3

]
−

[
x1 + x2

x2 + x3

]

=
[ −2x2

−2x3

]
=

[
0 −2 0
0 0 −2

]


x1

x2

x3


 .

Hence [
2 0 0
0 2 0

]
=

[
1 −1 0
0 1 −1

]
+

[
1 1 0
0 1 1

]
;

[
0 −2 0
0 0 −2

]
=

[
1 −1 0
0 1 −1

]
+

[
1 1 0
0 1 1

]
.

Definition 2.4. The composition of a function f : X → Y and a function g : Y → Z is a function

g ◦ f : X → Z given by

(g ◦ f)(x) = g(f(x)), x ∈ X.

Proposition 2.5. Let f : X → Y , g : Y → Z, and h : Z → W . Then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

That is, for any x ∈ X, (
h ◦ (g ◦ f)

)
(x) =

(
(h ◦ g) ◦ f

)
(x).

Proof. (
h ◦ (g ◦ f)

)
(x) = h

(
(g ◦ f)(x)

)
= h

(
g
(
f(x)

))
,

(
(h ◦ g) ◦ f

)
(x) = (h ◦ g)

(
f(x)

)
= h

(
g
(
f(x)

))
.
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Theorem 2.6. Let f : Rn → Rm be a linear transformation with standard matrix A. Let g : Rp → Rn

be a linear transformation with standard matrix B. Then the composition f ◦ g : Rp → Rm is a linear
transformation with the standard matrix AB. Symbolically, we have

Rp g−−→
B
Rn f−−→

A
Rm =⇒ Rp f◦g−−→

AB
Rm.

Proof. For vectors u,v ∈ Rp and scalars a, b ∈ R, we have

(f ◦ g)(au + bv) = f(g(au + bv))
= f(ag(u) + bg(v))
= af(gu) + bf(g(v))
= a(f ◦ g)(u) + b(f ◦ g)(v).

Then the composition map f ◦ g is a linear transformation.
Write A = [aij ]m×n, B = [bjk]n×p. Let C = [cik]m×p be the standard matrix of f ◦ g. Let us write

x =




x1

x2

...
xp


 , y =




y1

y2

...
yn


 , z =




z1

z2

...
zm


 .

Then the linear transformations f , g, f ◦ g can be written as

y = g(x) = Bx, z = f(y) = Ay, z = (f ◦ g)(x) = Cx.

Writing in coordinates, we have

yj =
p∑

k=1

bjkxk, 1 ≤ j ≤ n,

zi =
n∑

j=1

aijyj =
p∑

k=1

cikxk, 1 ≤ i ≤ m.

Substitute yj =
∑p

k=1 bjkxk into zi =
∑n

j=1 aijyj . We obtain

zi =
n∑

j=1

aij

p∑

k=1

bjkxk =
p∑

k=1




n∑

j=1

aijbjk


 xk.

Comparing the coefficients of the variables xk, we conclude that

cik =
n∑

j=1

aijbjk, 1 ≤ i ≤ m, 1 ≤ k ≤ p.

Example 2.4. Consider the linear transformations

S : R2 → R3, S(x) =




1 −1
−1 1

1 1




[
x1

x2

]
=




x1 − x2

−x1 + x2

x1 + x2


 ,

T : R3 → R2, T (x) =
[

1 1 0
0 1 1

]


x1

x2

x3


 =

[
x1 + x2

x2 + x3

]
.
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Then S ◦ T : R3 → R3 and T ◦ S : R2 → R2 are both linear transformations, and

(S ◦ T )(x) = S(T (x)) = S

([
x1 + x2

x2 + x3

])

=




x1 − x3

−x1 + x3

x1 + 2x2 + x3




=




1 0 −1
−1 0 1

1 2 1







x1

x2

x3


 ,

(T ◦ S)(x) = T (S(x)) = T







x1 − x2

−x1 + x2

x1 + x2







=
[

0
2x2

]
=

[
0 0
0 2

] [
x1

x2

]
.

Hence 


1 0 −1
−1 0 1

1 2 1


 =




1 −1
−1 1

1 1




[
1 1 0
0 1 1

]
,

[
0 0
0 2

]
=

[
1 1 0
0 1 1

]


1 −1
−1 1

1 1


 .

Proposition 2.7. Let A be an m×n matrix and let B be an n×p matrix. Write B = [b1, b2, . . . , bp]. Then

AB = A[b1, b2, . . . , bp] = [Ab1, Ab2, . . . , Abp].

Example 2.5. Let A =
[

1 1
1 2

]
, B =

[
1 2 3
2 3 1

]
. Write B = [b1, b2, b3]. Then

Ab1 =
[

1 1
1 2

] [
1
2

]
=

[
3
5

]
,

Ab2 =
[

1 1
1 2

] [
2
3

]
=

[
5
8

]
,

Ab3 =
[

1 1
1 2

] [
3
1

]
=

[
4
5

]
,

and

AB =
[

1 1
1 2

] [
1 2 3
2 3 1

]
=

[
3 5 4
5 8 5

]
.

Example 2.6. For any real number r, the mapping Dr : Rn → Rn defined by

Dr(x) = rx,

is a linear transformation, called the dilation by r. Its standard matrix is Dr is the matrix.



r 0 · · · 0
0 r · · · 0
...

...
. . .

...
0 0 · · · r
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Example 2.7. Let T : Rn → Rm be a linear transformation with standard matrix A. Then

T ◦Dr = Dr ◦ T.

The standard matrices of T ◦Dr and Dr ◦ T are equal to rA.

Theorem 2.8. (a) If A is an m× n matrix, B and C are n× p matrices, then

A(B + C) = AB + AC.

(b) If A and B are m× n matrices, C is an n× p matrix, then

(A + B)C = AC + BC.

(c) If A is an m× n matrix and B is an n× p matrix, then for any scalar a,

a(AB) = (aA)B = A(aB).

(d) If A is an m× n matrix, then
ImA = A = AIn.

Definition 2.9. The transpose of an m × n matrix A is the n × m matrix AT whose (i, j)-entry is the
(j, i)-entry of A, that is,

AT =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




T

=




a11 a21 · · · am1

a12 a22 · · · am2

...
...

. . .
...

a1n a2n · · · anm


 .

Example 2.8.



1 2 3 4
3 4 5 6
5 6 7 8




T

=




1 3 5
2 4 6
3 5 7
4 6 8


 .

Proposition 2.10. Let A be an m× n matrix and B an n× p matrix. Then

(AB)T = BT AT .

Proof. Let cij be the (i, j)-entry of AB. Let b′ik be the (i, k)-entry of BT be and a′kj the (k, j)-entry of AT .
Then b′ik = bki and a′kj = ajk. Thus the (i, j)-entry of (AB)T is

cji =
n∑

k=1

ajkbki =
n∑

k=1

b′ika′kj ,

which is the (i, j)-entry of BT AT by the matrix multiplication.

Theorem 2.11. Let h : X → Y , g : Y → Z, f : Z → W be functions. Then

(f ◦ g) ◦ h = f ◦ (g ◦ h).

Proof. For any x ∈ X,
(
(f ◦ g) ◦ h

)
(x) = (f ◦ g)

(
h(x)

)
= f

(
g(h(x))

)
= f

(
(g ◦ h)(x)

)
=

(
f ◦ (g ◦ h)

)
(x).
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Corollary 2.12. Let A be an m× n matrix, B an n× p matrix, and C an p× q matrix. Then (AB)C and
A(BC) are m× q matrices, and

(AB)C = A(BC).

Definition 2.13. Let f : X → Y be a function.

(a) The function f is called one-to-one if distinct elements in X are mapped to distinct elements in Y .

(b) The function f is called onto if every element y in Y is the image of some element x in X under f .

Theorem 2.14 (Characterization of One-to-One and Onto). Let T : Rn → Rm be a linear transfor-
mation with standard matrix A. Then

(a) T is one-to-one ⇐⇒ T (x) = 0 has the only trivial solution.
⇐⇒ The column vectors of A are linearly independent.
⇐⇒ Every column of A has a pivot position.

(b) T is onto ⇐⇒ The column vectors of A span Rm.
⇐⇒ Every row of A has a pivot position.

Example 2.9. (a) The linear transformation T1 : R2 → R3, defined by

T1

([
x1

x2

])
=




1 4
2 5
3 6




[
x1

x2

]
,

is one-to-one but not onto. The column vectors are linearly independent, but can not span R3.

(b) The linear transformation T2 : R3 → R2, defined by

T2







x1

x2

x3





 =

[
1 2 3
2 3 4

]


x1

x2

x3


 ,

is not one-to-one but onto. The column vectors are linearly dependent but span R2.

(c) The linear transformation T3 : R3 → R3, defined by

T3







x1

x2

x3





 =




1 2 3
2 3 4
3 4 5







x1

x2

x3


 ,

is neither one-to-one nor onto. The column vectors are linearly dependent and can not span R3.

(d) The linear transformation T4 : R3 → R3, defined by

T4







x1

x2

x3





 =




1 2 3
2 3 2
3 4 1







x1

x2

x3


 ,

is neither one-to-one nor onto. The column vectors are linearly dependent and can not span R3.

(e) The linear transformation T5 : R3 → R3, defined by

T4







x1

x2

x3





 =




1 1 −1
1 −1 1

−1 1 1







x1

x2

x3


 ,

is both one-to-one and onto. The column vectors are linearly independent and span R3.
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Corollary 2.15. Let T : Rn → Rm be defined by T (x) = Ax.

(a) If T is one-to-one, then n ≤ m.

(b) If T is onto, then n ≥ m.

(c) If T is one-to-one and onto, then m = n.

Proof. (a) Since T is one-to-one, the system Ax = 0 has only the trivial solution. Then the reduced row
echelon form of A must be of the form 



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




.

This shows that every column of A has a pivot position. Thus n ≤ m.
(b) Since T is onto, the reduced row echelon form B for A can not have zero rows. This means that

every row of B has a pivot position. Note that every pivot positions must be in different columns. Hence
n ≥ m.

Corollary 2.16. Let T : Rn → Rn be a linear transformation. The following statements are equivalent.

(a) T is one-to-one.

(b) T is onto.

(c) T is one-to-one and onto.

3 Invertible Matrices

Definition 3.1. A function f : X → Y is called invertible if there is a function g : Y → X such that

g ◦ f(x) = x for all x ∈ X,

f ◦ g(y) = y for all y ∈ Y.

If so, the function g is called the inverse of f , and is denoted by g = f−1. The function Id : X → X,
defined by Id(x) = x, is called the identity function.

Theorem 3.2. A function f : X → Y is invertible if and only if f is one-to-one and onto.

Proof. Assume that f is invertible. For two distinct elements u and v of X, if f(u) and f(v) are not distinct,
that is, f(u) = f(v), then u = g(f(u)) = g(f(v)) = v, a contradiction. This means that f is 1-1. For any
element w of Y , consider the element u = g(w) of X. We have f(u) = f(g(w)) = w. This shows that f is
onto.

Conversely, assume that f is 1-1 and onto. For any element y of Y , there exists a unique element x in X
such that f(x) = y. Define g : Y → X by g(y) = x, where f(x) = y. Then g is the inverse of f .

Note. If a linear transformation T : Rn → Rm is invertible, then T must be 1− 1 and onto. Hence m = n.

Definition 3.3. A linear transformation T : Rn → Rn is called invertible if there is a linear transformation
S : Rn → Rn such that

S ◦ T = Idn and T ◦ S = Idn,

9



where Idn : Rn → Rn is the identity transformation defined by Idn(x) = x for x ∈ Rn. The standard
matrix of Idn is the identity matrix

In =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 .

Definition 3.4. A square n×n matrix A is called invertible if there is a square n×n matrix B such that

AB = In = BA.

If A is invertible, the matrix B is called the inverse of A, and is denoted by B = A−1.

Theorem 3.5. Let T : Rn → Rn be a linear transformation.

(a) If T is 1-1, then T is invertible.

(b) If T is onto, then T is invertible.

In order to find out whether an n × n matrix A is invertible or not, it is to decide whether the matrix
equation

AX = In

has a solution, and if it has a solution, the solution matrix is the inverse of A. Write X = [x1,x2, . . . ,xn].
Then AX = In is equivalent to solving the following linear systems

Ax1 = e1, Ax2 = e2, . . . , Axn = en.

Perform row operation to the corresponding augmented matrices; we have

[A | e1]
ρ∼ [In | b1], [A | e2]

ρ∼ [In | b2], . . . , [A | en]
ρ∼ [In | bn].

The corresponding solutions b1, b2, . . . , bn can be obtained simultaneously by applying the same row opera-
tions to

[
A | I]

, i.e.,
[
A | I]

=
[
A | e1, e1, . . . ,en

] ρ∼ [
A | b1, b1, . . . , bn

]
=

[
I |B]

.

Then B is the inverse of A.

Example 3.1. The matrix A =




1 1 2
2 1 1
1 2 4


 is invertible.




1 1 2 | 1 0 0
2 1 1 | 0 1 0
1 2 4 | 0 0 1




R2 − 2R1

∼
R3 −R1




1 1 2 | 1 0 0
0 −1 −3 | −2 1 0
0 1 2 | −1 0 1




R3 + R2

∼
(−1)R2




1 1 2 | 1 0 0
0 1 3 | 2 −1 0
0 0 −1 | −3 1 1




R2 + 3R3

∼
R1 + 2R3




1 1 0 | −5 2 2
0 1 0 | −7 2 3
0 0 −1 | −3 1 1




R1 −R2

∼
(−1)R3




1 0 0 | 2 0 −1
0 1 0 | −7 2 3
0 0 1 | 3 −1 −1


 ,
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1 1 2
2 1 1
1 2 4



−1

=




2 0 −1
−7 2 3

3 −1 −1


 .

Example 3.2. The matrix




1 2 3
2 3 2
3 4 1


 is not invertible.




1 2 3 | 1 0 0
2 3 2 | 0 1 0
3 4 1 | 0 0 1




R2 − 2R1

→
R3 − 3R1




1 2 3 | 1 0 0
0 −1 −4 | −2 1 0
0 −2 −8 | −3 0 1




(−1)R2

→
R3 − 2R2




1 2 3 | 1 0 0
0 1 4 | 2 −1 0
0 0 0 | 1 −2 1


 .

Proposition 3.6. If A and B are n× n invertible matrices, then

(AT )−1 = (A−1)T ,

(AB)−1 = B−1A−1.

Proof. Since taking transposition reverses the order of multiplication, we have

AT (A−1)T = (A−1A)T = IT = I,

(A−1)T AT = (AA−1)T = IT = I.

By definition of inverse matrix, we conclude (AT )−1 = (A−1)T .
Since

B−1A−1AB = B−1B = I = AA−1 = ABB−1A−1.

By definition of invertible matrix, we conclude (AB)−1 = B−1A−1.

Proposition 3.7. For any 2× 2 matrix A =
[

a b
c d

]
, if detA := ad− bc 6= 0, then

[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

Proof. Assume ad − bc = 0, that is, ad = bc. If ad = 0, then a = 0 or d = 0; b = 0 or c = 0. The matrix
contains either a zero row or zero column; so it is not invertible. If ad 6= 0, then a, b, c, and d are all nonzero.
Thus a/b = c/d. This means that the two columns are linearly dependent. So the matrix is not invertible.

Assume ad− bc 6= 0; we have
[

a b
c d

] [
d −b
−c a

]
=

[
ad− bc 0

0 ad− bc

]
= (ad− bc)

[
1 0
0 1

]
.

Theorem 3.8 (Characterization of Invertible Matrices). Let A be an n× n square matrix. Then the
following statements are equivalent.

(a) A is invertible.
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(b) The reduced row echelon form of A is the identity matrix In.

(c) A has n pivot positions.

(d) Ax = 0 has the only trivial solution.

(e) The column vectors of A are linearly independent.

(f) The linear transformation T (x) = Ax is one-to-one.

(g) The equation Ax = b has at least one solution for any b ∈ Rn.

(h) The column vectors of A span Rn.

(i) The linear transformation T (x) = Ax from Rn to Rn is onto.

(j) There is an n× n square matrix B such that BA = In.

(k) There is an n× n square matrix B such that AB = In.

(l) Aτ is invertible.

Proof. It is straightforward that

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) ⇒ (g) ⇒ (h) ⇒ (i) ⇒ (l) ⇒ (T is invertible) ⇒ (a).

Let S(x) = Bx. Then

(j) ⇒ (T is one-to-one) ⇒ (S is the inverse of T ) ⇒ (B is the inverse of A) ⇒ (k) ⇒ (j).

4 Determinants

Let T : R2 → R2 be a linear transformation with the standard matrix

A =
[
a11 a12

a21 a22

]
.

Recall that the determinant of a 2× 2 matrix
[

a11 a12
a21 a22

]
is defined by

det
[
a11 a12

a21 a22

]
=

∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21.

Let A = [aij ] be an n× n square matrix. For a fixed (i, j), where 1 ≤ i ≤ m and 1 ≤ j ≤ n, let

Aij = (n− 1)× (n− 1) submatrix of A obtained
by deleting the ith row and jth column of A.

Definition 4.1. Let A = [aij ] be an n × n square matrix. The determinant of A is a number detA,
inductively defined by

det A = a11 det A11 − a12 detA12 + · · ·+ (−1)n+1a1n detA1n

= a11 det A11 − a21 detA21 + · · ·+ (−1)n+1an1 detAn1.

Theorem 4.2. Let A = [aij ] be an n× n matrix. The (i, j)-cofactor of A (1 ≤ i, j ≤ n) is the number

Cij = (−1)i+j det Aij .

Then

detA = a11C11 + a12C12 + · · ·+ a1nC1n

= a11C11 + a21C21 + · · ·+ an1Cn1.
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Example 4.1. For any 3× 3 matrix,
∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31.

Theorem 4.3 (Cofactor Expansion Formula). For any n× n square matrix A = [aij ],

detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

= a1jC1j + a2jC2j + · · ·+ anjCnj .

In other words,
det AT = det A.

Proposition 4.4. ∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

0 a22 · · · a2n

...
...

. . .
...

0 0 · · · ann

∣∣∣∣∣∣∣∣∣
= a11a22 · · · ann.

Theorem 4.5. Determinant satisfies the following properties.

(a) Adding a multiple of one row (column) to another row (column) does not change the determinant.

(b) Interchanging two rows (columns) changes the sign of the determinant.

(c) If two rows (columns) are the same, then the determinant is zero.

(d) If one row (column) of A is multiplied by a scalar γ to produce a matrix B, then

det B = γ detA.

Proof. Consider n× n matrices. We proceed induction on n.
(a) For n = 2, we have

∣∣∣∣
a11 a12

a21 + ca11 a22 + ca12

∣∣∣∣ = a11(a22 + ca12)− a12(a21 + ca11)

= a11a22 − a12a21

=
∣∣∣∣

a11 a12

a21 a22

∣∣∣∣ ;
∣∣∣∣

a11 + ca21 a12 + ca22

a21 a22

∣∣∣∣ = (a11 + ca21)a22 − (a12 + ca22)a21

= a11a22 − a12a21

=
∣∣∣∣

a11 a12

a21 a22

∣∣∣∣ .

Suppose it is true for all (n − 1) × (n − 1) matrices. Consider the case Rj + cRi. We divide the case into
two subcases: (1) i = 1 and (2) i ≥ 2. For i = 1, we have

Theorem 4.6 (The Algorithm for Determinant). Let A = [aij ] be an n× n matrix. If



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann




interschanging rows
∼

adding a multiple of
one row to another




a1 ∗ · · · ∗
0 a2 · · · ∗
...

...
. . .

...
0 0 · · · an


 .

Then
detA = (−1)ka1a2 · · · an,

where k is the number times of interchanging two rows.
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Example 4.2. The determinant
∣∣∣∣∣∣

1 2 4
2 3 5
3 4 8

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 2 4
0 −1 −3
0 −2 −4

∣∣∣∣∣∣
= −

∣∣∣∣∣∣

1 2 4
0 1 3
0 −2 −4

∣∣∣∣∣∣
= −

∣∣∣∣∣∣

1 2 4
0 1 3
0 0 2

∣∣∣∣∣∣
= −2.

Theorem 4.7. Let A be an n× n matrix, and let Cij be the (i, j)-cofactor of A, i.e.,

Cij = (−1)i+j det Aij .

Then we have
n∑

k=1

aikCjk = ai1Cj1 + ai2Cj2 + · · ·+ ainCjn =
{

detA if i = j
0 if i 6= j.

Proof. For i = j, it follows from the cofactor expansion formula. For i 6= j, let us verify for 3× 3 matrices.
For instance, for i = 1 and j = 3, we have

a11C31 + a12C32 + a13C33 = a11

∣∣∣∣
a12 a13

a22 a23

∣∣∣∣− a12

∣∣∣∣
a11 a13

a21 a23

∣∣∣∣ + a13

∣∣∣∣
a11 a12

a21 a22

∣∣∣∣

=

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a11 a12 a13

∣∣∣∣∣∣
= 0.

Definition 4.8. For an n × n matrix A = [aij ], the classical adjoint matrix of A is the n × n matrix
adjA whose (i, j)-entry is the (j, i)-cofactor Cji, that is,

adjA =




C11 C21 · · · Cn1

C12 C22 · · · Cn2

...
...

. . .
...

C1n C2n · · · Cnn


 =




C11 C12 · · · C1n

C21 C22 · · · C2n

...
...

. . .
...

Cn1 Cn2 · · · Cnn




T

.

Theorem 4.9. For any n× n matrix A,

A adjA = (det A)In.

Proof. We verify for the case of 3× 3 matrices.



a11 a12 a13

a21 a22 a23

a31 a32 a33







C11 C21 C31

C12 C22 C32

C13 C23 C33




=




∑3
k=1 a1kC1k

∑3
k=1 a1kC2k

∑3
k=1 a1kC3k∑3

k=1 a2kC1k

∑3
k=1 a2kC2k

∑3
k=1 a2kC3k∑3

k=1 a3kC1k

∑3
k=1 a3kC2k

∑3
k=1 a3kC3k




=




det A 0 0
0 det A 0
0 0 det A




Theorem 4.10. An n× n matrix A is invertible if and only if detA 6= 0.

14



5 Elementary Matrices

Definition 5.1. The following n× n matrices are called elementary matrices.

E
(
c(i)

)
=




1
. . . O

1
c

1

O
. . .

1




ith, c 6= 0;

E(i, j) =




1
. . . O

0 · · · 1
...

. . .
...

1 · · · 0

O
. . .

1




ith

jth
;

E
(
j + c(i)

)
=




1
. . .

1 · · · 0
...

. . .
...

c · · · 1
. . .

1




ith

jth
.

Let In be the n× n identity matrix. We have

In
cRi→ E

(
c(i)

)
,

In
Ri↔Rj→ E(i, j),

In
Rj+cRi→ E

(
j + c(i)

)
.

Proposition 5.2. Let A be an m× n matrix. Then

(a) E
(
c(i)

)
A is the matrix obtained from A by multiplying c to the ith row.

(b) E(i, j)A is the matrix obtained from A by interchanging the ith row and the jth row.

(c) E
(
j + c(i)

)
A is the matrix obtained from A by adding the c multiple of the ith row to the jth row.

Proposition 5.3. Elementary matrices are invertible. Moreover,

E
(
c(i)

)−1 = E( 1
c (i)),

E(i, j)−1 = (j, i),

E
(
j + c(i)

)−1 = E
(
j − c(i)

)
.

Theorem 5.4. A square matrix A is invertible if and only if it can be written as product

A = E1E2 · · ·Ep,

of some elementary matrices E1, E2, . . ., Ep.
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Theorem 5.5. A square matrix A is invertible if and only if detA 6= 0.

Proposition 5.6. Let A and B n× n matrices. Then

detAB = det A detB.

Proof. Case 1: det A = 0. Then A is not invertible by Theorem 4.10. We claim that AB is not invertible.
Otherwise, if AB is invertible, then there is a matric C such that (AB)C = I; thus A(BC) = I; this means
that A is invertible, contradictory to that detA 6= 0. Again by Theorem 4.10, det(AB) = 0. Therefore
det AB = det A det B.

Case 2: det A 6= 0. It is easy to check directly that

detEB = det E det B

for any elementary matrix E. Let A be written as A = E1E2 · · ·Ek for some elementary matrices E1, E2,
. . ., Ek. Then

det AB = det(E1E2 · · ·EkB) = (detE1) det(E2 · · ·EkB)
= (det E1)(detE2) det(E3 · · ·EkB) = · · ·
= det E1 detE2 · · ·detEk detB = det A det B.

6 LU-Decomposition

Theorem 6.1. Let A be an m × n matrix. If A can be reduced to its row echelon form by elementary row
operations without switching rows, then A admits a LU -decomposition, that is, there is a lower triangular
m×m matrix L and an m× n upper triangular matrix U such that A = LU .

Proof. Let ρ1, ρ2, . . . , ρk be a sequence of row operations such that

A
ρ1∼ A1

ρ2∼ · · · ρk∼ Ak = U,

where U is upper triangular. Let E1, E2, . . . , Ek be elementary matrices corresponding the row operations
ρ1, ρ2, . . . , ρk, respectively. Then Ek · · ·E2E1A = U . Let L = E−1

1 E−1
2 · · ·E−1

k . Then L is a lower triangular
and A = LU .

Example 6.1.

7 Interpretation of Determinant

Let A =
[

a11 a12
a21 a22

]
be a 2× 2 matrix. Let e1, e2, e3 be the standard basis of R3. Set

a1 =




a11

a21

0


 , a2 =




a12

a22

0


 .

Then the area of the parallelepiped spanned by the two vectors a1 and a2 is the length of the cross product
a1 × a2, that is,

|a1 × a2| = |(a11e1 + a21e2)× (a12e1 + a22e2)|
= |a11a22e3 − a21a22e3|
= |a11a22 − a21a22|.

Let A = [aij ] = [a1,a2,a3] be a 3 × 3 matrix. The volume of the parallelotope spanned by the three
vectors a1, a2, a3 is the length of the triple (a1 × a2) · a3, that is,

|(a1 × a2) · a3| = |a1 · (a2 × a3)|
= |a11 detA11 − a21 det A21 + a31 detA31|.
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Example 7.1. The Vandermonde determinant is
∣∣∣∣∣∣

1 1 1
a1 a2 a3

a2
1 a2

2 a2
3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 1 1
0 a2 − a1 a3 − a1

0 a2
2 − a2a1 a2

3 − a3a1

∣∣∣∣∣∣

=
∣∣∣∣

a2 − a1 a3 − a1

a2(a2 − a1) a3(a3 − a1)

∣∣∣∣

= (a3 − a2)(a3 − a1)(a2 − a1).

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
a1 a2 a3 · · · an

a2
1 a2

2 a2
3 · · · a2

n
...

...
...

. . .
...

an−1
1 an−1

2 an−1
3 · · · an−1

n

∣∣∣∣∣∣∣∣∣∣∣

=
∏

j>i

(aj − ai).

Example 7.2.
∣∣∣∣∣∣∣∣

1 −3 1 −2
2 −5 −1 −2
0 −4 5 1

−3 10 −6 7

∣∣∣∣∣∣∣∣

R2 − 2R1

=
R4 + 3R1

∣∣∣∣∣∣∣∣

1 −3 1 −2
0 1 −3 2
0 −4 5 1
0 1 −3 1

∣∣∣∣∣∣∣∣

R3 + 4R2

=
R4 −R2

∣∣∣∣∣∣∣∣

1 −3 1 −2
0 1 −3 2
0 0 −7 9
0 0 0 −1

∣∣∣∣∣∣∣∣
= 7.

Theorem 7.1 (Cramer’s Rule). Let A = [a1,a2, . . . ,an] be an n × n invertible matrix with the column
vectors a1, a2, . . ., an. Then for any b ∈ Rn, the unique solution of the system

Ax = b

is given by

xi =
detAi

det A
, i = 1, 2, . . . , n

where
Ai = [a1, . . . ,ai−1, b,ai+1, . . . ,an], 1 ≤ i ≤ n.

Proof. If a vector x is the solution of the system, then

A[e1, . . . ,ei−1,x, ei+1, . . . ,en] = [Ae1, . . . , Aei−1, Ax, Aei+1, . . . , Aen]
= [a1, . . . ,ai−1, b,ai+1, . . . ,an].

Taking determinant of both sides, we have

(detA)xi = det Ai, 1 ≤ i ≤ n.
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