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1 Linear Transformations

Definition 1.1. Let X and Y be nonempty sets. A function from X to Y is a rule, written f : X — Y,
such that each element z in X is assigned a unique element y in Y'; the element y is denoted by f(x), written

y = f(x),

called the image of x under f; and the element z is called the preimage of f(z). Functions are also called
maps, or mappings, or transformations.

Definition 1.2. A function 7' : R™ — R™ is said to be a linear transformation if, for any vectors w, v in
R™ and scalar c,

(a) T(u+v)=T(u)+T(v),
(b) T(cu) = ¢T'(uw).

Example 1.1. (a) The function T : R? — R?, defined by T'(z1,22) = (21 + 272, ¥2), is a linear transfor-
mation, see Figure 1
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Figure 1: The geometric shape under a linear transformation.

(b) The function T : R? — R?, defined by T(x1,z2) = (21 + 22, 371 + 472), is a linear transformation.

(c) The function T : R® — R2, defined by T(x1,z2,73) = (21 + 272 + 323,321 + 222 + x3), is a linear
transformation.

Example 1.2. The transformation T : R® — R™ by T'(x) = Az, where A is an m X n matrix, is a linear
transformation.

Example 1.3. The map T : R™ — R", defined by T'(x) = Az, where X is a constant, is a linear transfor-
mation, and is called the dilation by .

Example 1.4. The refection T : R? — R? about a straight line through the origin is a linear transformation.

Example 1.5. The rotation T : R2 — R? about an angle 6 is a linear transformation, see Figure 2.



Figure 2: Rotation about an angle 6.

Proposition 1.3. Let T : R™ — R™ be a linear transformation. Let v1,va, ..., v be vectors in R™ and let
c1,Co,...,c be scalars. Then
T(0) = 0;

T(c1v1 +vo+ -+ o) = aaT(v1) + 2T (v2) + -+ - + e, T (vg).

Theorem 1.4. Let T : R® — R™ be a linear transformation. Let vi,vs,..., v be vectors in R™ and let
C1,Co,. .., be real numbers.

(a) If vy,ve,...,v are linearly dependent, then T(v1),T(v2),...,T(vy) are linearly dependent.

(b) If T(v1),T(v2),...,T(vy) are linearly independent, then vy, va, ..., v, are linearly independent.

2 Standard Matrix of Linear Transformation

Let T : R™ — R™ be a linear transformation. Consider the following vectors

1 0 0

0 1 0
€e; = . , €y = . s e, Ep =

0 0 1

in the coordinate axis of R™. It is clear that any vector
Z1
T2
T = . =ZT1€1 + Tee2 + -+ Tpey
Tn
is a linear combination of ey, es, ..., e,. Thus

T(x) =x1T(e1) + x2T(e2) + - - + z,T(en).

This means that T'(x) is completely determined by the images T'(e1), T(e2), ..., T(e,). The ordered set
{e1,eq,...,e,} is called the standard basis of R™.

Definition 2.1. The standard matrix of a linear transformation 7" : R™ — R™ is the m x n matrix

A=T(e1),T(e2),...,T(e,)] = [Ter,Tes,...,Te,].



Proposition 2.2. Let T : R™ — R™ be a linear transformation whose standard matrixz is A. Then
T(x) = Ax.
Proof.

T(x) = T(r1e1+zoes+ -+ x4e,)
= x1T(e1) + x2T(e2) + -+ x,T(en)
= [T(e1),T(ez2),...,T(e,)]x = Ax.
O

Example 2.1. (a) The linear transformation T : R? — R2 T(z1,22) = (z1 + 272, 3x1 + 422), can be
written as the matrix form

r([m) -l e8] = 2] - 15 15

(b) Let T : R® — R2, T(z1,22,73) = (x1 + 222 + 33,371 + 222 + 123). Then T is a linear transformation
and its standard matrix is given by

T il o T + 2582 + 3563
$2 B 3.’E1 + 21[,’2 =+ xIs
3

- a[2]on 3] w2

1 2 3 1
3 2 1 T2

Zs3

Example 2.2. Let T : R2 — R? be a rotation about an angle § counterclockwise. Then

T(ey) = { cos 0 ] T(en) = { ~sind }

sin 6 cos
Thus
T cosf —sinb T
T = . .
To sin 0 cosf To
Figure

Proposition 2.3. Let f,g : R® — R™ be linear transformations with the standard matrices A and B,

respectively, that is,
f(x) = Az, g(x) =Bz, xecR".

Then f £+ g : R™ — R™ are linear transformation with standard matriz A + B, that is,
(f £9)(x) = f(z) £g(x) = (AL B)z, =eR"
and for any scalar ¢, cf : R™ — R™ is a linear transformation with the standard matriz cA, that is,
(cf)(x) =cf(x) = (cA)z, xeR"
Example 2.3. Let f,g: R? — R? be linear transformations defined by (writing in coordinates)
f(@1, 22, 23) = (21 — 22,22 — 23),

g(x1,x2,23) = (1 + T2, T2 + T3).



Writing in vectors,
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Definition 2.4. The composition of a function f: X — Y and a function g : Y — Z is a function

gof:X — Z given by

(9o f)(x) =9g(f(x)), zeX

Proposition 2.5. Let f: X =Y, g:Y - Z, andh: Z — W. Then

ho(gof)=(hog)of.
That is, for any x € X,

(ho(go))(@) = ((hog)of)(x).
Proof.
(helge )@ =h((ge @) = h(g(F@)),

((hog)o f)(x) = (hog)(f(x) = h(g(f(2))).



Theorem 2.6. Let f : R™ — R™ be a linear transformation with standard matrix A. Let g : RP — R™
be a linear transformation with standard matriz B. Then the composition fo g : RP — R™ is a linear
transformation with the standard matrix AB. Symbolically, we have

RF 2R L Rm — R LR
B A AB
Proof. For vectors u,v € RP and scalars a,b € R, we have

(fog)lau+bv) = f(g(au+bv))
= flag(u) + bg(v))
= af(gu) +bf(9(v))
= a(fog)(u)+b(fog)(v).

Then the composition map f o g is a linear transformation.
Write A = [aijlmxn, B = [bjklnxp. Let C = [cik]mxp be the standard matrix of f o g. Let us write

T1 hn 21

T2 Y2 22
T = y Y= . )y B =

Tp Yn Zm

Then the linear transformations f, g, f o g can be written as

y=g(x)=Bzx, z=f(y)=A4y, z=(fog)(x)=Cux.

Writing in coordinates, we have

p
yi = > bz, 1<j<mn,
k=1
n P
z; = Zaijyj = Zcz’kmk, 1<i<m.
j=1 k=1

Substitute y; = > -7 _; bjrxy into z; = Z?=1 a;jy;. We obtain

n p p n
Z; = E aij E bjka:k = E E aijbjk L.
j=1 k=1

k=1 \j=1

Comparing the coefficients of the variables x, we conclude that

n
cik:Zaijbjk, 1§z§m71§k§p
j=1

Example 2.4. Consider the linear transformations

1 -1 z r1 — T2
S:R* - R3 Sx)=| —1 1 { 1]: —z1+x2 |,
1 1 T2 xr1 + o
xq
1 1 0 1+ X9
T:R> =R T(x)= =] " )
- (CE) |:0 1 1:| ﬁi |:$2+333



Then SoT : R? — R? and T o S : R? — R? are both linear transformations, and

_ _ T+ X2
som@) = s =s(| 1)
_ I .
= —Tr1 + I3
_Il+2I2+I3_
1 0 -1 [ =
= -1 0 1 T2 y
L 1 2 1 _583
r1 — T2
(ToS)(x) = T(S(x)=T —T1 + T2
1+ o
_ 0 10 0 1
- 2{E2 o 0 2 xIo
Hence
1 0 -1 1 -1
SR
1 2 1 1 1
[o 0}_{110] B
0 2 01 1 1 1

Proposition 2.7. Let A be an m x n matriz and let B be an n x p matriz. Write B = [by, ba, ..

AB = Alby, by, ..., by = [Aby, Ab,, ..., Ab,].
11 1 2 3 .
Example 2.5. Let A = 1 2 , B= 9 3 1 . Write B = [by, ba, bs]. Then
(1 1][1] [3]
Abl*_l 2 )l2] 5]
(1 1727 [5]
AbQ‘_l 2|3 |8]"
(1 1731 [4]
Ab3__12 BN ERERE
and
11 1 3 3 5 4
AB[1 QHQ 1 [585}

Example 2.6. For any real number r, the mapping

2
3
D

r : R™ — R"™ defined by
D, (x) =rz,

is a linear transformation, called the dilation by r. Its standard matrix is D, is the matrix.

r 0 --- 0
0O r --- 0
0 0 T

by

Then



Example 2.7. Let T: R®™ — R™ be a linear transformation with standard matrix A. Then
ToD,=D,oT.

The standard matrices of T o D,. and D,. o T' are equal to rA.

Theorem 2.8. (a) If A is an m x n matriz, B and C are n X p matrices, then

A(B+C) = AB + AC.

(b) If A and B are m x n matrices, C' is an n X p matriz, then

(A+ B)C = AC + BC.

(¢) If A is an m X n matriz and B is an n X p matriz, then for any scalar a,

a(AB) = (aA)B = A(aB).

(d) If A is an m X n matriz, then
I,A=A=AI,.

Definition 2.9. The transpose of an m x n matrix A is the n x m matrix AT whose (i, 7)-entry is the
(j,1)-entry of A, that is,

T
a1 a2 - Q1p aix a1 0 Gml
a1 Q22 - a2n Q12 A2 - Am2
AT = =
Am1 Am2 e Amn Ai1np  Q2n T Anm

Example 2.8.
T

1 2 3 4
3 4 5 6 =
5 6 7 8
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Proposition 2.10. Let A be an m x n matrix and B an n X p matriz. Then
(AB)T = BT AT,

Proof. Let ¢;j be the (i, j)-entry of AB. Let b}, be the (i, k)-entry of BT be and ay; the (k, j)-entry of A™.
Then b}, = by; and a}; = a;x. Thus the (i, j)-entry of (AB)” is

n n
Cji = Z ajrbri = Zb;ka;ejv
k=1 k=1
which is the (i, j)-entry of BT AT by the matrix multiplication. O
Theorem 2.11. Leth: X =Y, qg:Y = Z, f: Z — W be functions. Then
(fog)oh=fo(goh)
Proof. For any x € X,

((fog)oh)(@) = (fog)(hx)) = f(g(h(x))) = f((goh)(@)) = (folgoh))(a)



Corollary 2.12. Let A be an m x n matriz, B an n X p matriz, and C an p X ¢ matriz. Then (AB)C and
A(BC) are m x q matrices, and
(AB)C = A(BC).

Definition 2.13. Let f: X — Y be a function.
(a) The function f is called one-to-one if distinct elements in X are mapped to distinct elements in Y.
(b) The function f is called onto if every element y in Y is the image of some element z in X under f.

Theorem 2.14 (Characterization of One-to-One and Onto). Let T : R" — R™ be a linear transfor-
mation with standard matriz A. Then

(a) T is one-to-one <= T(x) = 0 has the only trivial solution.
<= The column vectors of A are linearly independent.
<= Fvery column of A has a pivot position.

(b) T is onto <= The column vectors of A span R™.
<= FEvery row of A has a pivot position.

Example 2.9. (a) The linear transformation 7} : R? — R3, defined by

s((2])-]z:) 2]

is one-to-one but not onto. The column vectors are linearly independent, but can not span R3.

(b) The linear transformation T» : R* — R2, defined by

I Z1
1 2 3
T2 Z2 = |: 2 3 4 :| x2 )
xs3 3

is not one-to-one but onto. The column vectors are linearly dependent but span R2.

(c) The linear transformation T3 : R?* — R3, defined by

T 1 2 3 T
T3 To = 2 3 4 To s
I3 3 4 5 T3

is neither one-to-one nor onto. The column vectors are linearly dependent and can not span R3.

(d) The linear transformation Ty : R?* — R3, defined by

I 1 2 3 T
Ty 9 =12 3 2 T2 |,
T3 3 4 1 5

is neither one-to-one nor onto. The column vectors are linearly dependent and can not span R3.

(e) The linear transformation Ty : R?* — R3, defined by

T 1 1 -1 T
T4 xTo = 1 -1 1 xTo s
I3 -1 1 1 I3

is both one-to-one and onto. The column vectors are linearly independent and span R3.



Corollary 2.15. Let T : R™ — R™ be defined by T(x) = Azx.
(a) If T is one-to-one, then n < m.
(b) If T is onto, then n > m.
(¢) If T is one-to-one and onto, then m = n.

Proof. (a) Since T is one-to-one, the system Ax = 0 has only the trivial solution. Then the reduced row
echelon form of A must be of the form

1 0 --- 0
01 --- 0
0 0 1
0 0 0

_0 o --- 0_

This shows that every column of A has a pivot position. Thus n < m.

(b) Since T is onto, the reduced row echelon form B for A can not have zero rows. This means that
every row of B has a pivot position. Note that every pivot positions must be in different columns. Hence
n > m. O

Corollary 2.16. Let T : R™ — R" be a linear transformation. The following statements are equivalent.
(a) T is one-to-one.
(b) T is onto.

(¢) T is one-to-one and onto.

3 Invertible Matrices
Definition 3.1. A function f: X — Y is called invertible if there is a function g : Y — X such that
go f(x)=xz forall ze€ X,

foglyy=y forall yeY.

If so, the function g is called the inverse of f, and is denoted by ¢ = f~'. The function Id : X — X,
defined by Id(x) = z, is called the identity function.

Theorem 3.2. A function f: X — Y is invertible if and only if f is one-to-one and onto.

Proof. Assume that f is invertible. For two distinct elements v and v of X, if f(u) and f(v) are not distinct,
that is, f(u) = f(v), then v = g(f(u)) = g(f(v)) = v, a contradiction. This means that f is 1-1. For any
element w of Y, consider the element u = g(w) of X. We have f(u) = f(g(w)) = w. This shows that f is
onto.

Conversely, assume that f is 1-1 and onto. For any element y of Y, there exists a unique element x in X
such that f(z) =y. Define g : Y — X by g(y) = x, where f(z) =y. Then g is the inverse of f. O

Note. If a linear transformation T : R™ — R™ is invertible, then 7" must be 1 — 1 and onto. Hence m = n.

Definition 3.3. A linear transformation T : R® — R" is called invertible if there is a linear transformation
S : R™ — R"™ such that
SoT=1d,, and ToS =1d,,



where Id,, : R" — R" is the identity transformation defined by Id,(z) = x for € R". The standard
matrix of Id,, is the identity matrix

1 0 0
0 1 0
I, =
00 --- 1
Definition 3.4. A square n X n matrix A is called invertible if there is a square n x n matrix B such that
AB =1, = BA.

If A is invertible, the matrix B is called the inverse of A4, and is denoted by B = A~!.
Theorem 3.5. Let T : R™ — R"™ be a linear transformation.

(a) If T is 1-1, then T is invertible.

(b) If T is onto, then T is invertible.

In order to find out whether an n x n matrix A is invertible or not, it is to decide whether the matrix
equation
AX =1,

has a solution, and if it has a solution, the solution matrix is the inverse of A. Write X = [z, za, ..., x,].
Then AX = I, is equivalent to solving the following linear systems

Axi =e;, Axs=ey, ..., Ax,=e,.
Perform row operation to the corresponding augmented matrices; we have
[Aled] & [Llbi), [Ales] £ [Io]bs), ..., [Ale] & [L|ba).

The corresponding solutions by, ba, ..., b, can be obtained simultaneously by applying the same row opera-
tions to [A | I], ie.,

[A|I] =[Alei,er,....en] £ [A]b1,by,....b,] = [I|B].
Then B is the inverse of A.

1 1 2
Example 3.1. The matrix A= | 2 1 1 | is invertible.
1 2 4
112 ] 100 Ro — 2Ry
21 1] 010 ~
1 2 4] 001 Rs — Ry
11 2] 1 0 0] Rs + R
0 -1 -3 | -2 10 ~
0 1 2] -1 0 1| (-DkRe
(11 2| 1 0 07 Ry+3Rs
0 1 3 | 2 -1 0 ~
|00 -1 | =3 1 1] Ri +2R3
11 0| -5 2 2 Ri — Ry
0 1 0| -7 2 3 ~
00 -1 | -3 11 (=1)Rs
10 0 | 2 0 -1
o010 | -7 2 3/,
00 1 | 3 -1 -1



1 1 2 2 0 -1
2 11 =| =7 2 3
1 2 4 3 -1 -1

1 2 3
Example 3.2. The matrix | 2 3 2 | is not invertible.
3 4 1

123 | 100 Ry — 2Ry
23 2 ] 010 —
34 1] 001 R3s —3R:
1 2 3 | 1 0 O (=1)R2
0 -1 -4 | -2 10 —
0 -2 -8 | =3 0 1 R3 — 2R>
12 3 | 1 0 0
0 1 4 | 2 1 0
000 | 1 —-21

Proposition 3.6. If A and B are n x n invertible matrices, then
(AT) "= (a™h,
(AB)"'=B7'A7\
Proof. Since taking transposition reverses the order of multiplication, we have
AT(A™HT = (AT = [T = ],
(A HTAT = (AA YT =TT =T

By definition of inverse matrix, we conclude (AT)~1 = (A~1)T.
Since
BT'AT'AB=B"'B=1=AA""=ABB'A".

By definition of invertible matrix, we conclude (AB)~! = B~1A~!. O

Proposition 3.7. For any 2 X 2 matric A = [ Z 2 } , if det A :=ad — bc # 0, then

N | d —b

d Cad—bc| —¢  a |’
Proof. Assume ad — be = 0, that is, ad = be. If ad = 0, then a = 0 or d = 0; b = 0 or ¢ = 0. The matrix
contains either a zero row or zero column; so it is not invertible. If ad # 0, then a, b, ¢, and d are all nonzero.

Thus a/b = ¢/d. This means that the two columns are linearly dependent. So the matrix is not invertible.
Assume ad — bc # 0; we have

B | e Bl

o

= O
[

O

Theorem 3.8 (Characterization of Invertible Matrices). Let A be an n X n square matriz. Then the
following statements are equivalent.

(a) A is invertible.

11



The reduced row echelon form of A is the identity matriz I, .
A has n pivot positions.
Ax = 0 has the only trivial solution.

The column vectors of A are linearly independent.

)

)

)

)
f) The linear transformation T(x) = Ax is one-to-one.

) The equation Ax = b has at least one solution for any b € R™.
) The column vectors of A span R™.

) The linear transformation T(x) = Az from R™ to R™ is onto.
) There is an n X n square matriz B such that BA = I,,.

) There is an n X n square matriz B such that AB = I,,.

(1) A7 is invertible.
Proof. Tt is straightforward that
(@)= (b)) = (c) = (d)=(e) = (f) = (9) = (h) = (i) = (I) = (T is invertible) = (a).

Let S(xz) = Bz. Then

(j) = (T is one-to-one) = (S is the inverse of T') = (B is the inverse of A) = (k) = (j).

O
4 Determinants
Let T : R? — R2 be a linear transformation with the standard matrix
= [011 a12} .
a21 G22

Recall that the determinant of a 2 x 2 matrix [Z; Z;ﬂ is defined by

a11 a12 aii @12

det [ } = = a11G22 — 12021 -
a21 G22 a21 a2
Let A = [aij] be an n x n square matrix. For a fixed (7, ), where 1 <7 <m and 1 <j <mn, let
A;; = (n—1)x(n—1)submatrix of A obtained

by deleting the ith row and jth column of A.

Definition 4.1. Let A = [a;;] be an n x n square matrix. The determinant of A is a number det A,

inductively defined by

detA = ail det A11 — a1z det A12 —+ 4 (—1)"+1a1n det Aln
= a1l det A11 — a1 det A21 + -+ (—1)"+1an1 det Anl-

Theorem 4.2. Let A = [a;] be an n x n matriz. The (i, j)-cofactor of A (1 <1i,j < n) is the number
Cij = (71)i+j det Al]
Then

detA = a11C11 +a12C12+ -+ a1nCin
= anCi +a21021 + -+ apn1Chi.

12



Example 4.1. For any 3 x 3 matrix,

ailp a2 ais
21 Q22 (23 | = (11022033 + 0120230431 + Q13021032 — A11023032 — 12021033 — G13022031-
asz1 asz a3z

Theorem 4.3 (Cofactor Expansion Formula). For any n x n square matriz A = [a;;],
det A = anCin +ai2Ciz + -+ + ainCin
= ale’ljJranng +~~~+anjC’nj.

In other words,

det AT = det A.
Proposition 4.4.
ailr a2 o+ dip
0 a - aon

: - . = Q11022 App-
oo e
Theorem 4.5. Determinant satisfies the following properties.
(a) Adding a multiple of one row (column) to another row (column) does not change the determinant.
(b) Interchanging two rows (columns) changes the sign of the determinant.
(¢) If two rows (columns) are the same, then the determinant is zero.
(d) If one row (column) of A is multiplied by a scalar 7y to produce a matriz B, then

det B = ~ydet A.

Proof. Consider n x n matrices. We proceed induction on n.
(a) For n = 2, we have

ai1 a12

= ai1(age + caiz) — ajz(az1 + cayr
a21 + cai;  ag2 + caiz ( ) ( )

= a11G22 — a12G21
ail a2
a1 a2

)

a11 +cag; a1z + cazo

= (a11 + cag1)az — (a12 + cazz)as
a21 a22

= aii1G22 — a12a21
@11 a12
a21  a22

Suppose it is true for all (n — 1) x (n — 1) matrices. Consider the case R; + cR;. We divide the case into
two subcases: (1) ¢ =1 and (2) ¢ > 2. For ¢« = 1, we have O

Theorem 4.6 (The Algorithm for Determinant). Let A = [a;;] be an n x n matriz. If

a4z - din interschanging rows | %1 *
a1 G2 -+ G2p ~ 0 a

adding a multiple of : :
Gpi Qna - Qnn one row to another 0 0
Then
det A = (—1)ka1a2 Gy,

where k is the number times of interchanging two rows.

13



Example 4.2. The determinant

1 2 4 1 2 4 1 2 4 1 2 4
2 3 5|=/0 -1 =3|=—-]0 1 3|=—]0 1 3|=-2
3 4 8 0 -2 —4 0 -2 -4 0 0 2

Theorem 4.7. Let A be an n x n matriz, and let C;; be the (i,j)-cofactor of A, i.e.,
Cij = (—1)i+j det Aij.

Then we have
detA if i=j
> aiCir = ainCii + ainCla + -+ + ainCin = { 0 it j
k=1

Proof. For i = j, it follows from the cofactor expansion formula. For i # j, let us verify for 3 x 3 matrices.
For instance, for ¢ = 1 and j = 3, we have

a12 a3

a11C31 + a12C32 + a13C33 = a1
Q22 Q23

+ a3

a21  A22

a1 a2 ais
= az1 az az3 | =0.
ail a2 ais

O

Definition 4.8. For an n x n matrix A = [a;;], the classical adjoint matrix of A is the n x n matrix
adj A whose (4, j)-entry is the (j,)-cofactor C};, that is,

Cll 021 e Cnl Cll 012 te Cln T
. C'12 C’22 e Cn2 C’21 CV22 te C2n
adj A = . . ) ) = ] ) ]
Cln CZn e C’rm Cnl CnZ o Cnn

Theorem 4.9. For any n X n matriz A,
AadjA = (det A)L,.

Proof. We verify for the case of 3 x 3 matrices.

a1l aiz ais Cii Cu Cs
a1 a2 Go3 Cia Cy Cs
as1 asz Gss Ciz Ch (s

F 3 3 3
Y oe1 01kCrk D opoq a1kCor Y g a1xCsp
3 3 3
= D ope1 @2kCrk D g a2kCok Dy a2kCap
3 3 3
| k1 @3kCik D gy askCor Dy a3kCsi

[ detA 0O 0
= 0 det A 0
0 0 det A

Theorem 4.10. An n X n matriz A is invertible if and only if det A # 0.

14



5 Elementary Matrices

Definition 5.1. The following n X n matrices are called elementary matrices.

1 -
0]
1
E(c(i)) = c ith, c¢#0;
1
0]
L 1 -
o -
(0]
E(i,j) = P ;
1 0 Jjth
0]
L 1 -
= -
1 -0 ith
E(j+c(i) = Do
c 1 Jth
- 1 -
Let I,, be the n x n identity matrix. We have
L B B(cd),
w S B,
L, EY BG4 ).

Proposition 5.2. Let A be an m X n matriz. Then
(a) E(c(z))A is the matriz obtained from A by multiplying ¢ to the ith row.
(b) E(i,7)A is the matriz obtained from A by interchanging the ith row and the jth row.

(c) E(j + c(i))A s the matriz obtained from A by adding the ¢ multiple of the ith row to the jth row.

Proposition 5.3. FElementary matrices are invertible. Moreover,
B(e(i) " = B((),
E(,5)"" = (3,9,
E(j+ ()" = E(j — ().
Theorem 5.4. A square matriz A is invertible if and only if it can be written as product
A=E\Ey-- - E,,

of some elementary matrices E1, Es, ..., E

. -
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Theorem 5.5. A square matrixz A is invertible if and only if det A # 0.

Proposition 5.6. Let A and B n x n matrices. Then
det AB = det A det B.

Proof. Case 1: det A = 0. Then A is not invertible by Theorem 4.10. We claim that AB is not invertible.
Otherwise, if AB is invertible, then there is a matric C' such that (AB)C = I; thus A(BC) = I; this means
that A is invertible, contradictory to that det A # 0. Again by Theorem 4.10, det(AB) = 0. Therefore
det AB = det Adet B.

Case 2: det A # 0. It is easy to check directly that

det EB = det Edet B

for any elementary matrix E. Let A be written as A = E1Es - - - E}, for some elementary matrices F, Fs,
..+, Eg. Then
det AB = det(ElEg cee EkB) = (det El) det(E2 cee EkB)
(det El)(det EQ) det(E3 cee EkB) =
= det Fydet Ey---det B}, det B = det Adet B.

6 LU-Decomposition

Theorem 6.1. Let A be an m X n matriz. If A can be reduced to its row echelon form by elementary row
operations without switching rows, then A admits a LU-decomposition, that is, there is a lower triangular
m X m matriz L and an m X n upper triangular matriz U such that A= LU.

Proof. Let p1,p2,-..,pr be a sequence of row operations such that

P1 P2 Pk
AR AR A =T

where U is upper triangular. Let Ey, Es,..., E; be elementary matrices corresponding the row operations
D1y P2, - - -, Pk, Yespectively. Then Ey --- EsF1A=U. Let L = E1_1E2_1 e Ek_l. Then L is a lower triangular
and A= LU. O

Example 6.1.

7 Interpretation of Determinant

Let A= [““ ‘“2} be a 2 x 2 matrix. Let ey, ey, e be the standard basis of R3. Set

a21 a2
a11 a2
a; = a21 , A = a22
0 0

Then the area of the parallelepiped spanned by the two vectors a; and as is the length of the cross product
a; X ag, that is,

lay x az] = [(ai1e1 +azies) x (ar2er + axes)|
= |a11a22€3 - 021022€3|
= |a11a22 — azaz].
Let A = [a;;] = [@a1,a2,a3] be a 3 x 3 matrix. The volume of the parallelotope spanned by the three

vectors a1, ag, ag is the length of the triple (a; X asg) - as, that is,

|(a1 X (12) . a3‘ = \al . (ag X a3)|
= \all det A11 — ag1 det Agl + asi det A31|.
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Example 7.1. The Vandermonde determinant is

1 1 1 1 1 1
a1 a2 as = 0 ag — ay az — aq
a? a3 a3 0 a3 —aza; d%—azm

a2 — a1 az — a1
a2(02 - a1) a3(a3 - al)

= (a3 —az)(az —a1)(az — ay).

1 1 1 1
a1 as as an
a% a% a% afL — H(aJ a;)
: J>i
ay™t eyt oay! an~1
Example 7.2.
1 -3 1 -2 1 -3 1 -2
2 5 -1 2| T __2R1 0 1 -3 2
0 -4 5 1 - 0 -4 5 1
3 10 -6 7| Moo 3
1 -3 1 -2
fotdliz 1o 1 3 o .
- o 0 -7 9| —
Ry = Iz 0 0 0 -1
Theorem 7.1 (Cramer’s Rule). Let A = [aj,as,...,a,] be an n X n invertible matriz with the column
vectors ai, Qs, ..., a,. Then for any b € R™, the unique solution of the system
Ax =b
is given by
. = 1= oo n
m'L detA ) ) ) )
where
Ai:[(11,-.-,ai_l,b,ai+1,.-.,an}, 1<i<n.
Proof. If a vector x is the solution of the system, then
Aley,...,ei_1,x,€i41,...,e,] = [Aey,..., Ae;_1, Az, Ae;i1,...,Aey]
= [ala"'7ai—17baai+1>~~~7a'n]~

Taking determinant of both sides, we have

(det A)x; =det 4;, 1<i<n.
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